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Abstract. The objective of this paper is to describe, in the context of multicore architectures, three different scheduler imple-
mentations for the two-sided linear algebra transformations, in particular the Hessenberg and Bidiagonal reductions which are
the first steps for the standard eigenvalue problems and the singular value decompositions respectively. State-of-the-art dense
linear algebra softwares, such as the LAPACK and ScaLAPACK libraries, suffer performance losses on multicore processors due
to their inability to fully exploit thread-level parallelism. At the same time the fine-grain dataflow model gains popularity as a
paradigm for programming multicore architectures. Buttari et al. (Parellel Comput. Syst. Appl. 35 (2009), 38–53) introduced the
concept of tile algorithms in which parallelism is no longer hidden inside Basic Linear Algebra Subprograms but is brought to
the fore to yield much better performance. Along with efficient scheduling mechanisms for data-driven execution, these tile two-
sided reductions achieve high performance computing by reaching up to 75% of the DGEMM peak on a 12000 × 12000 matrix
with 16 Intel Tigerton 2.4 GHz processors. The main drawback of the tile algorithms approach for two-sided transformations is
that the full reduction cannot be obtained in one stage. Other methods have to be considered to further reduce the band matrices
to the required forms.
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1. Introduction

The current trend in the semiconductor industry to
double the number of execution units on a single die
is commonly referred to as the multicore discontinuity.
This term reflects the fact that existing software model
is inadequate for the new architectures and existing
code base will be incapable of delivering increased per-
formance, possibly not even capable of sustaining cur-
rent performance.

This problem has already been observed with state-
of-the-art dense linear algebra libraries, LAPACK [3]
and ScaLAPACK [11], which deliver a small frac-
tion of peak performance on current multicore proces-
sors and multi-socket systems of multicore processors.
Most of the algorithms implemented within both soft-
wares can be described as the repetition of two funda-
mental steps:

*Corresponding author. E-mail: dongarra@eecs.utk.edu.

• Panel factorization: depending of the Linear Al-
gebra operation that has to be performed, a num-
ber of transformations are computed for a small
portion of the matrix (the so called panel). These
transformations, computed by means of Level-2
BLAS operations, can be accumulated for effi-
cient later reuse.

• Trailing submatrix update: in this step, all the
transformations that have been accumulated dur-
ing the panel factorization, can be applied at once
to the rest of the matrix (i.e., the trailing subma-
trix) by means of Level-3 BLAS operations.

In fact, the parallelism in those frameworks is only ex-
pressed at the level of BLAS which follows the princi-
ples of the expensive fork-join approach. Substantially,
both LAPACK and ScaLAPACK implement sequential
algorithms that rely on parallel building blocks (i.e.,
the BLAS operations). As multicore systems require
finer granularity and higher asynchronicity, consider-
able advantages may be obtained by reformulating old
algorithms or developing new algorithms in a way that
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their implementation can be easily mapped on these
new architectures.

Buttari et al. [10] introduced the concept of tile algo-
rithms in which parallelism is no longer hidden inside
Basic Linear Algebra Subprograms but is brought to
the fore to yield much better performance. Operations
in the standard LAPACK algorithms for some com-
mon factorizations are then broken into sequences of
smaller tasks in order to achieve finer granularity and
higher flexibility in the scheduling of tasks to cores.

This paper presents different scheduling schemes
using tile algorithms for the two-sided linear algebra
transformations, in particular the Hessenberg and Bidi-
agonal reductions (HRD and BRD):

• The HRD is very often used as a pre-processing
step in solving the standard eigenvalue problems
(EVP) [17]:

(A − λI)x = 0,

with A ∈ R
n×n, x ∈ C

n, λ ∈ C.

The need to solve EVPs emerges from various
computational science disciplines including sys-
tem and control theory, geophysics, molecular
spectroscopy, particle physics, structure analysis
and so on. The basic idea is to transform the dense
matrix A to an upper Hessenberg form H by
applying successive orthogonal transformations
from the left (Q) as well as from the right (QT) as
follows:

H = Q × A × QT,

A ∈ R
n×n, Q ∈ R

n×n, H ∈ R
n×n.

• The BRD of a general, dense matrix is very often
used as a pre-processing step for calculating the
singular value decompositions (SVD) [17,35]:

A = XΣY T,

with A ∈ R
m×n, X ∈ R

m×m,

Σ ∈ R
m×n, Y ∈ R

n×n.

The necessity of calculating SVDs emerges from
various computational science disciplines, e.g., in
statistics where it is related to principal compo-
nent analysis, in signal processing and pattern
recognition, and also in numerical weather pre-
diction [12]. The basic idea is to transform the
dense matrix A to an upper bidiagonal form B by

applying successive distinct orthogonal transfor-
mations from the left (U ) as well as from the right
(V ) as follows:

B = UT × A × V ,

A ∈ R
n×n, U ∈ R

n×n,

V ∈ R
n×n, B ∈ R

n×n.

As originally discussed in [8] for one-sided transfor-
mations, the tile algorithms approach is a combination
of several concepts which are essential to match the ar-
chitecture associated with the cores: (1) fine granular-
ity to reach a high level of parallelism and to fit the
cores’ small caches; (2) asynchronicity to prevent any
global barriers; (3) Block Data Layout (BDL), a high
performance data representation to perform efficient
memory access; and (4) data-driven scheduler to en-
sure any enqueued tasks can immediately be processed
as soon as all their data dependencies are satisfied.

By using those concepts along with efficient sched-
uler implementations for data-driven execution, these
two-sided reductions achieve high performance com-
puting. However, the main drawback of the tile algo-
rithms approach for two-sided transformations is that
the full reduction can not be obtained in one stage.
Other methods have to be considered to further reduce
the band matrices to the required forms. A section in
this paper will address the origin of this issue.

The remainder of this paper is organized as fol-
lows: Section 2 recalls the standard HRD and BRD
algorithms. Section 3 describes the parallel HRD and
BRD tile algorithms. Section 4 outlines the different
scheduling schemes. Section 5 presents performance
results for each implementation. Section 6 gives a de-
tailed overview of previous projects in this area. Fi-
nally, Section 7 summarizes the results of this paper
and presents the ongoing work.

2. Description of the two-sided transformations

In this section, we review the original HRD and
BRD algorithms using orthogonal transformations
based on Householder reflectors.

2.1. The standard Hessenberg reduction

The standard HRD algorithm based on Householder
reflectors is written as in Algorithm 1. It takes as input
the dense matrix A and gives as output the matrix in
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Algorithm 1 Hessenberg reduction with Householder
reflectors

1: for j = 1 to n − 2 do
2: x = Aj+1:n,j
3: vj = sign(x1)‖x‖2e1 + x
4: vj = vj/‖vj ‖2
5: Aj+1:n,j:n = Aj+1:n,j:n − 2vj(v∗

j Aj+1:n,j:n)
6: A1:n,j+1:n = A1:n,j+1:n − 2(Aj+1:n,j:nvj)v∗

j
7: end for

Hessenberg form. The reflectors vj could be saved in
the lower part of A for storage purposes and used later
if necessary. The bulk of the computation is located in
lines 5 and 6 in which the reflectors are applied to A
from the left and then from the right, respectively. Four
flops are needed to update one element of the matrix.
The number of operations required by the left transfor-
mation (line 5) is then (the lower order terms are ne-
glected):

n∑
j=1

4(n − j)2 = 4

(
n∑

j=1

n2 − 2n

n∑
j=1

j +
n∑

j=1

j2

)

� 4

(
n3 − n3 +

2n3

6

)
=

4
3
n3.

Similarly, the number of operations required by the
right transformation (line 6) is then:

n∑
j=1

4n(n − j) = 4n

(
n∑

j=1

n −
n∑

j=1

j

)

� 4n

(
n2 − n2

2

)
= 2n3.

The total number of operations for such algorithm is
finally 4/3n3 + 2n3 = 10/3n3.

2.2. The standard Bidiagonal reduction

The standard BRD algorithm based on Householder
reflectors interleaves two factorizations methods, i.e.
QR (left reduction) and LQ (right reduction) decompo-
sitions. The two phases are written as follows:
Algorithm 2 takes as input a dense matrix A and gives
as output the upper bidiagonal decomposition. The re-
flectors uj and vj can be saved in the lower and upper
parts of A, respectively, for storage purposes and used
later if necessary. The bulk of the computation is lo-
cated in lines 5 and 10 in which the reflectors are ap-

Algorithm 2 Bidiagonal reduction with Householder
reflectors

1: for j = 1 to n do
2: x = Aj:n,j
3: uj = sign(x1)‖x‖2e1 + x
4: uj = uj/‖uj ‖2
5: Aj:n,j:n = Aj:n,j:n − 2uj(u∗

jAj:n,j:n)
6: if j < n then
7: x = Aj,j+1:n
8: vj = sign(x1)‖x‖2e1 + x
9: vj = vj/‖vj ‖2

10: Aj:n,j+1:n = Aj:n,j+1:n −2(Aj:n,j+1:nvj)v∗
j

11: end if
12: end for

plied to A from the left and then from the right, respec-
tively. Four flops are needed to update one element of
the matrix. The left transformations (line 5) is exactly
the same than the HRD algorithm and thus, the num-
ber of operations required, as explained in (1), is 4/3n3

(the lower order terms are neglected). The right trans-
formation (line 10) is actually the transpose of the left
transformation and requires the same amount of opera-
tions, i.e., 4/3n3. The overall number of operations for
such algorithm is finally 8/3n3.

2.3. The LAPACK block algorithms

The algorithms implemented in LAPACK leverage
the idea of blocking to limit the amount of bus traffic
in favor of a high reuse of the data that is present in the
higher level memories which are also the fastest ones.
The idea of blocking revolves around an important
property of Level-3 BLAS operations, the so called
surface-to-volume property, that states that O(n3) float-
ing point operations are performed on O(n2) data. Be-
cause of this property, Level-3 BLAS operations can
be implemented in such a way that data movement is
limited and reuse of data in the cache is maximized.
Blocking algorithms consists in recasting Linear Al-
gebra algorithms in a way that only a negligible part
of computations is done in Level-2 BLAS operations
(where no data reuse possible) while the most part is
done in Level-3 BLAS.

2.4. Limitations of the standard and block algorithms

It is obvious that Algorithms 1 and 2 are not effi-
cient, especially because it is based on vector–vector
and matrix–vector operations, i.e. Level-1 and Level-2
BLAS. Those operations are memory-bound on mod-
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ern processors, i.e. their rate of execution is entirely
determined by the memory latency suffered in bring-
ing the operands from main memory into the floating
point register file.

The corresponding LAPACK block algorithms over-
come some of those issues by accumulating the House-
holder reflectors within the panel and then, by applying
at once to the rest of the matrix, i.e. the trailing subma-
trix, which potentially make those algorithms rich in
matrix–matrix (Level-3 BLAS) operations. However,
the scalability of block factorizations is limited on a
multicore system when parallelism is only exploited
at the level of the BLAS routines. This approach will
be referred to as the fork-join approach since the exe-
cution flow of a block factorization would show a se-
quence of sequential operations (i.e., the panel factor-
izations) interleaved to parallel ones (i.e., the trailing
submatrix updates). Also, an entire column/row is re-
duced at a time, which engenders a large stride access
to memory.

The whole idea is to transform these algorithms to
work on a matrix split into square tiles, with clean-
up regions if necessary, in the case where the size of
the matrix does not divide evenly. All the elements
within the tiles are contiguous in memory following
the efficient BDL storage format and thus the access
pattern to memory is more regular. At the same time,
this fine granularity greatly improves data locality and
cache reuse as well as the degree of parallelism. The
Householder reflectors are now accumulated within the
tiles during the panel factorization which decrease the
length of the stride access to memory. This algorith-
mic strategy allows clever reuse of operands already
present in registers, and so can run at very high rates.
Those operations are indeed compute-bound, i.e. their
rate of execution principally depends on the CPU float-
ing point operations per second.

The next section presents the parallel tile versions of
these two-sided reductions.

3. The parallel band reductions

In this section, we describe the parallel implementa-
tion of the HRD and BRD algorithms which reduce a
general matrix to band form using tile algorithms.

3.1. Fast kernel descriptions

• There are four kernels to perform the tile HRD
based on Householder reflectors. Let A be a ma-

trix composed by nt × nt tiles of size b × b. Let
Ai,j represent the tile located at the row index i
and the column index j:

– DGEQRT: this kernel performs the QR blocked
factorization of a subdiagonal tile Ak,k−1 of
the input matrix. It produces an upper triangu-
lar matrix Rk,k−1, a unit lower triangular ma-
trix Vk,k−1 containing the Householder reflec-
tors stored in column major format and an up-
per triangular matrix Tk,k−1 as defined by the
WY technique [33] for accumulating the trans-
formations. Rk,k−1 and Vk,k−1 are written on
the memory area used for Ak,k−1 while an ex-
tra work space is needed to store Tk,k−1. The
upper triangular matrix Rk,k−1, called refer-
ence tile, is eventually used to annihilate the
subsequent tiles located below, on the same
panel.

– DTSQRT: this kernel performs the QR blocked
factorization of a matrix built by coupling
the reference tile Rk,k−1 that is produced
by DGEQRT with a tile below the diagonal
Ai,k−1. It produces an updated Rk,k−1 factor,
Vi,k−1 matrix containing the Householder re-
flectors stored in column major format and the
matrix Ti,k−1 resulting from accumulating the
reflectors Vi,k−1.

– DLARFB: this kernel is used to apply the trans-
formations computed by DGEQRT(Vk,k−1,
Tk,k−1) to the tile row Ak,k:nt (left updates)
and the tile column A1:nt,k (right updates).

– DSSRFB: this kernel applies the reflectors
Vi,k−1 and the matrix Ti,k−1 computed by
DTSQRT to two tile rows Ak,k:nt and Ai,k:nt
(left updates), and two tile columns A1:nt,k and
A1:nt,i (right updates).

Compared to the tile QR kernels used by Buttari
et al. in [8], the right variants for DLARFB and
DSSRFB have been developed. The other kernels
are exactly the same as [8]. The tile HRD algo-
rithm with Householder reflectors then appears as
in Algorithm 3. Figure 1 shows the HRD algo-
rithm applied on a matrix with nt = 5 tiles in
each direction. The dark gray tile is the processed
tile at the current step using as input dependency
the black tile, the white tiles are the tiles zeroed so
far, the bright gray tiles are those which still need
to be processed and the striped tile represents the
final data tile. For example, in Fig. 1(a), a subdi-
agonal tile (in dark gray) of the first panel is re-



H. Ltaief et al. / Scheduling two-sided transformations using tile algorithms on multicore architectures 39

Algorithm 3 Tile band HRD algorithm with Householder reflectors
1: for k = 2 to nt do
2: Rk,k−1, Vk,k−1, Tk,k−1 ← DGEQRT(Ak,k−1)
3: for j = k to nt do
4: Ak,j ← DLARFB(left, Vk,k−1, Tk,k−1, Ak,j)
5: end for
6: for j = 1 to nt do
7: Aj,k ← DLARFB(right, Vk,k−1, Tk,k−1, Aj,k)
8: end for
9: for i = k + 1 to nt do

10: Rk,k−1, Vi,k−1, Ti,k−1 ← DTSQRT(Rk,k−1, Ai,k−1)
11: for j = k to nt do
12: Ak,j , Ai,j ← DSSRFB(left, Vi,k−1, Ti,k−1, Ak,j , Ai,j)
13: end for
14: for j = 1 to nt do
15: Aj,k, Aj,i ← DSSRFB(right, Vi,k−1, Ti,k−1, Aj,k, Aj,i)
16: end for
17: end for
18: end for

(a) (b)

Fig. 1. HRD algorithm applied on a 5-by-5 tile matrix. (a) HRD reduction at step 1. (b) HRD reduction at step 3.

duced using the upper structure of the reference
tile (in black). This operation is done by the ker-
nel DTSQRT(R2,1, A4,1, T4,1). In Fig. 1(b), the re-
flectors located in the lower part of the reference
tile (in black) of the third panel are accordingly
applied to the trailing submatrix, e.g., the top dark
gray tile is DLARFB(right, V4,3, T4,3, A1,4) while
the bottom one is DLARFB(left, V4,3, T4,3, A4,5).

• There are eight overall kernels for the tile band
BRD implemented for the two phases, four for
each phase. For phase 1 (left reduction), the ker-
nels are exactly the ones described above for the
tile HRD algorithm, in which the reflectors are

stored in column major format. For phase 2 (right
reduction), the reflectors are now stored in row
major format:

– DGELQT: this kernel performs the LQ blocked
factorization of an upper diagonal tile Ak,k+1
of the input matrix. It produces a lower trian-
gular matrix Rk,k+1, a unit upper triangular
matrix Vk,k+1 containing the Householder re-
flectors stored in row major format and an up-
per triangular matrix Tk,k+1 as defined by the
WY technique [33] for accumulating the trans-
formations. Rk,k+1 and Vk,k+1 are written on
the memory area used for Ak,k+1 while an ex-
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Algorithm 4 Tile band BRD algorithm with Householder reflectors
1: for k = 1 to nt do
2: // QR Factorization
3: Rk,k, Vk,k, Tk,k ← DGEQRT(Ak,k)
4: for j = k + 1 to nt do
5: Ak,j ← DLARFB(left, Vk,k, Tk,k, Ak,j)
6: end for
7: for i = k + 1 to nt do
8: Rk,k, Vi,k, Ti,k ← DTSQRT(Rk,k, Ai,k)
9: for j = k + 1 to nt do

10: Ak,j , Ai,j ← DSSRFB(left, Vi,k, Ti,k, Ak,j , Ai,j)
11: end for
12: end for
13: if k < nt then
14: // LQ Factorization
15: Rk,k+1, Vk,k+1, Tk,k+1 ← DGELQT(Ak,k+1)
16: for j = k + 1 to nt do
17: Aj,k+1 ← DLARFB(right, Vk,k+1, Tk,k+1, Aj,k+1)
18: end for
19: for j = k + 2 to nt do
20: Rk,k+1, Vk,j , Tk,j ← DTSLQT(Rk,k+1, Ak,j)
21: for i = k + 1 to nt do
22: Ai,k+1, Ai,j ← DSSRFB(right, Vk,i, Tk,i, Ai,k+1, Ai,j)
23: end for
24: end for
25: end if
26: end for

tra work space is needed to store Tk,k+1. The
lower triangular matrix Rk,k+1, called refer-
ence tile, is eventually used to annihilate the
subsequent tiles located on the right, on the
same panel/row.

– DTSLQT: this kernel performs the LQ blocked
factorization of a matrix built by coupling
the reference tile Rk,k+1 that is produced by
DGELQT with a tile Ak,j located on the same
row. It produces an updated Rk,k+1 factor,
Vk,j matrix containing the Householder reflec-
tors stored in row major format and the ma-
trix Tk,j resulting from accumulating the re-
flectors Vk,j .

– DLARFB: this kernel is used to apply the trans-
formations computed by DGELQT (Vk,k+1,
Tk,k+1) to the tile column Ak+1:nt,k+1 (right
updates).

– DSSRFB: this kernel applies the reflectors Vk,j
and the matrix Tk,j computed by DTSLQT to
two tile columns Ak+1:nt,k+1 and Ak+1:nt,k+1
(right updates).

The tile BRD algorithm with Householder reflec-
tors then appears as in Algorithm 4. Only mi-
nor modifications are needed for the DLARFB
and DSSRFB kernels to take into account the
row storage of the reflectors. Moreover, the com-
puted left and right reflectors can be stored in
the lower and upper annihilated parts of the orig-
inal matrix, for later use. Although the algo-
rithm works for rectangular matrices, for sim-
plicity purposes, only square matrices are consid-
ered.
Figure 2 highlights the band BRD algorithm on a
tile matrix with nt = 5. The notations and col-
ors introduced previously are reused here. Fig-
ure 2(a) shows how the left reduction procedure
works during the first step. The dark gray tile
corresponds to DTSQRT(R1,1, A4,1, T4,1) which
gets annihilated using the upper structure of the
reference tile (black). In Fig. 2(b), the right re-
duction procedure occurs in which the dark gray
tile corresponding to DTSLQT(R1,2, A1,4, T1,4)
gets annihilated using the lower structure of the
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(a) (b)

(c) (d)

Fig. 2. BRD algorithm applied on a 5-by-5 tile matrix. (a) BRD left reduction at step 1. (b) BRD right reduction at step 1. (c) BRD left reduction
at step 3. (d) BRD right reduction at step 3.

reference tile black. In Fig. 2(c), the reduc-
tion is at step 3 and one of the trailing sub-
matrix update operations applied on the left is
represented by the dark gray tiles DSSRFB(left,
V4,3, T4,3, A3,4, A4,4). In Fig. 2(d), one of the trail-
ing submatrix update operations applied on the
right is represented by the dark gray tiles in DSS-
RFB(right, V3,5, T3,5, A4,4, A4,5).

All the kernels presented in this section are very rich
in matrix–matrix operations. By working on small tiles
with BDL, the elements are contiguous in memory and
thus the access pattern to memory is more regular,
which makes these kernels high performing. It appears
necessary then to efficiently schedule the kernels to get
high performance in parallel.

3.2. Parallel kernel executions

In this section, we identify the dependencies be-
tween tasks by introducing a graphical representation
of the parallel executions of Algorithms 3 and 4.

Figure 3 illustrates the step-by-step execution of Al-
gorithm 3 in order to eliminate the first tile column.
The factorization of the panel (DGEQRT and DTSQRT
kernels) during the left transformation (Fig. 3(a)) is the
only part of the algorithm which has to be done se-
quentially in a domino-like fashion. The updates ker-
nels (DLARFB and DSSRFB) applied during the left
as well as the right transformations (Fig. 3(a) and 3(b))
can be scheduled concurrently as long as the order in
which the panel factorization kernels have been exe-
cuted is preserved during the corresponding update op-
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(a) (b)

Fig. 3. Parallel tile band HRD scheduling. (a) Left transformation. (b) Right transformation.

erations, for numerical correctness. The shape of the
band Hessenberg matrix starts to appear as shown in
the bottom right matrix in Fig. 3(b).

Figure 4 illustrates the step-by-step execution of
Algorithm 4 to eliminate the first tile column and
tile row. The factorization of the row/column panels,
DGEQRT and DTSQRT kernels for the left transfor-
mation (Fig. 4(a)), DGELQT and DTSLQT kernels for
the right transformation (Fig. 4(b)), is also the only
part of the algorithm which has to be done sequentially.
Again, the updates kernels can then be run in parallel
as long as the order in which the panel factorization
kernels have been executed is preserved during the up-
date operations. The shape of the band bidiagonal ma-
trix starts to appear as shown in the bottom right matrix
in Fig. 4(b).

From Figs 3 and 4 illustrating Algorithms 3 and 4,
respectively, we can actually represent a Directed
Acyclic Graph (DAG) where nodes are elementary
tasks that operate on tiles and where edges represent
the dependencies among them. Finally, the data driven
execution scheduler has to ensure the pool of tasks gen-
erated by Algorithms 3 and 4 are processed as soon
as their respective dependencies are satisfied (more de-
tails in Section 4).

The next section describes the number of operations
needed to perform those reductions using tile algo-
rithms.

3.3. Arithmetic complexity

This section presents the complexity of the two band
reductions (HRD and BRD).

3.3.1. Band HRD complexity
If an unblocked algorithm is used with Householder

reflectors (see Algorithm 1), the algorithmic complex-
ity for the band HRD algorithm is 10/3n(n − b)(n − b),
with b being the tile size. So, compared to the full HRD
complexity, i.e., 10/3n3, the band HRD algorithm is
performing O(n2b) fewer flops.

In the tile algorithm with Householder reflectors
presented in Algorithm 3, we recall the four kernels
and give their complexity:

• DGEQRT: 4/3b3 to perform the factorization of
the reference tile Ak,k−1 and 2/3b3 for computing
Tk,k−1.

• DLARFB: since Vk,k−1 and Tk,k−1 are triangular,
3b3 floating-point operations are performed in this
kernel.

• DTSQRT: 2b3 to perform the factorization of the
subdiagonal tile Ai,k−1 using the reference tile
Ak,k−1 and 2/3b3 for computing Ti,k−1, which
overall gives 10/3b3 floating-point operations.

• DSSRFB: by exploiting the structure of Vi,k−1

and Ti,k−1, 5b3 floating-point operations are
needed by this kernel.
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(a) (b)

Fig. 4. Parallel tile band BRD scheduling. (a) Left transformation. (b) Right transformation.

More details can be found in [8]. The total number of
floating-point operations for the band HRD algorithm
is then:

nt∑
k=2

(
2b3 + 3(nt − k)b3 +

10
3

(nt − k)b3

+ 5(nt − k)2b3 + 3b3nt

+ 5nt(nt − k + 1)b3
)

� 5
3
nt3b3 +

5
2
nt3b3

=
5
3
n3 +

5
2
n3

=
25
6

n3, (1)

which is 25% higher than the unblocked algorithm for
the same reduction. Indeed, the cost of these updating
techniques is an increase in the operation count for the
band HRD algorithm. However, as suggested in [13–
15], by setting up inner-blocking within the tiles during
the panel factorizations as well as the trailing subma-
trix updates (i.e., left and right), DGEQRT–DTSQRT
and DLARFB–DSSRFB kernels, respectively, those
extra flops become negligible provided s � b, with s
being the inner-blocking size. The inner-blocking size

trades off actual memory load with those extra-flops.
This blocking approach has also been described in [18,
32]. To understand how this cuts the operation count
of the band HRD algorithm, it is important to note that
the DGEQRT, DLARFB and DTSQRT kernels only
account for lower order terms in the total operation
count for the band HRD algorithm. It is, thus, possible
to ignore these terms and derive the operation count
for the band HRD algorithm as the sum of the cost
of all the DSSRFB kernels. The Ti,k−1 generated by
DTSQRT and used by DSSRFB are not upper trian-
gular anymore but becomes upper-triangular by block
thanks to inner-blocking. The cost of a single DSSRFB
call drops down, and by ignoring the lower order terms,
it is now 4b3 + sb2. The total cost of the band HRD
algorithm with internal blocking is then:

nt∑
k=2

(
(4b3 + sb2)(nt − k)2

+ nt(nt − k + 1)(4b3 + sb2)
)

� (4b3 + sb2)

(
1
3
nt3 +

1
2
nt3

)

=
(

1 +
s

4b

)(
4
3
n3 + 2n3

)
. (2)
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The operation count for the band HRD algorithm with
internal blocking is larger than that of the unblocked
algorithm only by the factor (1 + s

4b ), which is negligi-
ble, provided that s � b. Note that, in the case where
s = b, the tile block Hessenberg algorithm performs
25% more floating-point operations than the unblocked
algorithm, as stated before.

3.3.2. Band BRD complexity
Similarly, the same methodology is applied to com-

pute the complexity of the band BRD algorithm. If
an unblocked algorithm is used with Householder re-
flectors (see Algorithm 2), the algorithmic complexity
for the band BRD algorithm is 4/3n3 (left updates) +
4/3n(n − b)(n − b) (right updates) = 4/3(n3 + n(n −
b)(n − b)), with b being the tile size. So, compared to
the full BRD complexity, i.e., 8/3n3, the band BRD
algorithm is performing O(n2b) fewer flops.

The kernels involved in Algorithm 4 in the context
of tile algorithms during the left transformations are
the same than Algorithm 3. The right transformations
actually correspond to the transpose of the left trans-
formations and thus, they have the same number of op-
erations. The total number of floating-point operations
for the band BRD algorithm is then:

nt∑
k=2

2 ×
(

2b3 + 3(nt − k)b3

+
10
3

(nt − k)b3 + 5(nt − k)2b3
)

� 2 × 5
3
nt3b3

=
10
3

n, (3)

which is 25% higher than the unblocked algorithm for
the same reduction. Indeed, the cost of these updat-
ing techniques is an increase in the operation count for
the band BRD algorithm. Again, by setting up inner-
blocking within the tiles during the panel factorizations
as well as the trailing submatrix updates (i.e., left and
right), DGEQRT–DTSQRT–DLARFB–DSSRFB and
DGELQT–DTSLQT–DLARFB–DSSRFB kernels, re-
spectively, those extra flops become negligible pro-
vided s � b, with s being the inner-blocking size.
To understand how this cuts the operation count of
the band BRD algorithm, it is important to note that
the DGEQRT, DGELQT, DTSQRT, DTSLQT and
DLARFB kernels only account for lower order terms in
the total operation count for the band BRD algorithm.

It is, thus, possible to ignore these terms and derive
the operation count for the band BRD algorithm as the
sum of the cost of all the DSSRFB kernels. The Ti,k−1
and Tk,j generated by DTSQRT/DTSLQT respectively
and used by DSSRFB are not upper triangular anymore
but becomes upper-triangular by block thanks to inner-
blocking. The total cost of the band BRD algorithm
with internal blocking is then:

nt∑
k=2

2 × (4b3 + sb2)(nt − k)2

� 2 × (4b3 + sb2)

(
1
3
nt3

)

=
(

1 +
s

4b

)(
8
3
n3

)
. (4)

The operation count for the band BRD algorithm with
internal blocking is larger than that of the unblocked
algorithm only by the factor (1 + s

4b ), which is neg-
ligible, provided that s � b. Note that, in the case
where s = b, the band BRD algorithm performs 25%
more floating-point operations than the unblocked al-
gorithm, as stated above.

However, it is noteworthy to mention the high cost of
reducing the band Hessenberg/bidiagonal matrix to the
full reduced matrix. Indeed, using techniques such as
bulge chasing to reduce the band matrix, especially for
the band Hessenberg, is very expensive and may dra-
matically slow down the overall algorithms. Another
approach would be to apply the QR algorithm (non-
symmetric EVP) or the Divide-and-Conquer (SVD) on
the band matrix but those strategies are sill under in-
vestigations.

The next section explains the limitation origins of
the tile algorithms concept for two-sided transforma-
tions, i.e. the reduction up to band form.

3.4. Limitations of tile algorithms approach for
two-sided transformations

The concept of tile algorithms is very suitable for
one-sided methods (i.e., Cholesky, LU, QR, LQ). In-
deed, the transformations are only applied to the ma-
trix from one side. With the two-sided methods, the
right transformation needs to preserve the reduction
achieved by the left transformation. In other words,
the right transformation should not destroy the zeroed
structure by creating fill-in elements. That is why, the
only way to keep intact the obtained structure is to per-
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form a shift of a tile in the adequate direction. For the
HRD, we shifted one tile bottom from the top-left cor-
ner of the matrix. For the BRD, we decided to shift one
tile right from the top-left corner of the matrix. For the
latter algorithm, we could have also performed the shift
one tile bottom from the top-left corner of the matrix.

In the following part, we present a comparison of
three approaches for tile scheduling, i.e., a static data
driven execution scheduler, a hand-coded dynamic
data driven execution scheduler and finally, a dynamic
scheduler using SMP Superscalar framework.

4. Description of the scheduling implementations

This section describes three scheduler implementa-
tions: a static scheduler where the scheduling is pre-
determined ahead and two dynamic schedulers where
decisions are made at runtime.

4.1. Static scheduling

The static scheduler used here is a derivative of the
scheduler used successfully in the past to schedule
Cholesky and QR factorizations on the Cell proces-
sor [22,24]. The static scheduler imposes a linear or-
der on all the tasks in the factorization. Each thread
traverses the tasks space in this order picking a pre-
determined subset of tasks for execution. In the phase
of applying transformations from the left each thread
processes one block-column of the matrix; in the phase
of applying transformations from the right each thread
processes one block-row of the matrix (Fig. 5). A de-
pendency check is performed before executing each
task. If dependencies are not satisfied the thread stalls
until they are (implemented by busy waiting). Depen-
dencies are tracked by a progress table, which con-
tains global progress information and is replicated on
all threads. Each thread calculates the task traversal
locally and checks dependencies by polling the local
copy of the progress table. Due to its decentralized na-
ture, the mechanism is much more scalable and of vir-
tually no overhead. This technique allows for pipelined
execution of factorizations steps, which provides sim-
ilar benefits to dynamic scheduling, namely, execution
of the inefficient Level 2 BLAS operations in paral-
lel with the efficient Level 3 BLAS operations. Also,
processing of tiles along columns and rows provides
for greater data reuse between tasks, to which the au-
thors attribute the main performance advantage of the
static scheduler. The main disadvantage of the tech-

Fig. 5. BRD Task Partitioning with eight cores on a 5 × 5 tile matrix.
(The colors are visible in the online version of the article.)

nique is potentially suboptimal scheduling, i.e., stalling
in situations where work is available. Another obvious
weakness of the static schedule is that it cannot accom-
modate dynamic operations, e.g., divide-and-conquer
algorithms.

4.2. Hand-coded dynamic scheduling

The dynamic scheduling scheme similar to [8] has
been extended for the two-sided orthogonal transfor-
mations. A DAG is used to represent the data flow
between the tasks/kernels. While the DAG is quite
easy to draw for a small number of tiles, it becomes
very complex when the number of tiles increases and
it is even more difficult to process than the one cre-
ated by the one-sided orthogonal transformations. In-
deed, the right updates impose severe constraints on
the scheduler by filling up the DAG with multiple addi-
tional edges. The dynamic scheduler maintains a cen-
tral progress table, which is accessed in the critical sec-
tion of the code and protected with mutual exclusion
primitives (POSIX mutexes in this case). Each thread
scans the table to fetch one task at a time for exe-
cution. As long as there are tasks with all dependen-
cies satisfied, the scheduler will provide them to the
requesting threads and will allow an out-of-order exe-
cution. The scheduler does not attempt to exploit data
reuse between tasks though. The centralized nature of
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the scheduler may inherently be non-scalable with the
number of threads. Also, the need for scanning poten-
tially large table window, in order to find work, may in-
herently be non-scalable with the problem size. How-
ever, this organization does not cause too much perfor-
mance problems for the numbers of threads, problem
sizes and task granularities investigated in this paper.

4.3. SMPSs

SMP Superscalar (SMPSs) [29,34] is a parallel pro-
gramming framework developed at the Barcelona Su-
percomputer Center (Centro Nacional de Supercom-
putación), part of the STAR Superscalar family, which
also includes Grid Supercalar and Cell Superscalar [5,
30]. While Grid Superscalar and Cell Superscalar ad-
dress parallel software development for Grid environ-
ments and the Cell processor, respectively, SMP Super-
scalar is aimed at “standard” (×86 and like) multicore
processors and symmetric multiprocessor systems. The
programmer is responsible for identifying parallel
tasks, which have to be side-effect-free (atomic) func-
tions. Additionally, the programmer needs to specify
the directionality of each parameter (input, output, in-
out). If the size of a parameter is missing in the C
declaration (e.g., the parameter is passed by pointer),
the programmer also needs to specify the size of the
memory region affected by the function. However, the
programmer is not responsible for exposing the struc-
ture of the task graph. The task graph is built auto-
matically, based on the information of task parameters
and their directionality. The programming environment
consists of a source-to-source compiler and a support-
ing runtime library. The compiler translates C code
with pragma annotations to standard C99 code with
calls to the supporting runtime library and compiles it
using the platform native compiler (Fortran code are
also supported). At runtime the main thread creates
worker threads, as many as necessary to fully utilize
the system, and starts constructing the task graph (pop-
ulating its ready list). Each worker thread maintains its
own ready list and populates it while executing tasks.
A thread consumes tasks from its own ready list in
LIFO-order. If that list is empty, the thread consumes
tasks from the main ready list in FIFO-order, and if
that list is empty, the thread steals tasks from the ready
lists of other threads in FIFO-order. The SMPSs sched-
uler attempts to exploit locality by scheduling depen-
dent tasks to the same thread, such that output data is
reused immediately. Also, in order to reduce depen-

dencies, SMPSs runtime is capable of renaming data,
leaving only the true dependencies.

By looking at the characteristics of the three sched-
ulers, we can draw some basic conclusions. The sta-
tic and the hand-coded dynamic schedulers are using
orthogonal approaches: the former emphasizes on data
reuse between tasks while the latter does not stall if
work is available. The philosophy behind the dynamic
scheduler framework from SMPSs falls in the middle
of the two previous schedulers because not only it pro-
ceeds as soon as work is available, but also it tries to
reuse data as much as possible. Another aspect which
has to be taken into account is the coding effort. In-
deed, the easy of use of SMPSs makes it very attractive
for end-users and puts it on top of the other schedulers
discussed in this paper.

5. Experimental results

The experiments have been achieved on a quad-
socket quad-core Intel Tigerton 2.4 GHz (16 total
cores) with 32 GB of memory. Hand tuning based
on empirical data has been performed for large prob-
lems to determine the optimal tile size b = 200 and
inner-blocking size s = 40 for the tile band HRD and
BRD algorithms. The block sizes for LAPACK and
ScaLAPACK (configured for shared-memory) have
also been hand tuned to get a fair comparison, b = 32
and b = 64, respectively.

Figures 6 and 8 show the band HRD and BRD exe-
cution time in seconds for different matrix sizes. They
outperform by far the MKL, LAPACK and ScaLA-
PACK implementations. The authors understand that it
may not be a fair comparison to do against those latter
libraries, since the reduction is completely achieved in
that case. The purpose of showing such performance
curves is only to give a rough idea in term of elapsed
time and performance, of the whole reduction process.

On the other hand, Figs 7 and 9 present the paral-
lel performance in Gflop/s of the band HRD and BRD
algorithms. The different scheduler implementations
scale quite well while the matrix size increases.

For the band HRD, the static scheduling and SMPSs
are having very similar performance reaching
102 Gflop/s, i.e. 67% of the system theoretical peak
and 78% of DGEMM peak for large matrix size.
The dynamic scheduling asymptotically reaches
94 Gflop/s, runs at 61% of the system theoretical peak
and 72% of the DGEMM peak.
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Fig. 6. Elapsed time in seconds of the band HRD on a quad-socket quad-core Intel Xeon 2.4 GHz processors with MKL BLAS V10.0.1. (The
colors are visible in the online version of the article.)

Fig. 7. Performance in Gflop/s of the band HRD on a quad-socket quad-core Intel Xeon 2.4 GHz processors with MKL BLAS V10.0.1. (The
colors are visible in the online version of the article.)
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Fig. 8. Elapsed time in seconds of the band BRD on a quad-socket quad-core Intel Xeon 2.4 GHz processors with MKL BLAS V10.0.1. (The
colors are visible in the online version of the article.)

Fig. 9. Performance in Gflop/s of the band BRD on a quad-socket quad-core Intel Xeon 2.4 GHz processors with MKL BLAS V10.0.1. (The
colors are visible in the online version of the article.)
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For the band BRD, SMPSs is running slightly bet-
ter than the two other schedulers reaching 97 Gflop/s,
i.e. 63% of the system theoretical peak and 75% of
DGEMM peak. The static and dynamic scheduling
reach 94 Gflop/s, runs at 61% of the system theoretical
peak and 72% of the DGEMM peak.

6. Related work

Dynamic data-driven scheduling is an old concept
and has been applied to dense linear operations for
decades on various hardware systems. The earliest ref-
erence, that the authors are aware of, is the paper by
Lord, Kowalik and Kumar [26]. A little later dynamic
scheduling of LU and Cholesky factorizations were re-
ported by Agarwal and Gustavson [1,2]. Throughout
the years dynamic scheduling of dense linear algebra
operations has been used in numerous vendor library
implementations such as ESSL, MKL and ACML (nu-
merous references are available on the Web). In recent
years the authors of this work have been investigating
these ideas within the framework Parallel Linear Alge-
bra for Multicore Architectures (PLASMA) at the Uni-
versity of Tennessee [7,9,10,23].

Seminal work in the context of the tile QR factor-
ization was done by Elmroth et al. [13–15]. Gunter
et al. presented an “out-of-core” (out-of-memory) im-
plementation [18], Buttari et al. an implementation for
“standard” (×86 and alike) multicore processors [9,
10], and Kurzak et al. an implementation on the CELL
processor [25].

Seminal work on performance-oriented data layouts
for dense linear algebra was done by Gustavson et
al. [19,20] and Elmroth et al. [16] and was also inves-
tigated by Park et al. [27,28].

7. Conclusion and future work

By exploiting the concepts of tile algorithms in the
multicore environment, i.e., high level of parallelism
with fine granularity and high performance data repre-
sentation combined with a dynamic data driven execu-
tion (i.e., SMPSs), the HRD and BRD algorithms with
Householder reflectors achieve 102 and 97 Gflop/s, re-
spectively, on a 12000 × 12000 matrix size with 16 In-
tel Tigerton 2.4 GHz processors. These algorithms per-
form most of the operations in Level-3 BLAS.

The main drawback of the tile algorithms approach
for two-sided transformations is that the full reduction

cannot be obtained in one stage. Other methods have
to be considered to further reduce the band matrices to
the required forms. For example, the sequential frame-
work PIRO_BAND [31] efficiently performs the re-
duction of band matrices to bidiagonal form using the
bulge chasing method. The authors are also looking at
one-sided HRD implementations done by Hegland et
al. [21] and one-sided BRD implementations done by
Barlow et al. [4] and later, Bosner et al. [6] to reduce
the original matrix through a one-stage only procedure.
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