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This paper proposes a novel multiagent reinforcement learning (MARL) algorithmNash-𝑄 learning with regret matching, in which
regret matching is used to speed up the well-knownMARL algorithmNash-𝑄 learning. It is critical that choosing a suitable strategy
for action selection to harmonize the relation between exploration and exploitation to enhance the ability of online learning for
Nash-𝑄 learning. In Markov Game the joint action of agents adopting regret matching algorithm can converge to a group of points
of no-regret that can be viewed as coarse correlated equilibrium which includes Nash equilibrium in essence. It is can be inferred
that regret matching can guide exploration of the state-action space so that the rate of convergence of Nash-𝑄 learning algorithm
can be increased. Simulation results on robot soccer validate that compared to original Nash-𝑄 learning algorithm, the use of regret
matching during the learning phase ofNash-𝑄 learning has excellent ability of online learning and results in significant performance
in terms of scores, average reward and policy convergence.

1. Introduction

Multi-robot system (MRS) has received more and more
attention because of its broad application prospect, which has
several research platforms including formation [1], foraging
[2], prey-pursuing [3, 4], and robot soccer [5–7]. Robot soccer
is associated with robot architecture, cooperation, decision
making, planning, modeling, learning, vision tracking algo-
rithm, sensing, and communication, which owns all the key
features of MRS. And the robot soccer system is discussed as
a test benchmark in this paper [8].

Though reinforcement learning (RL), for example, 𝑄-
learning [9–11] can be directly applied in MRS for decision-
making, it violates the static environment assumption of
Markov Decision Process (MDP) [12]. For MRS action
selection of the learning robot is unavoidably affected by
actions of other agents, so multiagent reinforcement learning
(MARL) involving joint state and joint action ismore suitable
and promising method for MRS [13–16].

MARL based on Stochastic Game (SG) that can be also
called Markov game (MG) has a solid theoretical founda-
tion for MRS, which has developed several branches such

as MiniMax-𝑄 learning [17], Nash-𝑄 learning [18], FF-𝑄
learning [19], and CE-𝑄 learning algorithms [20]. Agents
adopting the above algorithms can also be called equilibrium
learners [17, 20, 21], which is one method of handling the loss
of stationarity of MDP. These algorithms learn joint action
values which are stationary and in certain circumstances
guarantee that these values can converge to Nash equilibrium
(NE) values [22] or correlated equilibrium (CE) values. Using
these values, the agents’policy corresponds to the agent’s
component of some nash or correlated equilibrium [23]. So
based on the fundamental solution concept of NE for MG,
Nash-𝑄 learning algorithm that finds NE at each state in
order to obtainNEpolicies for𝑄 value updating is an effective
and typical MARL method.

For single agent learning scenario, 𝑄-learning is guaran-
teed to converge to the optimal action independent of the
action selection strategy. However, in a multiagent setting,
the action selection policy becomes crucial for convergence to
any joint action. A big challenge in defining a suitable strategy
for the selection of actions is to strike a balance between
exploring the usefulness of actions that have been attempted
only a few times and exploiting those in which the agents’
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confidence in obtaining a high reward is relatively strong.
This is known as the exploration and exploitation problem
[24].

Regret matching can better harmonize the relation
between exploration and exploitation. Regret has been stud-
ied both in game theory [25] and computer science [26, 27].
Regret measures how much worse an algorithm performs
compared with the best static strategy whose goal is to
guarantee at least zero average regret [23]. Regret matching
[25] belonging to no-regret algorithms guarantees that the
joint action will asymptotically converge to a set of points
of no-regret that can be referred to as coarse correlated
equilibrium in MG [28]. Because Nash equilibrium is in
fact coarse correlated equilibrium [28], it can be inferred
that regret matching that leads joint action to points of
coarse correlated equilibrium can effectively improve the
convergence rate of original Nash-𝑄 learning algorithm.

This paper is organized as follows. Section 2 reviews
multiagent reinforcement learning and Nash-𝑄 learning
algorithm. Section 3 briefly describes regret matching algo-
rithm and then shows how to incorporate regret matching
technique into original Nash-𝑄 learning algorithm. Section 4
describes the structure of reinforcement learning of soccer
robot. Section 5 presents simulation demonstration of our
algorithm in robot soccer. Section 6 draws a conclusion and
summarizes some important points about this paper.

2. Multiagent Reinforcement Learning and
Nash-𝑄 Learning

2.1. Markov Game. Markov game (MG) can be viewed as
an extension of MDP to multiagent environments [29, 30],
where all agents select their actions simultaneously. The
reward that each agent gets depends on their joint action of
all agents and the current state as well as the state transitions
according to the Markov property [31]. MG is the theory
foundation of MARL and Figure 1 shows the architecture.
A reinforcement framework of MG can be defined by the
following.

An 𝑛-agentMG Γ is a tuple ⟨𝑛, 𝑆, 𝐴
1
. . . , 𝐴

𝑛
, 𝑇, 𝑟
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, . . . , 𝑟

𝑛
⟩,
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In a discounted MG, the objective of each agent is to
maximize the discounted sumof rewardswith discount factor
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2.2. Comparing among Existing Algorithms. The traditional
𝑄-learning algorithm [9] for computing an optimal policy in
an MDP with unknown reward and transition functions is as
follows:

𝑄 (𝑠, 𝑎) ←󳨀 (1 − 𝛼)𝑄 (𝑠, 𝑎) + 𝛼 [𝑟 (𝑠, 𝑎) + 𝛽𝑉 (𝑠
󸀠
)] ,

𝑉 (𝑠) ←󳨀 max
𝑎∈𝐴

𝑄 (𝑠, 𝑎) .
(3)

The simplest way to extend this to the multiagent MG setting
is just to add a subscript to the formulation above and the
definition of the 𝑄 values assumes that they depend on the
joint action of all agents. Meanwhile 𝑉 should be updated
with computation outcome of the 𝑄 values corresponding to
respective algorithm.

The Minimax-𝑄 learning algorithm as the first MARL
extends the traditional 𝑄-learning to the domain of two-
player zero-summultiagentMGenvironment. InMinimax-𝑄
learning, 𝑉 is updated with the minimax of the 𝑄 values:

𝑉
1
(𝑠) ←󳨀 max

𝑝
1
∈∏(𝐴

1
)

min
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2
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2
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, 𝑎
2
) . (4)

The policy used in the Minimax-𝑄 learning algorithm can
guarantee that it receives the largest value possible in the
absence of knowledge of the opponent’s policy.

Hu andWellman [21] extended theMinimax-𝑄 algorithm
to 𝑛-player general-sum MG. The extension requires that
each agent maintains 𝑄 values for all of the agents. And the
linear programming solution used to find the equilibrium of
zero-sum games is replaced by the quadratic programming
solution for finding an equilibrium in 𝑛-player general-sum
games. Nash-𝑄 updates the 𝑉 values based on some NE in
the game defined by the 𝑄-values:

𝑉
𝑖
(𝑠) ←󳨀 Nash

𝑖
(𝑄
1
(𝑠, 𝑎) , . . . , 𝑄

𝑛
(𝑠, 𝑎)) , (5)

where𝑄
𝑖
(𝑠, 𝑎) denotes the payoffmatrix to player 𝑖 and Nash

𝑖

denotes the Nash payoff to that player.
Since Nash-𝑄 is limited to zero-sum and common-payoff

games in essence, Littman reinterpreted it as the Friend-or-
Foe-𝑄 (FF-𝑄) learning framework [19]. Although FF-𝑄 can
be applied inmultiple players scenario, for simplicity we show
how the 𝑉 are updated in a two-player game:

Friend: 𝑉
1
(𝑠) ←󳨀 max

𝑎
1
∈𝐴
1
,𝑎
2
∈𝐴
2

𝑄
1
(𝑠, 𝑎
1
, 𝑎
2
) ,
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1
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1
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2
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(6)

Thus Friend-𝑄 updates𝑉 similarly to regular𝑄-learning, and
Foe-𝑄 updates as does minimax-𝑄.
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Figure 1: Architecture of MARL based on Markov game.

The above algorithms in this section all depend on some
methods of computing theNE for thematrix game defined by
𝑄 values of all players in each state. The value for each player
of a mutually agreed-on equilibrium is the value function
used in the 𝑄 update process. Instead of computing Nash
equilibria of 𝑄 stage games, the agent can compute other
solution concepts. One option is computing the CE. This is
the technique used by Greenwald and Hall in the unambigu-
ously named Correlated-𝑄 (CE-𝑄) algorithm [20]. A CE is
more general than anNE, since it allows dependencies among
the agents’ probability distributions, while maintaining the
property that agents are optimizing. Compared toNE, CE can
be computed easily via linear programming. CE-𝑄 learning
is similar to Nash-𝑄 but instead uses the value of a correlated
equilibrium to update 𝑉:

𝑉
𝑖
(𝑠) ←󳨀 CE

𝑖
(𝑄
1
(𝑠, 𝑎) , . . . , 𝑄

𝑛
(𝑠, 𝑎)) . (7)

LikeNash-𝑄, it requires agents to select a unique equilibrium;
an issue that the authors address explicitly by suggesting
several possible selection mechanisms.

2.3. Nash-𝑄 Learning. The following is based on [18]. Extend-
ing 𝑄-learning to the multiagent learning domain with
NE concept, Nash-𝑄 equilibrium value is defined as the
expected sum of discounted rewards when all agents follow
specified Nash equilibrium strategies from the next period
on. The literature usually uses the terms policy and strategy
interchangeably. A Nash equilibrium is a joint strategy where
each agent’s strategy is a best response to the others’ strategies.

InMG Γ, a Nash equilibriumpoint is a tuple of 𝑛 strategies
(𝜋
∗

1
, . . . , 𝜋

∗

𝑛
) such that for all 𝑠 ∈ 𝑆 and 𝑖 = 1, . . . , 𝑛,
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where Π
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NE strategy. That is,
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where (𝜋
∗

1
, . . . , 𝜋
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) is the joint Nash equilibrium strategy,

𝑟
𝑖
(𝑆, 𝑎
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𝑖’s total discounted reward over infinite periods starting from
state 𝑠

󸀠 given that agents follow the equilibrium strategies.
In the case of multiple equilibria, different NE strategy

profiles may select different Nash-𝑄 functions. In this paper,
the learning agent picks the NE that yields the highest
expected payoff to them as a whole. The learning agent
indexed by 𝑖 learns about its 𝑄 values by forming an
arbitrary guess at time 0. One simple guess would be letting
𝑄
0

𝑖
(𝑠, 𝑎
1
, . . . , 𝑎

𝑛
) = 0 for all 𝑠 ∈ 𝑆, 𝑎
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1
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𝑛
∈ 𝐴
𝑛
.

At each time 𝑡, agent 𝑖 observes the current state and then
takes its action. After actions were taken, agent 𝑖 observes its
own reward, actions taken by all other agents, others’ rewards,
and the new state 𝑠

󸀠. It then calculates a Nash equilibrium
𝜋
1
(𝑠
󸀠
) ⋅ ⋅ ⋅ 𝜋

𝑛
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where Nash𝑄𝑡
𝑖
(𝑠
󸀠
) = 𝜋
1
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󸀠
) ⋅ ⋅ ⋅ 𝜋

𝑛
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𝑖
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Nash𝑄𝑡
𝑖
(𝑠
󸀠
) is agent 𝑖’s payoff in state 𝑠

󸀠 for the selected
equilibrium. Note that 𝜋

1
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󸀠
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𝑛
(𝑠
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𝑡

𝑖
(𝑠
󸀠
) is a scalar. The

learning algorithm is as follows:

Initialize:

Let 𝑡 = 0, get the initial state 𝑠
0
;

Let the learning agent be indexed by 𝑖;
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For all 𝑠 ∈ 𝑆 and 𝑎
𝑗

∈ 𝐴
𝑗
, 𝑗 = 1, . . . , 𝑛, let

𝑄
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𝑗
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Loop
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𝑡

𝑖
;
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1
, . . . , 𝑟

𝑡

𝑛
; 𝑎𝑡
1
, . . . , 𝑎
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𝑛
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Update 𝑄
𝑡

𝑗
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where 𝛼
𝑡

∈ (0, 1) is the learning rate, and
Nash𝑄𝑡

𝑗
(𝑠
󸀠
) is defined in (10).

Let 𝑡 := 𝑡 + 1.

For obtaining the NE 𝜋
1
(𝑠
󸀠
) ⋅ ⋅ ⋅ 𝜋

𝑛
(𝑠
󸀠
), agent 𝑖 need to

know 𝑄
1

𝑡
(𝑠
󸀠
), . . . , 𝑄

𝑛

𝑡
(𝑠
󸀠
). Agent 𝑖 should have conjectures

about those 𝑄-functions at the beginning of play. As the
game proceeds, agent 𝑖 observes other agents’ immediate
rewards and previous actions. That information can then
be used to update agent 𝑖’s conjectures on other agents’ 𝑄-
functions. Agent 𝑖 updates its beliefs about agent 𝑗’s 𝑄-
function, according to the same updating rule (10) it applies
to its own:

𝑄
𝑡+1

𝑗
(𝑠, 𝑎
1
, . . . , 𝑎

𝑛
) = (1 − 𝛼

𝑡
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𝑗
(𝑠, 𝑎
1
, . . . , 𝑎

𝑛
)

+ 𝛼
𝑡
[𝑟
𝑡

𝑗
+ 𝛽Nash𝑄𝑡

𝑗
(𝑠
󸀠
)] .
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Note that 𝛼
𝑡
= 0 for (𝑠, 𝑎

1
, . . . , 𝑎

𝑛
) ̸= (𝑠
𝑡
, 𝑎
1
, . . . , 𝑎

𝑛
). There-

fore (12) does not update all the entries in the 𝑄-functions. It
updates only the entry corresponding to the current state and
actions chosen by the agents. This type of updating is called
asynchronous updating [18].

3. Regret Matching Algorithm for
Action Selection

By observing human ways of handling problems, we can
conclude that a human often reflects how regretful it is for the
decision that he had made. Through reflecting on past action
and feeling regretful, a human can learn more experience,
find improved action under complicated environment, and
enhance the learning efficiency. Regret enables him to obtain
better policy and tomake progress quickly. In case that people
of community all adopt such idea, then the joint action will
bring each one good reward.

Based on the above notion, no regret learning algorithms
are proposed and have been widely studied and applied in
multiagent learning. No regret learning algorithms consist
of a lot of algorithms which guarantee that the joint action
will converge asymptotically to a set of points of no-regret
that can also be called coarse correlated equilibrium [32].
A no-regret point represents a case for which the average
reward which an agent actually obtained is as much as the
counterpart that the agent “would have” obtained had that

Nash equilibrium

Correlated equilibrium 

Coarse correlated equilibrium

Figure 2: Relationship between Nash, correlated, and coarse corre-
lated equilibrium.

agent used a different fixed strategy at all previous time steps
[28]. Figure 2 shows that Nash equilibrium belongs to not
only correlated equilibrium but also coarse CE. In other
words, it is important to note that convergence to a NE point
also implies convergence to a coarse correlated equilibrium
point (no-regret point).

The prominent feature of regretmatching [25] as a branch
of no regret learning algorithms is that compared to other
learning algorithms, for example, fictitious play [33], it can
be easily applied in large scale MRS [28]. The detailed
description of regret matching can be found in [25]. And
a new algorithm Nash-𝑄 learning with regret matching is
proposed to increase the rate of convergence in MG. In the
proposed algorithm, regret matching is used to select the
action in each state to increase the convergence rate toward
Nash equilibrium policy.

According to the above notation, we define the average
regret 𝑅𝑎𝑖

𝑖
(𝑠, 𝑡) of agent 𝑖 at time 𝑡 and in state 𝑠 as
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𝑠 visited.
Equation (13) shows that average regret for 𝑎

𝑖
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of agent 𝑖 would represent the average improvement in his
reward if it had chosen 𝑎
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every action 𝑎
𝑖
∈ 𝐴
𝑖
using the following iterative equation:

𝑅
𝑎
𝑖

𝑖
(𝑠, 𝑡) =

𝑡 − 1

𝑡
𝑅
𝑎
𝑖

𝑖
(𝑠, 𝑡 − 1)

+
1

𝑡
(𝑟
𝑖
(𝑠, 𝑎
𝑖
, 𝑎
−𝑖

(𝑡)) − 𝑟
𝑖
(𝑠, 𝑎 (𝑡))) .

(14)

Note that at each time step 𝑡 > 0, agent 𝑖 updates all
entries included in his average regret assemble 𝑅

𝑖
(𝑠, 𝑡) =

[𝑅
𝑎
𝑖

𝑖
(𝑠, 𝑡)]
𝑎
𝑖
∈𝐴
𝑖

. In regret matching after agent 𝑖 computed
its average regret assemble 𝑅

𝑖
(𝑠, 𝑡), action 𝑎

𝑖
(𝑠, 𝑡) is selected



Mathematical Problems in Engineering 5

according to the probability distribution 𝑝
𝑖
(𝑡), as shown in

the following equation:

𝑝
𝑎
𝑖

𝑖
(𝑡) = Pr [𝑎

𝑖
(𝑠, 𝑡) = 𝑎

𝑖
] =

𝑅
𝑎
𝑖

𝑖
(𝑠, 𝑡)

∑
𝑎
󸀠

𝑖
∈𝐴
𝑖

[𝑅
𝑎
󸀠

𝑖

𝑖
(𝑠, 𝑡)]

, (15)

where 𝑝
𝑖
(𝑡) is the uniform distribution over 𝐴

𝑖
. In other

words, an agent using regret matching selects a particular
action at any time step with probability proportional to the
average regret for not selecting that particular action in the
past time steps.

If all agents of one team choose regretmatching algorithm
for robot soccer, then the joint action will converge asymp-
totically to a set of points of coarse CE. So it can be inferred
that regret matching can effectively improve the convergence
rate of original Nash-𝑄 learning, which is validated by the
following simulation.

4. Action-Based Soccer Robot

4.1. Environment States and Joint Action of Robot. Robot
soccer is an very challenging and interesting domain for
the application of machine learning algorithms to real world
problems. Research groups have applied a lot of different
machine learning approaches tomany facets of autonomously
soccer playing MRS [34].

Behavior-(action-) based approaches are very suited for
soccer because they have outstanding performance than
deliberative control in uncertain and dynamic environments.
Behavior design of the robot (agent) soccer team is based on
the following two characteristics. Firstly, points are scored by
kicking the ball across the opponent team’s goal. Secondly,
robots should avoid kicking the ball toward the wrong
directions, lest they score against their own team [35].

In this paper, environment states represented in Figure 3
are used to activate the robot. For simplicity each team is
composed of three agents (players) as shown in Figure 5.
Based on [36], a motor schema-based reactive control system
is used for action designing in which each agent is provided
three preprogrammed actions (behavior assemblages) that
correspond to steps in achieving the task as shown in
Table 1.These actions are in turn composed ofmore primitive
behaviors called motor-schemas. Several motor-schemas are
described as follows.

Move to kickspot: high gain to draw the robot to a point
one-half of a robot radius behind the ball. If the robots
bumps the ball from that location, the ball is propelled in
the direction of the opponent’s goal. Avoid teammates: gain
sufficiently high to keep the robots on the team spread apart.
Move to half point: high gain to draw the robot to a point
halfway between the ball and the defended goal. Swirl ball:
a ball dodging vector with gain sufficiently high to keep the
robots from colliding with the ball. Move to defended goal:
high gain to draw the robot to the defend goal [35].

Shoot ball action is showed in Figure 4. Being anal-
ogous to Figure 4, chase ball action is composed of
three primitive schemas: move to halfway point, swirl ball,
and avoid teammates. Goal keeping action is composed

Robot

Front area
S1
S2
S3
S4

Left area

Right area
S9
S10
S11
S12

S5 Teammate robot
S6 Opponent robot
S7 Ball
S8 Vacancy

Teammate robot
Opponent robot
Ball
Vacancy

Teammate robot
Opponent robot
Ball
Vacancy

Figure 3: Environment states around soccer robot.

Shoot ball actionMove to kickspot

avoid teammates

w1

w2

∑

Figure 4: Motor schema based on shoot ball action.

of two primitive schemas: move to defended goal and
move to kickspot.

4.2. Reward Function for Soccer. As an instant evaluator the
reward function for the action taken at a given state is
important for reinforcement learning. Global reinforcement
[35] refers to the case where a single reinforcement signal is
simultaneously delivered to all robots. A potential problem
with global reinforcement is the ambiguous assumption that
the closet robot just happened to be near the goal while
another soccer robot kicked the ball for a score from a
distance. Two important factors should be considered: time
anddistance, and amodified reward function 𝑟

𝑖
(𝑠, 𝑎) for agent

𝑖 from global reinforcement is as follows:

𝑟
𝑖
(𝑠, 𝑎) =

{{{{

{{{{

{

𝜂
touch

+
1

𝑑
if the team scored at 𝑡 − 1,

− (𝜂
touch

+
1

𝑑
) if the opponent scored at 𝑡 − 1,

0 otherwise,
(16)

where 𝑠 denotes the soccer robot’s state, 𝑎 represents the joint
action of all agents (𝑎

1
, . . . , 𝑎

𝑛
), touch is time in milliseconds

since the soccer robot last touched the ball, and 𝑑 represents
the distance in meters between the ball and robot. 𝜂 is a
parameter value varying between 0.5 and 1 that indicates
how quickly a potential reward should decay after the ball is
touched, and in this paper 𝜂 is set to be 0.7.
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Table 1: Actions of soccer robot [37].

Action Robot activity
Shoot ball If robot is close to the ball and goal, this action is used to shoot the ball.
Chase ball When robot is far away from ball, this action is given to go after the ball.
Goal keeping Robot playing as a goal keeper gets this action to prevent losing point.

Figure 5: Simulated robot soccer.

5. Simulation

TeamBots as shown in Figure 5 is a Java-based assemble
of application programs and java packages for multiagent
mobile robotics research, where control system of a robot
interacts with a well-defined sensor-actuator interface. The
simulation proceeds in discrete steps.The robots process their
sensor data in each step and then issue appropriate actuator
commands. The simulation models physical interactions
including robot, ball and wall collisions, sensors, and motor-
driven actuators [24].

Two teams A and B of soccer robots are designed and
each team is composed of three agents. Team A adopts Nash-
𝑄 learning with regret matching algorithm and Team B is
equipped with original Nash-𝑄 learning that learns Nash-
𝑄 equilibrium values by random action selection strategy.
If a goal is kicked, the ball will be replaced to the center
of the field without repositioning the agents and the match
goes on. Historical data including scores, average reward,
and the average number of policy changes are saved as the
match proceeds. The agents preserve Nash-𝑄 values learned
between matches. No limited time is imposed on playing
that the whole match is not over until a total of 10 points
are completed. The simulation is composed of 100 10-point
matches. The reward functions that the robots Team A and B
adopt are the same as shown in (16).

At the beginning 𝑄 values of all robots were initialized
with zero value. An important performance for robot soccer
is measured as the scores difference𝐷:

𝐷 = 𝑆teamA − 𝑆teamB , (17)

where 𝑆teamA denotes the scores of Team A and 𝑆teamB is the
scores of Team B. A negative value indicates that Team A
lost the match, while positive values indicate that Team A
won thematch. Figure 6 shows the curves of scores difference
𝐷 through which we know that robots of Team A found
good strategy of joint action resulting in draw or scoring
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Figure 6: Scores difference𝐷 as the number of matches increases.

over 5 points after the 37th match and outperformed Team
B from the 52th match to the end of simulation. It can be
summarized that robots of Team A with action exploration
strategy of regret matching have accumulated much experi-
ence by computing regret value for every action and gradually
taking joint action improved after the 37th match. By online
learning of regret matching, the joint actions of robots of
Team A are gradually close to approach points of coarse
correlated equilibrium, which greatly improved the offensive
and defensive capabilities of the whole team.

Through Figure 7, it may be concluded that the robots of
Team A received positive rewards most of the matches. The
average reward per match is increased as matches proceed
when the robots obtained more experience of cooperating.
It increases from approximately 3.8 to 8.7 in 100 rounds
of continuous matches. Because a bigger average reward
indicates that the robots have employed good cooperation
strategies to kickingmore goals, Figure 7 confirms that regret
matching as action selection strategy is effective in helping
the agents to improve the quality of tactics coordination
in carrying out the cooperative attacking. Although for the
initial learning phase (the former 37 matches) Team A has
worse performance than Team B, as the matches proceed
the performance of Team A becomes better and better as
we expect before the simulation. For the latter 63 matches,
the robots of Team A can quickly adapt themselves to the
transition of environment state and coordinate their joint
action reducing conflict with their own teammates and
obtaining more and more positive rewards.

Learning rate is evaluated by monitoring the policy con-
vergence which is tracked by recording the average number
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Figure 7: The average reward received by the robots in match.
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Figure 8: The average number of policy changes per match.

of policy changes for all agents of Team A. For example, an
agent fromTeamAmay have been following a strategy of goal
keeping when opponents appearing in front area, the ball in
front area and teammates in left and right, but owing to regret
matching it switches to the chase ball action instead. Such
alteration is viewed as policy change. The average number of
policy changes for Team B is stochastic because of strategy
of random action selection. So only the curve of policy
changes of Team A is analyzed. The data plotted in Figure 8
shows good convergence for Team A using regret matching
algorithm. The average number of policy changes per match
dropped to 0.47 after 100 matches.

The number of policy changes for robots of Team A
initially is high but decreases gradually in the latter matches.

It can be noted that there is turnpoint at around the 52th
match, from which the average number of policy changes of
Team A monotonously diminished. An extended simulation
shows that the average number of policy changes for Team A
reached zero after 150 matches.

From Figures 6 to 8, it is clear that the new Nash-𝑄
with regret matching learning algorithm has higher learning
efficiency than the original Nash-𝑄 learning algorithm in
robot soccer. Regret matching can better harmonize the
tradeoff between exploration and exploit such that the agent
can reinforce the evaluation of the actions it already knows
to be good but also explore new actions. In particular, the
new algorithm Nash-𝑄 learning with regret matching takes
an average of 150 matches for completing policy convergence
in order to find Nash-𝑄 equilibrium values early.

6. Conclusion

This paper presents a newmultiagent reinforcement learning
approach combining Nash-𝑄 learning with regret match-
ing to increase the convergence rate of original Nash-𝑄
learning algorithm that learns Nash-𝑄 equilibrium values
by random action selection in multiagent system. Regret
matching which belongs to online learning as a branch of
no regret learning algorithms can guarantee that the joint
action will asymptotically converge to a set of points of coarse
correlated equilibrium including Nash equilibrium points.
So we investigate how to make improved action selection in
original Nash-𝑄 learning algorithm through regretmatching.
Robot soccer is adopted as platform to test the proposed
approach. Compared to original Nash-𝑄 learning, the results
of experiments validate that Nash-𝑄 learning with regret
matching algorithm has better performance in terms of
scores, average reward, and policy convergence for obtaining
the Nash equilibrium policy.
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