ON THE SHARP CONSTANT FOR STARLIKENESS

CHEN KEYING

(Received 24 February 2000)

AbSTRACT. We obtain a sharp constant of the sufficient condition for p-valently starlikeness, which had been studied by Nunokawa (1991), Obradović and Owa (1989), and Li (1993).

2000 Mathematics Subject Classification. Primary 30C45.

1. Introduction. Let $A(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(p \in \mathbb{N}) \tag{1.1}
\end{equation*}
$$

which are analytic in $\mathbf{U}=\{z:|z|<1\}$. A function $f(z)$ in $A(p)$ is said to be p-valently starlike if and only if

$$
\begin{equation*}
\mathfrak{R}\left[\frac{z f^{\prime}(z)}{f(z)}\right]>0 \quad \text { in } \mathbf{U} . \tag{1.2}
\end{equation*}
$$

Let $S(p)$ denote the subclass of $A(p)$ consisting of all functions $f(z)$ which are p-valently starlike in \mathbf{U} (cf. [1]). For a function $g(z)$ in $A(p)$, the interesting problem is to find the best constant A such that $g(z)$ is in $S(p)$ whenever

$$
\begin{equation*}
\left|1+\frac{z g^{(p+1)}(z)}{\mathcal{g}^{(p)}(z)}\right|<A\left|\frac{z g^{(p)}(z)}{\boldsymbol{g}^{(p-1)}(z)}\right| \quad \text { in } \mathbf{U} \tag{1.3}
\end{equation*}
$$

In 1989, Obradović and Owa [6] obtained that $A=5 / 4$ for the case of $p=1$. For the general case, Nunokawa [5] gained that $A=\log 4$. Recently, Li [2] improved these results and obtained that $A=3 / 2$. In this paper, we will solve this problem completely and give the sharp constant $A=1.80898 \ldots$, where A is the unique solution of the equation

$$
\begin{equation*}
x e^{1 /\left(x^{2}-1\right)}=x+1 \tag{1.4}
\end{equation*}
$$

For proving our result, we should recall the concept of subordination between analytic functions. Given two analytic functions $f(z)$ and $F(z)$, the function $f(z)$ is said to be subordinate to $F(z)$ if $F(z)$ is univalent in $\mathbf{U}, f(0)=F(0)$, and $f(\mathbf{U}) \subset F(\mathbf{U})$. We denote this subordination by $f(z) \prec F(z)$ (see [7]).

Suppose that $h(z)$ is analytic in \mathbf{U}, and that $\Phi(z)$ is analytic in an appropriate domain \mathbf{D}, we consider the following first-order differential subordination

$$
\begin{equation*}
\beta+z p^{\prime}(z) \Phi(p(z)) \prec h(z) \tag{1.5}
\end{equation*}
$$

where $p(z)$ is analytic in \mathbf{U}, β is a complex constant. Changing the " \prec " of (1.5) to "=", we get the corresponding first-order differential equation

$$
\begin{equation*}
\beta+z p^{\prime}(z) \Phi(p(z))=h(z) . \tag{1.6}
\end{equation*}
$$

2. Main results. Our results rest on the following lemma, which is the special case of [3, Theorem 3].

Lemma 2.1. Suppose that $h(z)$ is a starlike function in $\mathbf{U}, \Phi(z)$ is analytic in the domain \mathbf{D} and $p(z), q(z)$ are two analytic functions in \mathbf{U}. If $p(z)$ satisfies the relation (1.5), $q(z)$ is a univalent solution of the corresponding equation (1.6) and $p(0)=q(0)$, then $p(z) \prec q(z)$.

Theorem 2.2. Let $g(z) \in A(p)$, and suppose that

$$
\begin{equation*}
\left|1+\frac{z g^{(p+1)}(z)}{g^{(p)}(z)}\right|<A\left|\frac{z g^{(p)}(z)}{g^{(p-1)}(z)}\right| \quad \text { in } \mathbf{U} \text {, } \tag{2.1}
\end{equation*}
$$

where the constant A is given by (1.4). Then $g(z) \in S(p)$ and the result is sharp.
Proof. Let

$$
\begin{equation*}
f(z)=\frac{g^{(p-1)}(z)}{p!} . \tag{2.2}
\end{equation*}
$$

Then $f(z) \in A(1)$. From the assumption (2.1), $f(z)$ satisfies

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<A\left|\frac{z f^{\prime}(z)}{f(z)}\right| \quad \text { in } \mathbf{U} . \tag{2.3}
\end{equation*}
$$

By putting $p(z)=z f^{\prime}(z) / f(z)$, equation (2.3) can be rewritten as

$$
\begin{equation*}
\left|1+\frac{z p^{\prime}(z)}{p^{2}(z)}\right|<A . \tag{2.4}
\end{equation*}
$$

Let $\varphi(z)=A(1+A z) /(A+z)$ for $z \in \mathbf{U}$. Obviously $\varphi(z)$ is a conformal mapping from U to $\Omega=\{w:|w|<A\}$ and $\varphi(0)=1$. Combining (2.4) with the definition of subordination, we obtain

$$
\begin{equation*}
1+\frac{z p^{\prime}(z)}{p^{2}(z)} \prec \frac{A(1+A z)}{A+z} . \tag{2.5}
\end{equation*}
$$

Setting

$$
\begin{equation*}
q(z)=\frac{1}{1+\left(A^{2}-1\right) \log A /(A+z)}, \tag{2.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
1+\frac{z q^{\prime}(z)}{q^{2}(z)}=\frac{A(1+A z)}{A+z} \tag{2.7}
\end{equation*}
$$

and $p(0)=q(0)=1$. As $A>1$, we can choose a uniform analytic branch of $\log (A+z)$ such that $q(z)$ is univalent on this branch. By taking the real part of the denominator of $q(z)$ and combining (1.4), we conclude that

$$
\begin{equation*}
\mathfrak{Z}\left[1+\left(A^{2}-1\right) \log \frac{A}{A+z}\right]>1+\left(A^{2}-1\right) \log \frac{A}{A+1}=0 . \tag{2.8}
\end{equation*}
$$

It follows that $\mathfrak{Z}[q(z)]>0$, so $q(z)$ is analytic and univalent. Let $\mathbf{D}=\mathbb{C} \backslash\{0\}$, $\Phi(z)=1 / z^{2}, \beta=1$, and $h(z)=A(1+A z) /(A+z)$, where \mathbb{C} is the complex plane. It is clear that $h(z)$ is a starlike function. From Lemma 2.1, we deduce that $p(z) \prec q(z)$. Hence

$$
\begin{equation*}
\mathfrak{X}\left[\frac{z f^{\prime}(z)}{f(z)}\right]=\mathfrak{x}[p(z)] \geq \min _{|z|=r<1} \mathfrak{X}[q(z)]>0 . \tag{2.9}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\mathfrak{K}\left[\frac{z g^{(p)}(z)}{g^{(p-1)}(z)}\right]=\mathfrak{X}\left[\frac{z f^{\prime}(z)}{f(z)}\right]>0 \quad \text { in } \mathbf{U} . \tag{2.10}
\end{equation*}
$$

From [4, Theorem 5], we have

$$
\begin{equation*}
\mathfrak{K}\left[\frac{z g^{\prime}(z)}{g(z)}\right]>0 \quad \text { in } \mathbf{U} . \tag{2.11}
\end{equation*}
$$

This proves $g(z) \in S(p)$.
For any $A_{1}>A=1.80898 \ldots$, we get a function $q_{1}(z)$ by replacing A in (2.6) with A_{1} and choosing an appropriate branch of $\log \left(A_{1}+z\right)$. We can easily observe that the real part of $q_{1}(z)$ is not always positive. Through the relations $q_{1}(z)=z f^{\prime}(z) / f(z)$ and $f(z)=g^{(p-1)}(z) / p$!, we can construct an analytic function $g(z)$ which belongs to $A(p)$ and satisfies (2.1), but it is not in $S(p)$. This completes the proof.

Taking $p=1$ in Theorem 2.2, we easily have the following corollary.
Corollary 2.3. If $f(z) \in A(1)$ and it satisfies the condition

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<A\left|\frac{z f^{\prime}(z)}{f(z)}\right| \quad \text { in } \mathbf{U} \tag{2.12}
\end{equation*}
$$

where the constant A is given by (1.4), then $f(z)$ is univalent and starlike in \mathbf{U}.
The problem that Nunokawa proposed in [5] has been solved completely, but the converse proposition of Theorem 2.2 is not true. We find a simple example $f(z)=$ $z /(1-z)$ which belongs to $S(1)$, but it does not satisfy (2.12). The following theorem is better than (2.1) because it includes at least this example.

Theorem 2.4. Let $g(z) \in A(p)$, and suppose that

$$
\begin{equation*}
\left|1+\frac{z g^{(p+1)}(z)}{g^{(p)}(z)}-\frac{z g^{(p)}(z)}{g^{(p-1)}(z)}\right|<\left|\frac{z g^{(p)}(z)}{g^{(p-1)}(z)}\right| \quad \text { in } \mathbf{U} \tag{2.13}
\end{equation*}
$$

Then $g(z) \in S(p)$.
Proof. Let

$$
\begin{equation*}
f(z)=\frac{g^{(p-1)}(z)}{p!} . \tag{2.14}
\end{equation*}
$$

Then $f(z) \in A(1)$. From the assumption (2.13), $f(z)$ satisfies

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right|<\left|\frac{z f^{\prime}(z)}{f(z)}\right| \text { in } \mathbf{U} . \tag{2.15}
\end{equation*}
$$

By setting $p(z)=z f^{\prime}(z) / f(z)$, equation (2.15) can be rewritten as

$$
\begin{equation*}
\left|\frac{z p^{\prime}(z)}{p^{2}(z)}\right|<1 \tag{2.16}
\end{equation*}
$$

From the definition of subordination, we obtain

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p^{2}(z)} \prec z . \tag{2.17}
\end{equation*}
$$

Let $q(z)=1 /(1-z)$, we observe that $z q^{\prime}(z) / q^{2}(z)=z, p(0)=q(0)=1$, and $\mathfrak{Z}[q(z)]$ >0. From Lemma 2.1, we know that $p(z) \prec 1 /(1-z)$. Therefore

$$
\begin{equation*}
\mathfrak{X}\left[\frac{z f^{\prime}(z)}{f(z)}\right]=\mathfrak{X}[p(z)] \geq \min _{|z|=r<1} \mathfrak{X}[q(z)]>0 . \tag{2.18}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\mathfrak{X}\left[\frac{z g^{(p)}(z)}{g^{(p-1)}(z)}\right]=\mathfrak{X}\left[\frac{z f^{\prime}(z)}{f(z)}\right]>0 \quad \text { in } \mathbf{U} . \tag{2.19}
\end{equation*}
$$

From [4, Theorem 5], we have

$$
\begin{equation*}
\mathfrak{X}\left[\frac{z g^{\prime}(z)}{g(z)}\right]>0 \quad \text { in } \mathbf{U} . \tag{2.20}
\end{equation*}
$$

This completes the proof.
Taking $p=1$ in Theorem 2.4, we obviously have the following corollary.
Corollary 2.5. If $f(z) \in A(1)$ and it satisfies the condition

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right|<\left|\frac{z f^{\prime}(z)}{f(z)}\right| \quad \text { in } \mathbf{U}, \tag{2.21}
\end{equation*}
$$

then $f(z) \in S(1)$.
Acknowledgements. I wish to express my gratitude to Professor Hu Ke and Professor Fang Ainong for their guidance, advice, and encouragement in my work, past and present. I am also grateful to the referee for his valuable advice.

This research was supported by China NSF (Grant No. 19531060) and Doctor Spot Foundation (Grant No. 97024811).

References

[1] A. W. Goodman, On the Schwarz-Christoffel transformation and p-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204-223. MR 11,508d. Zbl 037.05502.
[2] J. L. Li, On a criterion of starlikeness, Math. Japon. 38 (1993), no. 5, 897-899. MR 94j:30012. Zbl 786.30010.
[3] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J. 32 (1985), no. 2, 185-195. MR 86h:30046. Zbl 575.30019.
[4] M. Nunokawa, On the theory of multivalent functions, Tsukuba J. Math. 11 (1987), no. 2, 273-286. MR 89d:30013. Zbl 639.30014.
[5] _, On certain multivalent functions, Math. Japon. 36 (1991), no. 1, 67-70. MR 92b:30017. Zbl 718.30010.
[6] M. Obradović and S. Owa, A criterion for starlikeness, Math. Nachr. 140 (1989), 97-102. MR 90i:30020. Zbl 676.30009.
[7] C. Pommerenke, Univalent Functions. With a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, vol. 25, Vandenhoeck \& Ruprecht, Göttingen, 1975. MR 58\#22526. Zbl 298.30014.

Chen Keying: Department of Applied Mathematics, Shanghai Jiaotong University, Shanghai 200240, CHINA

E-mail address: kychen801@mai11.sjtu.edu.cn

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
$\xrightarrow{\square}$
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

