Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 328536, 7 pages
http://dx.doi.org/10.1155/2014/328536

Hindawi

Research Article

An Automatic Decision-Making Mechanism for Virtual Machine
Live Migration in Private Clouds

Ming-Tsung Kao,' Yu-Hsin Cheng,” and Shang-Juh Kao'

! Department of Computer Science and Engineering, National Chung-Hsing University, 250 Kuo-Kuang Rd.,
40227 Taichung City, Taiwan
2 Department of Information Networking and System Administration, 1 Ling Tung Road, Taichung, Taiwan

Correspondence should be addressed to Shang-Juh Kao; sjkao@cs.nchu.edu.tw
Received 12 June 2014; Accepted 27 July 2014; Published 31 August 2014
Academic Editor: Teen-Hang Meen

Copyright © 2014 Ming-Tsung Kao et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Due to the increasing number of computer hosts deployed in an enterprise, automatic management of electronic applications is
inevitable. To provide diverse services, there will be increases in procurement, maintenance, and electricity costs. Virtualization
technology is getting popular in cloud computing environment, which enables the efficient use of computing resources and reduces
the operating cost. In this paper, we present an automatic mechanism to consolidate virtual servers and shut down the idle physical
machines during the off-peak hours, while activating more machines at peak times. Through the monitoring of system resources,
heavy system loads can be evenly distributed over physical machines to achieve load balancing. By integrating the feature of
load balancing with virtual machine live migration, we successfully develop an automatic private cloud management system.
Experimental results demonstrate that, during the off-peak hours, we can save power consumption of about 69 W by consolidating
the idle virtual servers. And the load balancing implementation has shown that two machines with 80% and 40% CPU loads can
be uniformly balanced to 60% each. And, through the use of preallocated virtual machine images, the proposed mechanism can be
easily applied to a large amount of physical machines.

1. Introduction factor in determining the energy consumption [8]. This paper
presents a study to further reduce power consumption by
migrating virtual machines, during the off-peak period, and
consolidating physical machines. We propose a decision-

making mechanism for directing virtual machine migra-

Cloud computing [1] is booming in the internet world. In
addition to public and education clouds [2], enterprises
also start deploying private clouds [3]. A cloud system can

decrease the cost of physical machines and power consump-
tion and can increase the utilization rate of physical machines.
By adopting the private cloud, an enterprise is able to install
operating systems of different types and versions, allowing
a variety of services and applications to be provided. Prior
to the use of cloud systems, achieving this goal may require
many physical machines together with a large amount of
human power. Instead, enterprises can use virtual machines
[4] to provide the same functionalities while decreasing the
use of physical machines and power consumption.

Several studies [5-7] have shown that virtual machine
migration can effectively enable dynamic management for
physical machine resources. And CPU loading is an effective

tion and server consolidation. By automatically managing
resources of physical machines, virtual machines may quickly
obtain sufficient resources to provide services.

2. Related Works

To enable automatic VM migration, we have investigated
private cloud building related technologies and used KVM
[9]/QEMU [10] virtualization technology. In addition to the
use of Libvirt [11] as a virtual machine control panel and
GlusterFS [12] as a file system for disk images, we adopted
the MongoDB [13] database system and analysed energy
consumption (watt) by ZigBee [14] digital power meter.

All are implemented using PHP with the operating system
environment of Ubuntu 12.04 LTS. Related technologies used
in this study are described hereunder.

21 KVM/QEMU. Cloud computing is booming in the
current information technology industry, and virtualization
plays an important role. Therefore, competition in this area is
very intense. Currently, VMware, Xen, KVM/QEMU, Virtu-
alBox, UML, and Hyper-V technologies are fairly popular in
the virtualization world. KVM is a full virtualization solution
for Linux on x86 hardware containing virtualization exten-
sions (Intel VT or AMD-V). KVM can switch CPU to guest
model. The operating system can operate without modifying
through CPU, MMU, and IO virtualization technologies.
KVM can be operated by loading Linux kernel module,
taking its efficiency close to the speed of a physical CPU.
Scholar Younge et al. [15] have pointed out that KVM (Kernel-
Based Virtual Machine) is superior to other virtualization
technologies in analysis and evaluation of high-performance
computing (HPC) environments. In this study, we also
choose KVM/QEMU for virtual machine development.

QEMU is a software which can be used to simulate many
devices, such as disk, network card, and USB. It can also
be used to simulate many CPU systems, such as PowerPC,
Space, MIPS, and ARM. All computer devices which are
simulated by QEMU can provide virtual machines with better
performance as integrating with KVM virtualization system.

KVM/QEMU can be used to operate on various virtual
machines, which are installed with different operating sys-
tems such as Linux or Windows. Each VM has its own virtual
hardware, such as network cards, disk drives, and graphic
cards. KVM/QEMU allows sharing the hardware resources
efficiently over the hosted physical machine. In addition, each
VM operates independently, which may avoid suffering from
virus intrusion to the entire service.

2.2. Libvirt. Libvirt mechanism can be used to report detailed
implementation states of each virtual machine, such as
CPU time, memory, and network traffic. It also supports
the features of virtual machines migration and database
information. Libvirt is an open source API for virtual
platform management. It can support various hypervisors,
such as KVM/QEMU, Xen, User Mode Linux, OpenVZ, and
VirtualBox. C, C++ C#, Java, OCaml, Perl, PHP, Python,
and Ruby are all supported by Libvirt, allowing programmers
to manage various hypervisors and develop different cloud
management systems efficiently.

2.3. Live Migration. To transfer the CPU load across phys-
ical machines, migration of memory contents is the most
important task for real-time live migration [16]. Virtual
machine migration consists of the following steps: premi-
gration, reservation, iterative precopy, stop and copy, and
the commitment activation. Precopy is the most commonly
used virtual machine migration technique. With precopy
all memory pages are migrated in preparation stage; once
the writable work sequence (WWS) is small enough or the
predefined iteration threshold has been reached, the target

Mathematical Problems in Engineering

virtual machine will be brought down and moved. All CPU
states and memory pages are transferred to the destination
machine. Although precopy can compromise the system
downtime due to migration, it cannot guarantee transferring
data seamlessly if the work queue limit is reached, especially
when the virtual machine is running read-intensive opera-
tions [17, 18].

Virtual machines can be migrated from one physical
machine to another in two ways. One is office migration,
which requires shutting down the to-be-migrated virtual
machines and stopping their services temporally. Another
is live migration, allowing virtual machines to be migrated
while maintaining the services. As we focus on the automatic
live migration, the migration time should be kept as short
as possible. Only CPU states, device states, and memory are
migrated. We have prestored the disk image of the virtual
machines in an online file system instead of installing it
during the migration time.

As reported by Hirofuchi et al. [19], there are two ways
of live migration: precopy migration and postcopy migration,
which differ in the timing of memory copying. Precopy copies
memory to the target virtual machine until dirty memory
pages fall below a threshold. Then, the CPU states, device
states, and remaining memory pages are finally moved and
the VM starts to operate.

Postcopy firstly copies CPU states and device states and
resumes its operation, followed by copying memory. At the
beginning, there will be no memory pages in the destination
machine and the VM starts to function only when all memory
images are completely copied. Even though postcopy could be
superior to precopy, as reported in the paper by Hirofuchi et
al. [19], in this paper, we present a simple, successful KVM-
based live migration.

2.4. GlusterFS. As of VM operating management, we found
that it is relatively easy to recover from the faults of CPU,
memory, network, and display adapter, while the damage of
disk image usually causes a big trouble to bring up the system.
To enable disk images to be fault-tolerant, GlusterFS [12] is
the online file system for storage management.

GlusterFS is an open source distributed file system with
petabyte-level scale-out storage and is able to manage thou-
sands of clients. It uses client/server framework and combines
all blocks through TCP/IP or InfiniBand RDMS technology
to provide better protection and performance. GlusterFS
can also collect disk, memory resources, and management
information at a global namespace. Using GlusterFS, all
client operations can be carried out from applications using
standard IP networks.

2.5. MongoDB. To automatically manage a cloud cluster,
a database system is required to collect the information
of system operating status and internet traffic from both
physical and virtual machines. Since the volume of collected
data is huge, the database system needs to support big data
storage and efficient data manipulation. In this study, we
choose MongoDB [13] database system for data management

Mathematical Problems in Engineering

purpose. MongoDB is an open base system, which is easy for
development and is capable of manipulating massive data.

MongoDB belongs to document-based database systems,
mainly for the storage of unstructured documents. It can
support drivers and client libraries of various program
languages, such as C, C++, C#, Java, PHP, Python, and
Ruby. As opposed to traditional database systems, Mon-
goDB is a type of NoSQL databases. NoSOL stands for
“Not Only SQL,” which was invented as a next-generation
database to solve several major problems, such as nonrela-
tion, distribution, open source, and horizontal scalability. At
present, all database systems based on demand of high traffic
social network services, indexing massive information, or
streaming media are urgently requested without a uniform
standardization.

2.6. ZigBee Digital Power Meter. This study has used ZigBee
[14] digital power meter to monitor the energy consumption
of the hosts. It has advantages of wireless data transmission,
convenience for setting, low energy consumption, longer
transmission distance, and data centralization. These advan-
tages allow us to construct and maintain power control.
ZigBee is a newly developed wireless technology, designed
to provide a short distance and low bandwidth solution to
data transmission of automatic control. It is based on medium
access control layer and physical layer by IEEE 802.15.4 and is
capable of handling a wireless transmission network of up to
65,000 devices. The ZigBee Alliance (http://www.zigbee.org)
now leads the industry. The distance between each device
ranges from standard 75 m to several hundred meters or even
several kilo meters. A ZigBee network contains three types
of nodes as shown in Figure 1. One of them is the coordina-
tor, which is mainly responsible for network establishment
and network address assignment. One ZigBee network can
have only one coordinator. Another one is router, which is
responsible for building and recovering the router path of
data packets. It also needs to transform data packets and
assign network address to its child devices. All others are
end devices, which can join an existing ZigBee network and
transform/receive data packets.

3. Design of Automated
Decision-Making Mechanism

3.1. System Architecture. The architecture of the implemen-
tation system is shown in Figure 2. The control node acts as
the coordinator for collecting information from both physical
and virtual machines. The control node is equipped with
MongoDB and executes the decision-making mechanism.
A physical machine is a tangible machine which provides
resources to virtual machines. Virtual machines may also run
different operation systems to provide the various services.
In the architecture, GlusterFS cluster provides disk space to
virtual machines. In addition ZigBee digital power meter is
adopted to monitor the usage of electricity. One digital power
meter needs to be installed in each physical machine, so that
the control node can collect the power usage information
through a ZigBee coordinator.

3.2. Decision-Making Mechanism. A decision-making mech-
anism is proposed to dynamically determine the resource
allocation over the cluster. During the peak period, it aims at
distributing virtual machine loading to all physical machines
as balanced as possible. During the off-peak period, through
the virtual machine migration and server consolidation, we
may turn off unnecessary physical machines to reduce the
power consumption.

As shown in Figure 3, the decision-making mechanism
consists of four modules: monitor module, load calculation
module, load balance module, and migration module. CPU
loadings are monitored for all virtual machines. In the moni-
tor module, either overloading event or periodical triggering
event may be initiated. When the CPU loading of a physical
machine exceeds a certain threshold, an overloading event
will enter into the load calculation module. Otherwise, a
periodical triggering event is issued in every 10 minutes. The
purpose of both events is to determine whether a virtual
machine should be migrated and when a physical machine
should be consolidated or shut down for energy reduction.

The monitoring operations can be further explained as
follows. Once the monitor collects CPU utilization of all
VMs, the monitor determines whether the average system
CPU loading is over Thl; currently it is defined as 80% for
overloading indicator. If the system is overloaded, another
physical machine should be turned on. If no one is available, a
warning message is sent to management staff. Th2 represents
80% CPU loading of N — 1 physical machines, where N is
the number of current active physical machines. The average
CPU loading is less than Th2 indicating that the system is
capable of server consolidation. In such a case, the virtual
machine in the physical node with the lowest loading is
migrated, as carried out through the migration module, to
free the resources. In the case of normal operations, the load
balance module may initiate VM migration for the purpose
of loading balancing.

3.2.1. Monitor Module. Monitor module is used to record
CPU loading of physical and virtual machines, internet
traffic, and data from ZigBee digital power meter. The
data will be used in other modules. Monitor module can
acquire virtual machine information through connection to
physical machines by Libvirt mechanism and internet traffic
of physical machines through SSH. All the monitored data
is recorded in MongoDB. Monitor module can also acquire
energy consumption data (watt) by connection with ZigBee
coordinator through /dev/tty/BSD0. CPU loading collection
for virtual machines will be in real time, so it can be computed
to examine whether it has reached Thl or not. If it does,
an overloading event will be issued; otherwise, a periodical
trigger event will be sent to enable the decision-making
process.

3.2.2. Load Balance Module. This module is to evenly dis-
tribute virtual machine loading to run physical machines.
The module mainly presents a differencing load balance
algorithm and its flow chart is shown in Figure 4. First,
we collect CPU loading of physical machines according to

Mathematical Problems in Engineering

. ZigBee coordinator . ZigBee end device

. ZigBee router <> Information ow

FIGURE 1: ZigBee Network Topology [13].

coordinator :

Internet

Control
node

MongoDB GlusterFS cluster

Firewall
Node Node Node Node Node
(vm || Lwm)| | Cvm) LvM
(vm)| | Cvm)| | (vm] VM |
(vm [| Lwvm J| | [Cvm) (vm

ZigBee 73 | ZigBee 7| [ZigBee 7 [ZigBee 7| | ZigBee 7|
power meter ower meter power meter power meter power meter

FIGURE 2: Implementation environment system chart.

Mathematical Problems in Engineering

[Start]
J/—‘ Monitor J—l

{ Overloading event } [Periodical trigger event J

| Load calculation module J

System load > Th1

Start a new node
or alert

System load < Th2

Migration module
reduce a PM)

[Suspend node H Load balance module H

!

FIGURE 3: System flow chart of the decision-making mechanism.

(Start)

Find hy,,, and h;, CPU load
in nodes

Not found

Find a VM in node of A,
with CPU load < d/2

Have been found

Migrate it to the node with
CPU load h;,

FIGURE 4: Flow chart of differencing load balance.

6
z
o}
S
©
(=%
0 10 20 30 40 50 60 70 80 90 100 110
Time (s)
Node 100-W
Node 200-W
—— Total

FIGURE 5: Decision-making mechanism result 1: energy consump-
tion chart.

Traffic (MB)
s

0
0 10 20 30 40 50 60 70 80 90 100 110
Time (s)
Node 100-RX —— Node 200-RX
Node 100-TX —— Node 200-TX

FIGURE 6: Decision-making mechanism result 1: internet traffic
chart.

system monitor and sort the loadings from the largest loading
(Mpay) to the smallest loading (h,,,;,). The loading difference
between the two physical machines is defined as d. Less
than 10% of the difference means the load balance has been
reached, while a greater value of d indicates that a virtual
machine migration is needed. We then search for the virtual
machine in node of h,, with CPU loading less than d/2; if
s0, we start the VM migration from node of h,,, to node of
By~ Finally, we recompute the CPU loading of all physical
machines to discover the new h,, and h_; . The above
procedure is repeated until the difference between h,, and
Byins 18 less than 10%.

min>

4. Power Saving through VM Migration

4.1. Load Balancing over the Physical Machines. Initially,
four virtual machines (VMs) are deployed in each physical
machine and each VM is equipped with 2 CPU and 1GB of
memory. When the system is idle, all virtual machines on
the physical machine, node 100, will be migrated to node
200. We observed that the migration and power-off procedure
took around 86 seconds. Figure 5 displays the distribution of
power consumption during the migration period, where the
“total” stands for the total energy consumption (in watt) of
two physical machines. At the beginning, the total is 127W.
And, it occasionally reaches up to 228 W while the migration
is processing. Once all VMs were successfully migrated to
node 200, node 100 was turned off. The experimental results
show that only 58 W of energy is required to run eight
active virtual machines on node 200, which is 69 W less as
compared with running over both physical machines. The
network traffic used during the migration process is shown

Mathematical Problems in Engineering

CPU load (%)

Time (s)

—— VMI1-CPU load
—— VM2-CPU_load
—— VM3-CPU_load
—— VM4-CPU_load

—— VM5-CPU_load
—— VM6-CPU_load
VM7-CPU_load
VMS8-CPU _load

FIGURE 7: Decision-making mechanism result 1: CPU load in virtual
machines.

380 L e
S0 T
5 150
i
& 20l

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Time (s)
Node 100-W
Node 200-W
—— Total

FIGURE 8: Decision-making result 2: energy consumption chart.

CPU load (100%)

0 5

10 15 20 25 30 35 40 45 50 55 60 65

Time (s)

—— Node 100_CPU _load
—— Node 200_CPU _load

FIGURE 9: Decision-making result 2: CPU load in physical machines.

in Figure 6 and the perspective CPU loading of each VM is
depicted in Figure 7.

4.2. Decision Results of Load Balance in Physical Machines.
To demonstrate the effectiveness of load balancing, we
apply Lookbusy [20] to generate the CPU loading of each
virtual machine (VM). Among eight VMs, which are evenly
distributed over two physical machines, the CPU loadings are
particularly assigned as 80%, 40%, and six VMs with 20%
each. Both VMs with 80% and 40% CPU utilization reside
at the same physical machine, node 100, to experience the
unbalanced loading. By performing the proposed decision-
making mechanism, the VM with 40% CPU utilization was
chosen as a target for the purpose of migration. Through
the operations of the migration module, this targeted VM
is migrated to another physical machine, node 200. The
effectiveness of load balancing is shown in both Figures 8
and 9. Figure 8 indicates that the migration process takes
around 11 seconds, from 33 seconds to 44 seconds. When the
migration is in progress, there are about 10% of increases in

Mathematical Problems in Engineering

the total power usage. Once the migration is accomplished,
both CPU utilization and power consumption of two physical
machines tend to be equivalent.

5. Conclusion and Future Work

This paper proposes a mechanism to achieve load balancing
through migration in small-scale private clouds. The physical
machine resources can be efficiently utilized to meet the
quality of service request. In the experiment, when the
CPU load of one physical machine is approaching 100%,
another physical machine is automatically booted up by
the execution of the decision-making algorithm. When the
system is not busy, the consolidation process of the proposed
mechanism is accomplished by activating the virtual machine
live migration automatically. This results in powering off the
idle physical machine and, consequently, reducing the energy
consumption. In the experiment of load balancing, initially,
CPU loads of two physical machines are 80% and 40%,
respectively. The proposed mechanism enables the assign-
ment of new-coming request, so that the CPU utilizations of
both the machines are promptly balanced with around 60%
each.

The mechanism and the system framework proposed in
this study are flexible and can be easily extended. Since a large
cloud involves more physical machines, and so are the virtual
machines, an efficient VM migration with multiple machines
introduces another critical management task.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] “Cloud Computing—Wikipedia,” http://en.wikipedia.org/wiki/
Cloud_computing#Private_cloud.

[2] F H.Mbubaand W.Y. C. Wang, “Software as a service adoption:
impact on IT workers and functions of IT department,” Journal
of Internet Technology, vol. 15, no. 1, pp. 103-114, 2014.

[3] M.-Y. Luo, “Design and implementation of an education cloud,”
Journal of Internet Technology, vol. 15, no. 2, pp. 229-240, 2014.

[4] “Virtual machine—Wikipedia,” http://en.wikipedia.org/wiki/
Virtual_machine.

[5] M. Mishra, A. Das, P. Kulkarni, and A. Sahoo, “Dynamic
resource management using virtual machine migrations,” IEEE
Communications Magazine, vol. 50, no. 9, pp. 34-40, 2012.

[6] L. Liu, R. Chu, Y. Zhu, P. Zhang, and L. Wang, “DMSS: a
dynamic memory scheduling system in server consolidation
environments,” in Proceedings of the 15th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW '12), pp. 70-75,
April 2012.

[7] A. Beloglazov and R. Buyya, “Energy eflicient resource man-
agement in virtualized cloud data centers,” in Proceedings of the
10th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing (CCGrid ’10), pp. 826-831, May 2010.

[8] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen,
“Dynamic voltage scaled microprocessor system,” IEEE Journal
of Solid-State Circuits, vol. 35, no. 11, pp. 1571-1580, 2000.

] KVM Main Page, http://www.linux-kvm.org/page/Main_Page.

[10] QEMU, 2014, http://wiki.qemu.org/Main_Page.

] libvirt: The virtualization API, 2014, http://libvirt.org/.
] Frontpage—Gluster Communtity Website, http://www.gluster
org/.

[13] MongoDB, 2014, http://www.mongodb.org.

(14] ZigBee, http://www.zigbee.org/.

[15] A.J. Younge, R. Henschel, J. T. Brown, G. Von Laszewski, J.
Qiu, and G. C. Fox, “Analysis of virtualization technologies
for high performance computing environments,” in Proceedings
of the 4th IEEE International Conference on Cloud Computing
(CLOUD 1), pp. 9-16, Washington, DC, USA, July 2011.

[16] G. Praveen, “Analysis of performance in the virtual machines

environment,” International Journal of Advanced Science and
Technology, vol. 32, pp. 53-64, 2011.

[17] J. SeungHwan, Y. E. Gelogo, and B. Park, “Next generation
cloud computing issues and solutions,” International Journal of
Control and Automation, vol. 5, no. 1, pp. 63-70, 2012.

[18] Z. Liu, W. Qu, W. Liu, and K. Li, “Xen live migration with

slowdown scheduling algorithm,” in Proceeding of the IIth

International Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT '10), pp. 215-221, Wuhan,

China, December 2010.

T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, “Enabling

instantaneous relocation of virtual machines with a lightweight

VMM extension,” in Proceedings of the 10th IEEE/ACM Inter-

national Symposium on Cluster, Cloud, and Grid Computing

(CCGrid ’10), pp. 73-83, May 2010.

“lookbusy—a synthetic load generator;” http://www.devin.com/

lookbusy/.

[19

[20

Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo

