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Received 17 September 2014; Revised 1 December 2014; Accepted 4 December 2014; Published 24 December 2014

Academic Editor: Luigi Nicolais
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This paper presents a new approach improving the reliability of flank wear prediction during the end milling process. In the
present work, prediction of flank wear has been achieved by using cutting parameters and force signals as the sensitive carriers
of information about the machining process. A series of experiments were conducted to establish the relationship between flank
wear and cutting force components as well as the cutting parameters such as cutting speed, feed per tooth, and radial depth of cut.
In order to be able to predict flank wear a new linear regressionmathematical model has been developed by utilizing functional data
analysis methodology. Regression coefficients of the model are in the form of time dependent functions that have been determined
through the use of functional data analysis methodology.Themathematical model has been developed by means of applied cutting
parameters and measured cutting forces components during the end milling of workpiece made of 42CrMo4 steel. The efficiency
and flexibility of the developed model have been verified by comparing it with the separate experimental data set.

1. Introduction

The final shapes of most machine elements are obtained
by machining operations. The selection of the applicable
machining method depends on the required geometry,
dimensional accuracy, and surface quality of the part.Thanks
to the development of the computer numerical control (CNC)
machine tools, technology of computer aided design and
computer aidedmanufacturing (CAD/CAM), aswell asmod-
ern tools, and technology of high-speed machining, milling
becomes indispensable and the most propulsive machining
operation. The cutting tools in any machining process are
subjected to changes of its geometry and changes of respective
material properties. Tribological processes leading to tool
wear occur at rake and flank face, as it is shown in Figure 1,
[1]. Flank wear, 𝑉𝐵 [mm], is caused by friction between the
flank face of the tool and themachinedworkpiece surface and
leads to loss of the cutting edge. Hence, flank wear affects the
dimensional accuracy and surface finish quality. In practice,
flank wear is generally used as the tool wear criterion.

In conventional machining, the process of tool wear
consists of three stages. These are rapid initial wear, gradual

intermediate wear, and finally very rapid wear or catastrophic
wear. When the critical value of the tool wear criterion has
been reached, the tool fails due to excessive stresses and
thermal alterations caused by large friction forces. To avoid
this, the cutting tool must be replaced before reaching its
critical limit. However, this approach has two typical short-
comings.The first one is that a worn tool will produce out-of-
specification parts or even cause catastrophic tool breakage.
The second one is the fact that if the tool is dismissed pre-
maturely, the direct consequence will be a significant waste of
manufacturing resources. Duringmilling process, the cutting
edges periodically enter and exit the workpiece. Hence, it
experiences stress and temperature cycling during cutting.
This periodic coupled mechanical-thermal cycle produces
alternating compression and tensile stresses on the tool that
may exceed its strength. Even if the thermal stress amplitudes
are not large enough to break the tool instantly, the thermal
stress cycling causes gradual fatigue failure and wear of
the tool. As the flank wear increases, the tool-workpiece
contact area increases as well [2]. Tool wear hence becomes
the key factor in the machining processes. If a worn tool
is not identified beforehand, significant degradation of the
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Figure 1: Form of tool wear.

workpiece quality can occur. Therefore, research in this area
is of great significance. Several methods have been proposed
to monitor tool wear. There are two main categories: direct
and indirect methods. With direct methods it is possible to
measure tool wear directly using some optical instrument
such as video camera, which requires cutting operations to
be interrupted periodically. Various indirect methods for
tool condition monitoring (TCM) are used by modeling the
correlation between tool wear and sensory signals, namely,
the cutting force, torque, current, power, vibration, and
acoustic emission acquired in machining processes [3–7]. A
large number of research articles have been published on
the subject of indirect TCM over the past decade, describing
numerous methods of collecting process signals, the analysis
and extraction of wear-sensitive features. Researchers have
attempted to model those features together with applied
cutting parameters, machining time, workpiece, and tool
materials bringing them in correlation with tool wear.

Kwon and Fischer [8] have developed the tool wear index
(TWI) and the tool life model, analysing the wear surface
areas and the tool material loss by means of microoptics,
image processing, and an analysis algorithm. With relation
to surface roughness, the TWI measures the minimum
risk for in-process tool failure, and it is integrated in an
optimal control strategy according to criteria of productivity
improvement and reduction ofmanufacturing cost. Özel et al.
[9] have investigated the influence of cutting parameters on
the tool flank wear and surface roughness in finish turning
of hard steel. Crater and flank wear of ceramic tool are
observed with scanning electron microscopy (SEM) after
corresponding runs. Linear regression and neural network
models are developed for the prediction of tool flank wear
and surface roughness. Lajis et al. [10] have performed
similar modeling methodology and measuring techniques
in end milling of hardened steel. Nouari and Molinari [11]
have investigated uncoated tool wear during machining of
low-alloyed steel (DIN 42CrMo4, AISI 4140). The main
influencing parameter on the diffusion wear is the contact
temperature. The temperature field is simulated by means of
the finite element method. As main parameters, the authors
have used the contact length between the chip and rake
interface, shear angle, and width of removed material. Iqbal
et al. [6] have used fuzzy rules based strategies for estimation

of tool’s flank wear in hard milling process. Two approaches
are explained, namely, off-line strategy which uses length
of cut as input parameter, besides workpiece hardness and
inserts geometry, and on-line strategy which uses the force
𝐹𝑥𝑦—resultant of peak values of two components of cutting
force acting in𝑋 and 𝑌 directions. The second strategy gives
better and more robust estimation of tool wear.

The successful detection of the tool deviation, such as tool
wear or tool runout during cutting process, can ensure high-
quality part and safeguard the machining system. Arizmendi
et al. [12] developed a model for the prediction of the surface
roughness machined by peripheral milling. They take into
account that the tool vibrates during the cutting process.This
research concluded that tool runout and spindle tilting have
a strong influence on the integrity of the milled surface. Since
the acoustic emission (AE) signals obtained in processing
include not only the information closely related to the change
of the tool condition, but also that generated from other
sources or noise, Yen et al. [13] have presented self-organizing
mapping algorithms to the feature processing step to reduce
the system noise or system variation effect. Cutting forces are
widely known as the most reliable indicators for on-line tool
conditionmonitoring and a lot of researchers use thismethod
to determine the relevant parameters which best characterize
the cutting tool wear [14–17]. Wang et al. [18] proposed
Gaussian mixture regression to realise robust prediction of
the tool wear. Choudhury and Rath [19] have shown that
tool wear can be well correlated with cutting parameters and
cutting force coefficient with maximum deviation between
experimental and calculated results in amount of 8%. Kious
et al. [20] have performed cutting force signals analysis based
on both time and frequency signal processing techniques
in order to extract the relevant indicators of cutting tool
state. They have shown that the variation of the variance and
the first harmonic amplitudes are linked to the flank wear
evolution.

This work deals with tool wear in milling process and
the prediction of its behaviour by utilizing functional data
analysis (FDA) methodology. The mathematical model has
been developed by means of applied cutting parameters
and measured cutting forces components during the end
milling. Cutting force increases with tool wear, which among
other things depends on the cutting parameters and insert
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Table 1: Insert and end mill geometry.

Insert length, 𝑙
𝑎

11mm
Insert width, 𝑖𝑊 6.8mm
Insert thickness, 𝑠 3.59mm
Edge radius, 𝑟

𝜀
0.8mm

Clearance angle 21∘

Number of inserts 3
Nominal cutter diameter 20mm

la

bs r𝜀

21∘

s

iW

Figure 2: End mill and insert used in the cutting tests.

engagement time. As far as the authors know, FDA method-
ology has never been used in investigation of machining
processes.

2. Experimental Setup

The end milling experiments were carried out on CNC
vertical machining center, Spinner VC560, equipped with
a 12000 rpm electrospindle and the SK 40 tool holder.
Workpiece material was steel 42CrMo4 and was prepared for
milling operations in the form 250mm × 110mm × 110mm
blocks and adapted to the experiment needs.

The cutting tool was end mill CoroMill R390-02A20-11M
produced by Sandvik. The insert was hard metal coated with
highly resistant TiN coating, GradeCoromantGC1025. Insert
geometry varies depending on the depth of cut in order to
obtain a better condition of the chips flow. The closest point
for the clearance angle is 21∘ and before that angle there is one
facet∼0.2mmwith the angle of 0∘.The endmill and insert are
shown in Figure 2. Tool specification is given in Table 1.

2.1. Measurement and Analysis of Tool Wear and Cutting
Force. Flank wear measurements were performed in accor-
dance with the International Standard ISO 8688-1 by means
of toolmaker’s microscope with 100x magnification and
USB camera. The system for measuring the components
of cutting force consists of dynamometer Kistler 9257A
mounted between the workpiece and the machining table
andmultichannel charge amplifier Kistler 5007 that forwards
the signals to the A/D interface board (BMC USB-AD16f).
Analogue signal is transformed into a digital signal so that
software Next View 4.3 is able to read and to process the data.

The measured voltages are then converted into the forces in
𝑋, 𝑌, and 𝑍 directions.

Recommendations for the criterion of the flank wear
𝑉𝐵
𝑐
are numerous but because of the large number of

impact factors, they are not unambiguous. Therefore, the
experimental determination of the tool wear criterion was
performed. Measurements of cutting force components, sur-
face roughness, and flank wear are performed so that all of
the measured values correspond to the same point of insert
engagement time. After the measurement and analysis of
the results, flank wear criterion 𝑉𝐵

𝑐
= 0.15mm has been

adopted. When the flank wear reaches the value of 0.15mm,
the process becomes unstable. The instability is reflected in
the increasing of cutting force components as well as surface
roughness.

In this study, cutting speed V
𝑐
, feed per tooth 𝑓

𝑡
, and

radial depth of cut 𝑎
𝑒
were employed as controlling variables.

Axial depth of cut 𝑎
𝑝
was constant, 5mm.The adopted values

of cutting parameters correspond to the operational limits
recommended by the toolmaker together with the machine
tool capabilities. Those cutting parameters varied as follows:
100m/min ≤ V

𝑐
≤ 150m/min, 0.02mm/tooth ≤ 𝑓

𝑡
≤

0.15mm/tooth, and 0.5mm ≤ 𝑎
𝑒
≤ 2.5mm. Overall 20

experiments were carried out using various combinations of
cutting speed, feed per tooth, and radial depth of cut. These
combinations can be seen in Table 2. All experiments were
conducted without cutting fluid and every experiment was
performed with nontest inserts.

Tool wear increases progressively with cutting time,
that is, with insert engagement time. In order to achieve
high data resolution, time intervals between two flank wear
measurements were one minute of insert engagement time.
This time is a function of mill diameter, radial depth of
cut, and spindle speed. The data obtained in the first ten
minutes were not used because of the small value of flank
wear. The inserts were removed from the tool holder after
a given interval, and the flank wear of the all three inserts
was measured wherein the average flank wear value has been
used. After that, the inserts were clamped into the tool holder
to continue the one run. Total observation insert engagement
time was 22 minutes.

Milling force components 𝐹
𝑥
, 𝐹
𝑦
, and 𝐹

𝑧
, are the sum of

projections of the tangential, radial, and axial forces acting on
the cutting edges during milling. Milling force components
present themean value of themaximum cutting force on each
insert.

Table 2 also shows values of the flank wear measured
during the run of the experiments. Values for milling force
components, which also have been measured in the experi-
ments, have not been presented in tables, but in the form of
pictures in the sequel, because of the data extensiveness.

3. Functional Data Analysis

Nowadays, sophisticated measuring devices used in produc-
tion processes make it easy to obtain the large amounts of
high resolution data. That enables utilizing functional data
analysis (FDA) for prediction of the behaviour of some of
the process parameters. FDA is a term coined by Ramsay and
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Dalzell [21] and implies statistical methods for analysing the
observed data in the form of curves and images. Observed
curves and images are examples of functions, which are,
in the FDA method, called functional data (FD). In the
FDA the basic unit of information is the entire observed
function rather than a vector. This way of proceedings has
numerous advantages over a classical multivariate analysis.
For example, it allows dealing with irregularly sampled data
and with missing data too. An advantage of dealing directly
with functions is the possibility of using functional pre-
or postprocessing such as derivation and integration [22].
Popularization of FDA was started with the publication of
book byRamsay and Silverman [22]whose first editionwas in
1997. Afterwards several books, for example, Ferraty andVieu
[23] and Bosq and Blanke [24], as well as numerous papers
have been published on the topic of FDA. So far FDA has
been applied to various fields of science and technology, for
example, in biomechanics, biomedicine, geophysics, demog-
raphy, psychology, environment, finance, and chemical and
electrical engineering. Survey and overview papers regarding
all these applications along with the outcome of interest and
features used in specific application of FDA can be found in
Ullah and Finch [25] and Manteiga and Vieu [26].

The first step in FDA is conversion of discretely measured
data into FD. In this work FD was obtained using the mono-
mial basis function system approximation. Basis function
procedure represents a function 𝑥 by a linear expansion

𝑥 (𝑡) =

𝐾

∑

𝑖=1

𝑤
𝑖
ℎ
𝑖
(𝑡) = w𝑇h (1)

in terms of 𝐾 known basis functions ℎ
𝑖
. In this work

three monomial basis functions were used to describe a
polynomial. Weight factors 𝑤

𝑖
in (1) were determined using

a regularization smoothing method by putting roughness
penalty to sum of squared errors fitting criterion

𝑃 = [y − 𝑥(t)]𝑇 [y − 𝑥 (t)] + 𝜆 ⋅ ∫ [ 𝑑
2

𝑑𝑡2
𝑥 (𝑡)]

2

𝑑𝑡, (2)

where y is a vector of measured data, 𝑥(t) is linear basis
function expansion containing weight factors that have to
be determined, and 𝜆 is called smoothing parameter and
measures the rate of exchange between fitting to the data and
variability of the function 𝑥. In this research, parameter 𝜆 =

1.6 ⋅ 10
−3 was the same for all curves and was determined by

cross validation. Functional data was determined out of data
that were recorded in the endmilling operations, as described
in the previous chapter. Examples of FD obtained from end
milling experiments are shown in Figures 3, 4, and 5.

Figure 3 shows 20 pieces of FD obtained from measured
cutting force component in 𝑋 direction during end milling
experiments. It can be seen that 𝐹

𝑥
force varies within the

interval of ∼200N to 950N.
Force component 𝐹

𝑦
varies within the interval of ∼500N

to 1600N, which is shown in Figure 4. Comparing Figure 4
with Figures 3 and 5 one can notice that during the down
end milling the greatest force on tool inserts appears in 𝑌

direction.
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Figure 3: Functional data made out of recorded data for cutting
force component in𝑋 direction during end milling experiments.
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Figure 4: Functional data made out of recorded data for cutting
force component in 𝑌 direction during end milling experiments.

Figure 5 shows 20 pieces of FD obtained from data
measured and recorded for cutting force component in 𝑍

direction during the end milling experiments. It appears that
this force component varies form ∼20N to 160N exhibiting
the lowest force on tool inserts.

Having determined functional data of the linear equation
for the flank wear, prediction can be developed in a form

𝑉𝐵 (𝑡) = 𝛽
1
(𝑡) + 𝛽

2
(𝑡) ⋅ V
𝑐
(𝑡) + 𝛽

3
(𝑡) ⋅ 𝑓
𝑡
(𝑡)

+ 𝛽
4
(𝑡) ⋅ 𝑎
𝑒
(𝑡) + 𝛽

5
(𝑡) ⋅ 𝐹
𝑥
(𝑡)

+ 𝛽
6
(𝑡) ⋅ 𝐹
𝑦
(𝑡) + 𝛽

7
(𝑡) ⋅ 𝐹
𝑧
(𝑡) ,

(3)

where 𝑉𝐵 [mm] is flank wear; V
𝑐
[m/min] is cutting speed;

𝑓
𝑡
[mm/tooth] is feed per tooth; 𝑎

𝑒
[mm] is radial depth of

cut; 𝐹
𝑥
, 𝐹
𝑦
, and 𝐹

𝑧
[N] are cutting force components; 𝛽

𝑖
(𝑖 =

1, . . . , 7) are coefficient functions that are to be determined.
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Figure 5: Functional data made out of recorded data for cutting
force component in 𝑍 direction during end milling experiments.

All functions in (3) are functions of insert engagement
time 𝑡. The main difference between linear regression equa-
tion obtained by FDA methodology (3) and that obtained
using classical statistics is in the form of regression coeffi-
cients. In the FDA methodology, the regression coefficients
as well as the dependent and independent variables are
functions. All data in functional form are represented by
linear expansion in terms of monomial basis functions. The
main goal is to determine coefficient functions𝛽

𝑖
, that is, their

weight factors in linear basis expansion. That can be carried
out by fitting penalized least squares criterion extended for
functional data in the form

PL = ∫ [y(𝑡) − Z(𝑡) ⋅ 𝛽(𝑡)]T [y (𝑡) − Z (𝑡) ⋅ 𝛽 (𝑡)] 𝑑𝑡

+∑

𝑗

𝜆
𝑗
∫[

𝑑
2

𝑑𝑡2
𝛽
𝑗
(𝑡)]

2

𝑑𝑡,

(4)

whereZ is functionalmatrix that contains covariate functions
and 𝛽 is a vector of regression coefficient functions. Other
symbols have been described in the text above. Computer
code for solving (4) was written in MATLAB.

4. Flank Wear Prediction

After completion of the above-mentioned experiments FD,
that is, 𝑉𝐵(𝑡), V

𝑐
(𝑡),𝑓
𝑡
(𝑡), 𝑎
𝑒
(𝑡), 𝐹
𝑥
(𝑡), 𝐹
𝑦
(𝑡), and 𝐹

𝑧
(𝑡), were

created by using (2) for each experiment. That means 20
FD sets were created. One FD set consists of seven above-
mentioned functions. Functions V

𝑐
(𝑡), 𝑓
𝑡
(𝑡), and 𝑎

𝑒
(𝑡) are

constant for a particular experiment. Six FD sets of overall
twenty were randomly chosen and set aside for the sake of
testing of the proposed mathematical model. So fourteen FD
sets were utilized for determination of regression coefficient
functions 𝛽. These coefficients were determined by solving
(4) and their appearance can be seen in Figure 6. Computing
time for the calculation of the regression coefficients was 2.3
seconds on Intel Core (TM)2 Duo 1.97GHz processor.
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Figure 7: Comparison of the flank wear values predicted with
the proposed model and experimentally measured ones for one
randomly chosen functional datum out of the testing data set.

It can be noticed fromFigure 6 that the greatest variability
exhibits coefficients 𝛽

6
while other coefficients show only

slight variations during insert engagement time interval.
Having determined regression coefficients functions pro-

posed mathematical model has been completed and can be
used for the flank wear prediction in various end milling
conditions. In order to test the prediction power of themodel
one functional datumout of the testing data set was randomly
chosen and put into the model. Results of that procedure are
shown in Figure 7. This figure exhibits comparison between
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Figure 8: Prediction errors of the model for above-mentioned
randomly chosen datum.

values predicted by the proposed model and those measured
during experiment for the above-mentioned randomly cho-
sen functional datum. Computing time for the calculation of
the predicted flank wear values was 0.15 seconds.

Qualitatively observing it can be noticed from Figure 7
that model has high prediction quality due to excellent
matching between two curves. The extent of the prediction
errors for this particular case can be calculated and it is shown
in Figure 8.

As curve from Figure 8 confirms that there is excellent
agreement between predicted and measured values for this
particular case, the prediction error, if all insert engagement
time is observed, is approximately 0.5% on average.

A better insight into the prediction quality of the pro-
posed model can be obtained if all FD from the testing data
set have been put into themodel and average prediction error
has been calculated. The results of that procedure are shown
in Figure 9.

Curve depicted in Figure 9 indicates that prediction
power of the proposed mathematical model is rather high.
Namely, during the milling process the lowest and high-
est errors are approximately 0.6% and 3.3%, respectively.
The average prediction error over whole milling interval is
approximately 1.9% which is quite good result. Another way
to present the quality of the model is to calculate correlation
coefficients between measured and predicted values. That
coefficient was obtained 0.998 which indicates excellent
prediction power of the proposed mathematical model.

5. Conclusion

In this study, functional data analysis methodology has
been used in order to design a mathematical model for
flank wear prediction. Proposed mathematical model is a
linear functional regression equation in which there are six
independent variables (functions) that affect the flank wear.
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Figure 9: Average prediction errors of the proposedmodel when all
testing FD are used.

Three of them, cutting speed, feed per tooth, and radial depth
of cut, are adjustable on the machine tool but were kept
constant during particular experiment and the other three,
milling force components 𝐹

𝑥
, 𝐹
𝑦
, and 𝐹

𝑧
, were measured

during the milling process. Twenty pieces of FD were crated
out of the performed experiments and fourteen of them were
utilized for the assessment of regression coefficient functions.

Results of the mathematical model simulation show sat-
isfactory agreement between values predicted with FDA and
those measured during end milling process. As shown in the
work, an average prediction error calculated by using overall
testing data set over entire milling interval is approximately
1.9% and between measured and predicted values correlation
coefficient is 0.998.Therefore, with this result at hand it can be
concluded that the prediction power of the proposed model
is quite high regardless of the fact that the proposed model is
linear.

Themain intention of this work was to verify the possibil-
ity of using FDAmethodology in cutting processes especially
in flank wear prediction. In FDA all variables are functions,
and in this work all functional data are functions of time,
so having determined regression coefficient functions in the
proposedmathematical model one enables us to predict flank
wear on-line at any moment during the milling process,
provided that milling force components are monitored on-
line.

FDA has a great deal of potential in machining produc-
tion area and further research could be aimed at nonlinear
models and testing universality of the proposed model under
different experimental conditions such as different milling
machines, tools, and workpiece materials.
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