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For a class of single-input single-output (SISO) dual-rate sampling processes with disturbances and output delay, this paper presents
a robust fault-tolerant iterative learning control algorithm based on output information. Firstly, the dual-rate sampling process
with output delay is transformed into discrete system in state-space model form with slow sampling rate without time delay by
using lifting technology; then output information based fault-tolerant iterative learning control scheme is designed and the control
process is turned into an equivalent two-dimensional (2D) repetitive process. Moreover, based on the repetitive process stability
theory, the sufficient conditions for the stability of system and the design method of robust controller are given in terms of linear
matrix inequalities (LMIs) technique. Finally, the flow control simulations of two flow tanks in series demonstrate the feasibility
and effectiveness of the proposed method.

1. Introduction

In industrial applications, many engineering plants operate
in continuous time while the system inputs and outputs are
sampled, yielding discrete-time signals. Moreover, due to
the hardware limitations, process characteristics, and other
reasons, sampling each variable with the same frequency
is not necessary and realistic. Therefore, the measurable
output and input information is usually sampled in different
rates from different types of sensors, manual sampling, or
laboratory analyses [1, 2]. These systems are often termed as
multirate sampling process and dual-rate sampling process is
a special case; sometimes the sampling periods of the slow
rate sampled variables are integer multiples of the fast rate
sampled ones [3]. For example, the control of the bottom
and top composition products of a distillation column by
acting on the reflux and vapor flow rates is a typical case,
where the input control signals can be rapidly adjusted, while
the infrequent and delayed composition measurements are
only obtained by gas chromatography [4]. In some vehicle
control systems, displacement and velocity are measured
by using ultrasonic sensors; the two different groups of

sensors are located at different locations of the vehicle and
have different sampling periods [5]. During the last several
decades, this corresponding control problem has attracted
considerable attention, including themodel identification [6–
8] and control algorithms [9–11]. But the control problem of
dual-rate sampling systems still has achieved relatively little
research results compared with the single-rate sampling case.
Moreover, to the best of our knowledge, there are few papers
dealing with iterative learning control (ILC) problems for
dual-rate sampling process with time delay and actuator fault.

The idea of ILC arose from Uchiyama in 1978 [12];
it represents a powerful approach for high performance
tracking control of systems, which execute the same task over
a finite duration repeatedly with a given desired trajectory
and reset to the starting location once each execution is
complete. Each execution of the task is known as a trial,
or pass, and its duration is termed the trial length. ILC is
currentlymainly used to control single-rate sampling process.
Compared with standard control scheme, the distinguishing
feature of the ILC dynamic sequence of operations is to use
the information from previous trials to update the control
signal applied on the next one; the major advantage of ILC
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is the ability to improve system performance from trial to
trial and include temporal information from previous trials
that would be noncausal in standard systems. Over the past
few decades, ILC has drawn significant research attention and
increasingly been employed in many industrial processes,
such as traffic system [13], networked stochastic system [14],
robotic manipulator system [15], multiagent system [16],
chemical pharmaceutical crystallization [17], and industrial
injection molding batch processes [18].

The design of an ILC law starts, as always, with perfor-
mance specifications where the novel feature for ILC is the
reference trajectory or vector, which is assumed to be the
same for all trials in most of the ILC literature. In the case
of discrete dynamics, let 𝑦(𝑡, 𝑘), 𝑢(𝑡, 𝑘) denote the output
and input, respectively, on trial 𝑘; 𝑡 denotes the sampling
number over the trial duration. Then if the error on trial 𝑘
is 𝑒(𝑡, 𝑘) = 𝑦𝑟(𝑡) − 𝑦(𝑡, 𝑘), where 𝑦𝑟(𝑡) denotes the reference
signal, and the basic ILC design problem is to construct a
sequence of input function that forces the error sequence{𝑒𝑘}𝑘≥0 and input sequence {𝑢𝑘}𝑘≥0 to converge to zero and𝑢∞, respectively, or to within an acceptable tolerance, 𝑢∞
is termed learned control. It is a common approach to ILC
design for discrete dynamics to use the lifting technique [19].
For the SISO systems with a nature extension to the multiple-
inputmultiple-output (MIMO) systems, the input and output
on any trial can be represented by supervectors formed by
assembling the values at the sample instants into a column
vector. Once the ILC law is applied, the propagation of the
error can be represented by a linear difference equation and
discrete linear systems theory can be utilized for trial-to-trial
error convergence analysis and control law design.

Given the finite trial length, trial-to-trial error conver-
gence can occur even if the system is unstable since such
a system can only produce a bounded output over a finite
time duration. Literature reviews [20–22] confirm that an
alternative approach to ILC design is to first apply a feedback
control law to produce acceptable dynamics along the trial
and then apply ILC to accomplish trial-to-trial error conver-
gence of the resulting 2D system. A drawback of the two-
step synthesis procedure is that it does not lead to an optimal
combination of the feedback and feedforward actions. Based
on an abstract model in a Banach space setting, repetitive
process is a particular subclass of 2D system that operates
over a subset of the upper right quadrant of the 2D plane
and is characterized by a series of sweeps, or passes, through
a set of dynamics defined over a finite duration known as
the pass length. It is a nature setting for ILC analysis and
design; the main advantage is that it gives a systematic way
to simultaneously consider behaviour along the time axis and
from trial to trial [23]. A detailed treatment of the dynamics
of these processes, including their origins in the modeling of
mining operations, can be found in [24].

Time delay is also frequently encountered in the trans-
mission of material or information between different parts of
a system, including biology, chemistry, economics, popula-
tion dynamics, and engineering applications. Time delay is
one of the main causes of instability and poor performance
in process control systems [25, 26], and currently many
ILC algorithms have been applied to time delay single-rate

sampling process by treating them as batch processes in a
finite time on every trial. For example, a robust 2D closed-
loop ILC combined with the output feedback scheme has
been applied to batch processes with state delay and time-
varying uncertainties [27, 28]. Composite iterative learning
feedback controllers combined with state and output infor-
mation are designed in [29]; then the sufficient conditions
for delay dependent stability are obtained. However, these
proposed methods are just based on the single-rate sampling
processmodel, so that they cannot be directly applied to dual-
rate sampling processes. Furthermore, these methods only
use consistent slow sampling data and do not fully utilize all
sampling data with different sampling intervals to improve
control performance.

Moreover, the involved industrial control systems under
challenging environment are vulnerable to faults. A fault in
a single component may have major efforts on the large
system as a whole. Actuator faults will reduce the stability
and performance of control systems and may even cause
complete breakdown of these systems. Fault-tolerant control
is a special action that ensures a fail-safe operation under
real-time conditions if components in the control system fail
or become faulty [30]. Fault-tolerant ILC design which is
sensitive to faults is especially required in application for ILC
scheme due to the repeated nature of the control actuator.
The extensions to deal with faults for ILC systems receive
increasing attentions [31, 32]. For example, a robust fault-
tolerant iterative learning control design method is proposed
and illustrated by an electric motor system in [31] and also
[32] gives iterative learning fault-tolerant control for a class of
linear differential time delay uncertain systems with actuator
faults in finite frequency domains. The challenge of fault-
tolerant control here is how to design a reliable ILC scheme
against fault based on the inconsistent dual-rate sampling
input and output information with time delay.

This paper develops new results for ILC design applied
to time delay dual-rate sampling process with the following
contributions:

(i) The output information based ILC law design is
extended to the fault-tolerant control problem for
dual-rate sampling process with time delay and actu-
ator faults.

(ii) Monotonic trial-to-trial error convergence conditions
for the controlled ILC dynamics are derived.

(iii) Robust control issue for disturbance attenuation per-
formance is solved.

This paper is organized as follows: Section 2 describes a
dual-rate sampling process with output delay and disturbance
in the ILC setting by the state-space model with actuator
faults; then it is transformed into a discrete system model
form in slow sampling rate without time delay by using the
lifting technology. Section 3 formulates the output informa-
tion based fault-tolerant ILC design problem in the repetitive
process setting. Some repetitive process stability theories
are given as background in Section 4. Then the sufficient
conditions for the stability of the controlled dynamic and the
design method of robust controller are analyzed and given in
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corresponding linear matrix inequalities form in Section 5.
Section 6 verifies the effectiveness of the proposed method
by the flow control simulations of two flow tanks in series.
Finally, some conclusions are given in Section 7.

Throughout this paper, the null and identitymatriceswith
the required dimensions are denoted by 0 and 𝐼, respectively,
and the notation𝑋 ≺ 𝑌 (resp.,𝑋 ≻ 𝑌) is used to represent the
negative definite (resp., positive definite) matrix 𝑋 − 𝑌. The
notation (⋆) denotes the transpose of elements in the sym-
metric position in a matrix.The symbol diag{𝑋1, 𝑋2, . . . , 𝑋𝑛}
denotes a block-diagonal matrix with diagonal blocks𝑋1, 𝑋2, . . . , 𝑋𝑛 and sym(Λ) = Λ + Λ𝑇. The symbol ⌊𝑥⌋
represents the largest integer which is less than or equal to 𝑥.
2. System Description

Consider a class of SISO linear continuous processes 𝑃𝑐 in
Figure 1 with output delay and disturbance; system dynamics
are described in the ILC setting by the following state-space
model:

𝑥̇ (𝑡, 𝑘) = 𝐴𝑐𝑥 (𝑡, 𝑘) + 𝐵𝑐𝑢 (𝑡, 𝑘) + 𝐷𝑐𝑤 (𝑡, 𝑘) ,
𝑦 (𝑡, 𝑘) = 𝐶𝑐𝑥 (𝑡 − 𝜏, 𝑘) , 0 < 𝑡 < 𝛼, (1)

where the symbol 𝑘 ≥ 0 denotes the trial number, 𝛼 is the
fixed and finite trial length, 𝑥(𝑡, 𝑘) ∈ R𝑛, 𝑢(𝑡, 𝑘) ∈ R1,𝑦(𝑡, 𝑘) ∈ R1, and 𝑤(𝑡, 𝑘) ∈ R𝑚 are the system state, input,
output, and disturbance vectors, respectively, 𝜏 is the time
delay constant, and 𝐴𝑐, 𝐵𝑐, 𝐶𝑐, and 𝐷𝑐 are system matrices
of appropriate dimensions.Without loss of generality, assume𝑥(𝑡, 𝑘) = 𝑥0,𝑘, 𝑡 ∈ [−𝜏, 0], on each trial.

To include actuator faults, let 𝑢𝐹(𝑡, 𝑘) represent the failed
actuator with the following fault model [32]:

𝑢𝐹 (𝑡, 𝑘) = Γ𝑢 (𝑡, 𝑘) , (2)

where the actuator failure parameter Γ is unknown, but it
satisfies the following condition:

0 ≤ Γ ≤ Γ ≤ Γ. (3)

The parameters Γ (Γ ≤ 1), Γ (Γ ≥ 1) in this fault model, are
assumed to be known. When Γ = 1, it corresponds to the
normal case 𝑢𝐹(𝑡, 𝑘) = 𝑢(𝑡, 𝑘); when Γ = 0, it covers the
outage case; 0 < Γ ≤ Γ < 1 and 1 < Γ ≤ Γ correspond
to partial failures, for example, partial degradation of an
actuator or the abnormal case when the faulty actuator output
is larger than the normal controller output. Introduce

𝑞 = (Γ + Γ)2 ,
𝑞0 = Γ − ΓΓ + Γ ,

(4)

and define Γ0 = (Γ − 𝑞)/𝑞; then by using (4), the unknown
failure parameter Γ can be written as

Γ = (𝐼 + Γ0) 𝑞, (5)

where 󵄨󵄨󵄨󵄨Γ0󵄨󵄨󵄨󵄨 ≤ 𝑞0 ≤ 1. (6)

Therefore, the continuous process 𝑃𝑐 of (1) with actuator fault
can be described by

𝑥̇ (𝑡, 𝑘) = 𝐴𝑐𝑥 (𝑡, 𝑘) + 𝐵𝑐Γ𝑢 (𝑡, 𝑘) + 𝐷𝑐𝑤 (𝑡, 𝑘) ,
𝑦 (𝑡, 𝑘) = 𝐶𝑐𝑥 (𝑡 − 𝜏, 𝑘) , 0 < 𝑡 < 𝛼. (7)

For process (7), the discrete-time signal 𝑢(𝑛𝑇1, 𝑘) with
sampling period 𝑇1 = 𝑝ℎ is maintained as a continuous-time
input signal 𝑢(𝑡, 𝑘) using a zero-order hold 𝐻𝑇1 in Figure 1;
then

𝑢 (𝑡, 𝑘) = 𝑢 (𝑛𝑇1, 𝑘) , 𝑛𝑇1 < 𝑡 < (𝑛 + 1) 𝑇1; (8)

the continuous-time output signal 𝑦(𝑡, 𝑘) is sampled by a
sampler 𝑆𝑇2 with sampling period𝑇2 = 𝑞ℎ to get discrete-time
output signal 𝑦(𝑛𝑇2, 𝑘), where ℎ > 0 is the basic sampling
period and 𝑝 and 𝑞 are the two positive coprime integers.
For such a dual-rate sampling process, the measurable input-
output data is {𝑢(𝑛𝑇1, 𝑘), 𝑦(𝑛𝑇2, 𝑘), 𝑛 = 0, 1, 2, . . .}; {𝑢(𝑛𝑇1 +𝑖ℎ, 𝑘), 𝑦(𝑛𝑇2+𝑗ℎ, 𝑘), 𝑖 = 1, 2, . . . , 𝑝−1, 𝑗 = 1, 2, . . . , 𝑞−1} are
unknown [33].Moreover, in order to obtain the systemmodel
of dual-rate sampling process, the continuous process 𝑃𝑐 is
first discretized with sampling period ℎ to obtain the discrete
system model 𝑃ℎ:

𝑥 (𝑛ℎ + ℎ, 𝑘) = 𝐴ℎ𝑥 (𝑛ℎ, 𝑘) + 𝐵ℎΓ𝑢 (𝑛ℎ, 𝑘)
+ 𝐷ℎ𝑤 (𝑛ℎ, 𝑘) ,

𝑦 (𝑛ℎ, 𝑘) = 𝐶ℎ𝑥 (𝑛ℎ − 𝑑ℎ, 𝑘) ,
(9)

where 𝐴ℎ = 𝑒𝐴𝑐ℎ, 𝐵ℎ = ∫ℎ
0
𝑒𝐴𝑐𝑡𝑑𝑡𝐵𝑐, 𝐶ℎ = 𝐶𝑐, and 𝐷ℎ =∫ℎ

0
𝑒𝐴𝑐𝑡𝑑𝑡𝐷𝑐, 𝑑 = ⌊𝜏/ℎ⌋.
For process𝑃ℎ, let𝑇 fl 𝑝𝑞ℎ be the frame period to denote

the cycle sampling period of the system, then using symbol𝑛𝑝𝑞 instead of 𝑛 in (9), we have

𝑥 (𝑛𝑇, 𝑘) = 𝑥 (𝑛𝑝𝑞ℎ, 𝑘) = 𝐴ℎ𝑥 ((𝑛𝑝𝑞 − 1) ℎ, 𝑘)
+ 𝐵ℎΓ𝑢 ((𝑛𝑝𝑞 − 1) ℎ, 𝑘) + 𝐷ℎ𝑤 ((𝑛𝑝𝑞 − 1) ℎ, 𝑘)
= 𝐴ℎ {𝐴ℎ𝑥 ((𝑛𝑝𝑞 − 2) ℎ, 𝑘)
+ 𝐵ℎΓ𝑢 ((𝑛𝑝𝑞 − 2) ℎ, 𝑘) + 𝐷ℎ𝑤 ((𝑛𝑝𝑞 − 2) ℎ, 𝑘)}
+ 𝐴ℎ𝑥 ((𝑛𝑝𝑞 − 1) ℎ, 𝑘) + 𝐵ℎΓ𝑢 ((𝑛𝑝𝑞 − 1) ℎ, 𝑘)
+ 𝐷ℎ𝑤 ((𝑛𝑝𝑞 − 1) ℎ, 𝑘) = ⋅ ⋅ ⋅ = 𝐴𝑑ℎ𝑥 (𝑛𝑇 − 𝑑ℎ, 𝑘)
+ 𝑝𝑞∑
𝑗=𝑝𝑞−𝑑+1

𝐴𝑝𝑞−𝑗
ℎ

𝐵ℎΓ𝑢 (𝑛𝑇 + (𝑗 − 1) ℎ − 𝑇, 𝑘)
+ 𝑝𝑞∑
𝑗=𝑝𝑞−𝑑+1

𝐴𝑝𝑞−𝑗
ℎ

𝐷ℎ𝑤 (𝑛𝑇 + (𝑗 − 1) ℎ − 𝑇, 𝑘) .

(10)
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Similarly, we can directly obtain

𝑥 (𝑛𝑇 + 𝑇, 𝑘)
= 𝐴𝑝𝑞
ℎ
𝑥 (𝑛𝑇, 𝑘)

+ 𝑞−1∑
𝑗=0

𝑝∑
𝑖=1

𝐴𝑝𝑞−𝑗𝑝−𝑖
ℎ

𝐵ℎΓ𝑢 [𝑛𝑇 + 𝑗𝑇1 + (𝑖 − 1) ℎ, 𝑘]
+ 𝑞−1∑
𝑗=0

𝑝∑
𝑖=1

𝐴𝑝𝑞−𝑗𝑝−𝑖
ℎ

𝐷ℎ𝑤 [𝑛𝑇 + 𝑗𝑇1 + (𝑖 − 1) ℎ, 𝑘] ,
(11)

𝑥 (𝑛𝑇 + T − 𝑑ℎ, 𝑘)
= 𝐴𝑝𝑞−𝑑
ℎ

𝑥 (𝑛𝑇, 𝑘)
+ 𝑝𝑞−𝑑∑
𝑗=1

𝐴𝑝𝑞−𝑑−𝑗
ℎ

𝐵ℎΓ𝑢 (𝑛𝑇 + (𝑗 − 1) ℎ, 𝑘)
+ 𝑝𝑞−𝑑∑
𝑗=1

𝐴𝑝𝑞−𝑑−𝑗
ℎ

𝐷ℎ𝑤 (𝑛𝑇 + (𝑗 − 1) ℎ, 𝑘) ;
(12)

according to (8), (11) can be simplified as

𝑥 (𝑛𝑇 + 𝑇, 𝑘)
= 𝐴𝑝𝑞
ℎ
𝑥 (𝑛𝑇, 𝑘) + 𝑞−1∑

𝑗=0

𝑝∑
𝑖=1

𝐴𝑝𝑞−𝑗𝑝−𝑖
ℎ

𝐵ℎΓ𝑢 (𝑛𝑇 + 𝑗𝑇1, 𝑘)
+ 𝑞−1∑
𝑗=0

𝑝∑
𝑖=1

𝐴𝑝𝑞−𝑗𝑝−𝑖
ℎ

𝐷ℎ𝑤 [𝑛𝑇 + 𝑗𝑇1 + (𝑖 − 1) ℎ, 𝑘] .
(13)

Substituting (10) into (12) and defining 𝑚 fl 𝑝𝑑 − 𝑑, where
we assume 𝑝𝑞 > 𝑑, we have

𝑥 (𝑛𝑇 + 𝑇 − 𝑑ℎ, 𝑘)
= 𝐴𝑝𝑞
ℎ
𝑥 (𝑛𝑇 − 𝑑ℎ, 𝑘)

+ 𝑝𝑞∑
𝑗=𝑚+1

𝐴𝑝𝑞+𝑚−𝑗
ℎ

𝐵ℎΓ𝑢 (𝑛𝑇 + (𝑗 − 1) ℎ − 𝑇, 𝑘)
+ 𝑚∑
𝑗=1

𝐴𝑚−𝑗
ℎ

𝐵ℎΓ𝑢 (𝑛𝑇 + (𝑗 − 1) ℎ, 𝑘)
+ 𝑚∑
𝑗=1

𝐴𝑚−𝑗
ℎ

𝐷ℎ𝑤 (𝑛𝑇 + (𝑗 − 1) ℎ, 𝑘)
+ 𝑝𝑞∑
𝑗=𝑚+1

𝐴𝑝𝑞+𝑚−𝑗
ℎ

𝐷ℎ𝑤 (𝑛𝑇 + (𝑗 − 1) ℎ − 𝑇, 𝑘) .

(14)

Remark 1. The assumption condition 𝑝𝑞 > 𝑑 can usually be
satisfied for some dual-rate sampling processes; this means
the time delay exists in the sampling frame period. Further-
more, if 𝑝𝑞 ≫ 𝑑, then more information of the time delay

u(nT1, k) HT1 ST2
u(t, k)

w(t, k)

y(t, k)
Pc y(nT2, k)

Figure 1: The general dual-rate sampling system.

system can be obtained in a full frame period when the
controller is designed for the sampling process in Figure 1.

In terms of lifting technology, defining the state expand-
ing vector with 2𝑛 dimensions,

𝑋(𝑛𝑇, 𝑘) = [𝑥 (𝑛𝑇 − 𝑑ℎ, 𝑘)𝑥 (𝑛𝑇, 𝑘) ] , (15)

and the input and disturbance expanding vectors with (𝑝𝑑 +𝑑) dimensions,

𝑈𝑧 (𝑛𝑇, 𝑘) =
[[[[[[[

𝑢 (𝑛𝑇 − 𝑑ℎ, 𝑘)𝑢 (𝑛𝑇 − 𝑑ℎ + ℎ, 𝑘)...𝑢 (𝑛𝑇 + (𝑝𝑞 − 1) ℎ, 𝑘)

]]]]]]]
,

𝑊𝑧 (𝑛𝑇, 𝑘) =
[[[[[[[

𝑤 (𝑛𝑇 − 𝑑ℎ, 𝑘)𝑤 (𝑛𝑇 − 𝑑ℎ + ℎ, 𝑘)...𝑤 (𝑛𝑇 + (𝑝𝑞 − 1) ℎ, 𝑘)

]]]]]]]
,

(16)

we can directly convert the dual-rate sampling system model
(9) with output delay into a lifting linear discrete system
model without delay in a single slow sampling rate 𝑇 = 𝑝𝑞ℎ,

𝑋(𝑛𝑇 + 𝑇, 𝑘) = 𝐴𝑧𝑋(𝑛𝑇, 𝑘) + 𝐵𝑧Γ𝑧𝑈𝑧 (𝑛𝑇, 𝑘)+ 𝐷𝑧𝑊𝑧 (𝑛𝑇, 𝑘) ,𝑦 (𝑛𝑇, 𝑘) = 𝐶𝑧𝑋 (𝑛𝑇, 𝑘) ,
(17)

where

𝐴𝑧 = [𝐴 0[𝑛×𝑛]⋆ 𝐴 ] ,
𝐵𝑧 = [𝐵 0[𝑛×𝑑]⋆ 𝐵 ] ,
𝐶𝑧 = [𝐶ℎ 0[1×𝑛]] ,
𝐷𝑧 = [𝐷 0[𝑛×𝑑]⋆ 𝐷 ] ,
𝐴 = 𝐴𝑝𝑞

ℎ
,

Γ𝑧 = diag {Γ, Γ, . . . , Γ} ,
𝐵 = [𝐴𝑝𝑞−1

ℎ
𝐵ℎ 𝐴𝑝𝑞−2

ℎ
𝐵ℎ ⋅ ⋅ ⋅ 𝐴ℎ𝐵ℎ 𝐵ℎ] ,

𝐷 = [𝐴𝑝𝑞−1
ℎ

𝐷ℎ 𝐴𝑝𝑞−2
ℎ

𝐷ℎ ⋅ ⋅ ⋅ 𝐴ℎ𝐷ℎ 𝐷ℎ] .

(18)
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We can obviously find that although (17) is a slow
sampling rate system with 𝑇 = 𝑝𝑞ℎ, every real control input
variable of expanding vector𝑈𝑧(𝑛𝑇, 𝑘) in (16) is also updated
with a relatively fast sampling period ℎ. Particularly, if we
force the input variables to be updated just in slow sampling
period 𝑇, that is, 𝑢(𝑛𝑇 − 𝑑ℎ, 𝑘) = 𝑢(𝑛𝑇 − (𝑑 − 1)ℎ, 𝑘) = ⋅ ⋅ ⋅ =𝑢(𝑛𝑇 − ℎ, 𝑘), 𝑢(𝑛𝑇, 𝑘) = 𝑢(𝑛𝑇 + ℎ, 𝑘) = ⋅ ⋅ ⋅ = 𝑢(𝑛𝑇 +𝑇 − ℎ, 𝑘),
then (17) can be described as

𝑈𝑠 (𝑛𝑇, 𝑘) = [𝑢 (𝑛𝑇 − 𝑇, 𝑘)𝑢 (𝑛𝑇, 𝑘) ] ; (19)

thus we can get the discrete state-spacemodel of the dual-rate
sampling process (1) with one sampling period 𝑇; it is just a
special form of (17):

𝑋 (𝑛𝑇 + 𝑇, 𝑘) = 𝐴 𝑠𝑋(𝑛𝑇, 𝑘) + 𝐵𝑠Γ𝑠𝑈𝑠 (𝑛𝑇, 𝑘)+ 𝐷𝑠𝑊𝑧 (𝑛𝑇, 𝑘) ,𝑦 (𝑛𝑇, 𝑘) = 𝐶𝑠𝑋 (𝑛𝑇, 𝑘) ,
(20)

where

𝐴 𝑠 = 𝐴𝑧,𝐶𝑠 = 𝐶𝑧,𝐷𝑠 = 𝐷𝑧,Γ𝑠 = diag {Γ, Γ} ,
𝐵𝑠 = [[

𝐴𝑝𝑞−1
ℎ

𝐵ℎ + 𝐴𝑝𝑞−𝑑−1
ℎ

𝐵ℎ + ⋅ ⋅ ⋅ + 𝐴𝑝𝑞−𝑑
ℎ

𝐵ℎ 𝐴𝑝𝑞−𝑑−1
ℎ

𝐵ℎ + ⋅ ⋅ ⋅ + 𝐵ℎ0 A𝑝𝑞−1
ℎ

𝐵ℎ + 𝐴𝑝𝑞−𝑑−1
ℎ

𝐵ℎ + ⋅ ⋅ ⋅ + 𝐵ℎ]] .
(21)

3. ILC Law Design

For the discrete sampling system described by (17), design an
ILC law that constructs the current trial input that is equal to
the control input on the previous trial plus a corrective term,
that is, a control law of the form

𝑈𝑧 (𝑛𝑇, 𝑘 + 1) = 𝑈𝑧 (𝑛𝑇, 𝑘) + 𝑟 (𝑛𝑇, 𝑘 + 1) , (22)

where 𝑟(𝑛𝑇, 𝑘) is the correction term computed using previ-
ous trial data. Given the reference signal 𝑦𝑟(𝑛𝑇), the error on
trial 𝑘 is

𝑒 (𝑛𝑇, 𝑘) = 𝑦𝑟 (𝑛𝑇) − 𝑦 (𝑛𝑇, 𝑘) . (23)

To formulate the ILC design problem in the repetitive process
setting, for analysis purpose only, we define the vectors

𝜂 (𝑛𝑇 + 𝑇, 𝑘 + 1) = 𝑋 (𝑛𝑇, 𝑘 + 1) − 𝑋 (𝑛𝑇, 𝑘) ,
𝜔 (𝑛𝑇 + 𝑇, 𝑘 + 1) = 𝑊𝑧 (𝑛𝑇, 𝑘 + 1) − 𝑊𝑧 (𝑛𝑇, 𝑘) , (24)

𝜇 (𝑛𝑇 + 𝑇, 𝑘 + 1) = 𝑦 (𝑛𝑇, 𝑘 + 1) − 𝑦 (𝑛𝑇, 𝑘)
= 𝐶𝑧𝜂 (𝑛𝑇 + 𝑇, 𝑘 + 1) . (25)

Without loss of generality, it is assumed that 𝑦𝑟(0) = 𝑦(0, 𝑘) =𝐶𝑧𝑋(0, 𝑘) and, due to the initial conditions assumed for (17),𝜇(0, 𝑘) = 0.
Since we can just obtain measurable input and output

signal for dual-rate sampling process, suppose that the mod-
ification term in the output information based ILC law (22)
takes the form𝑟 (𝑛𝑇, 𝑘 + 1) = 𝐾1𝜇 (𝑛𝑇 + 𝑇, 𝑘 + 1)

+ 𝐾2𝑒 (𝑛𝑇 + 𝑇, 𝑘) , (26)

where 𝐾1 and 𝐾2 are the control law matrices to be deter-
mined. Moreover, by (22)–(26) the controlled ILC dynamics
can be written in the form of discrete repetitive process as

𝜂 (𝑛𝑇 + 𝑇, 𝑘 + 1) = A𝜂 (𝑛𝑇, 𝑘 + 1) +B0𝑒 (𝑛𝑇, 𝑘)+B11𝜔 (𝑛𝑇, 𝑘 + 1) ,
𝑒 (𝑛𝑇, 𝑘 + 1) = C𝜂 (𝑛𝑇, 𝑘 + 1) +D0𝑒 (𝑛𝑇, 𝑘)+B12𝜔 (𝑛𝑇, 𝑘 + 1) ,

(27)

where

A = 𝐴𝑧 + 𝐵𝑧Γ𝑧𝐾1𝐶𝑧,
B0 = 𝐵𝑧Γ𝑧𝐾2,
B11 = 𝐷𝑧,
C = −𝐶𝑧𝐴𝑧 + 𝐶𝑧𝐵𝑧Γ𝑧𝐾1𝐶𝑧,
D0 = 𝐼 − 𝐶𝑧𝐵𝑧Γ𝑧𝐾2,
B12 = −𝐶𝑧𝐷𝑧.

(28)

The state-space model (27) represents a linear discrete repet-
itive process with pass output 𝑒(𝑛𝑇, 𝑘) and state vectors𝜂(𝑛𝑇, 𝑘), respectively, once the initial conditions are specified,
that is, the pass state initial vector 𝜂(0, 𝑘), 𝑘 ≥ 1, and the initial
pass profile 𝑒(𝑛𝑇, 0).
Remark 2. It is important to stress that, with the ILC law (22)
applied, the resulting controlled dynamics (27) are modeled
by a linear repetitive process state-space model; the previous
trial (pass) error 𝑒(𝑛𝑇, 𝑘) affects the current trial (pass) error
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𝑒(𝑛𝑇, 𝑘 + 1). Repetitive process is a particular class of 2D
systems where a series of sweeps are made through a set of
dynamics defined over a finite duration. Once each sweep is
completed, the dynamics are reset and the next sweep starts.
On any sweep, the output on the previous sweep explicitly
contributes to the current sweep output and hence the link to
ILC dynamics [24].

Next the representation of discrete repetitive processes
and the associated stability theory are given as background.

4. Repetitive Process Theory

The state-space model of a linear discrete repetitive process
over the finite pass length 𝛼 is

𝑥 (𝑡 + 1, 𝑘 + 1) = A𝑥 (𝑡, 𝑘 + 1) +B𝑢 (𝑡, 𝑘 + 1)
+B0𝑦 (𝑡, 𝑘) +B11𝑤 (𝑡, 𝑘 + 1) ,

𝑦 (𝑡, 𝑘 + 1) = C𝑥 (𝑡, 𝑘 + 1) +D𝑢 (𝑡, 𝑘 + 1)
+D0𝑦 (𝑡, 𝑘) +B12𝑤 (𝑡, 𝑘 + 1) ,

(29)

where, on pass 𝑘, 𝑥(𝑡, 𝑘) is the state vector,𝑦(𝑡, 𝑘) is the output
vector, 𝑢(𝑡, 𝑘) is the control input vector, and𝑤(𝑡, 𝑘+ 1) is the
disturbance input vector. If

‖𝜔 (𝑡, 𝑘 + 1)‖ℓ2 = √𝑁1∑
𝑡=0

𝑁2∑
𝑘=0

‖𝜔 (𝑡, 𝑘 + 1)‖2 < ∞ (30)

for any integers 𝑁1, 𝑁2 > 0, then 𝑤(𝑡, 𝑘 + 1) is in ℓ2
space, denoted by 𝑤(𝑡, 𝑘 + 1) ∈ ℓ2. To complete the process
description, it is necessary to specify the boundary condi-
tions, that is, the pass state initial vector sequence𝑥(0, 𝑘), 𝑘 ≥1, and the initial pass profile 𝑦(𝑡, 0).

Define the shift operators 𝑧1, 𝑧2 along the pass (𝑡) and
pass-to-pass (𝑘) directions acting, for example, on 𝑥(𝑡 + 1, 𝑘)
and 𝑦(𝑡, 𝑘 + 1), respectively, as

𝑥 (𝑡, 𝑘) fl 𝑧1𝑥 (𝑡 + 1, 𝑘) ,
𝑦 (𝑡, 𝑘) fl 𝑧2𝑥 (𝑡, 𝑘 + 1) ; (31)

then the 2D characteristic polynomial for processes described
by (29) is defined as

I (𝑧1, 𝑧2) = det([𝐼 − 𝑧1A −𝑧1B0−𝑧2C 𝐼 − 𝑧2D0]) ; (32)

the stability along the pass holds if and only if

I (𝑧1, 𝑧2) = det (𝐼 − 𝑧1A1 − 𝑧2A2) ̸= 0,
if 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨 ≤ 1, 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨 ≤ 1, (33)

where

A1 = [A B00 0 ] ,
A2 = [ 0 0

C D0
] .

(34)

This reversely promotes the development of LMI based
stability condition along the pass which are sufficient but not
necessary.

Lemma 3 (see [24]). A linear discrete repetitive process
described by (29) is stable along the pass if there exists a block-
diagonal matrix 𝑃 ≻ 0 such that the following LMI holds:

Φ𝑇𝑃Φ − 𝑃 ≺ 0, (35)

where

Φ = [A B0

C D0
] (36)

is the so-called augmented plant matrix.

Definition 4. A linear discrete repetitive process described by
(29) is said to have 𝐻∞ robust disturbance attenuation 𝛾 if it
is stable along the pass and

sup
0 ̸=𝑤∈𝑙2

󵄩󵄩󵄩󵄩𝑦 (𝑡, 𝑘 + 1)󵄩󵄩󵄩󵄩ℓ2‖𝑤 (𝑡, 𝑘 + 1)‖ℓ2 < 𝛾. (37)

Now consider the 2D transfer function matrix coupling
the disturbance and current pass profile vectors which is
given by

𝐺𝑦𝑤 (𝑧1, 𝑧2) = [0 𝐼] [𝐼 − 𝑧1A −𝑧1B0−𝑧2C 𝐼 − 𝑧2D0]
−1 [B11

B12
] (38)

and then the 2D Parseval theorem, which states that (37) is
equivalent to the requirement that󵄩󵄩󵄩󵄩󵄩𝐺𝑦𝑤 (𝑧1, 𝑧2)󵄩󵄩󵄩󵄩󵄩 = sup

𝑤1 ,𝑤2∈[0,2𝜋]

𝜎 [𝐺𝑦𝑤 (𝑒𝑗𝑤1 , 𝑒𝑗𝑤2)] < 𝛾, (39)

where 𝜎(⋅) denotes the maximum singular value [34].

5. Stability Analysis

The following lemmas are used in the proofs of the main
results.

Lemma 5 (Schur complement formula [35]). Given a sym-
metric matrixS = [ S11 S12

S21 S22
],S11 andS22 are square matrices,

and then the following inequalities are equivalent:

(i) S ≺ 0.
(ii) S11 ≺ 0 and S22 − S𝑇12S

−1
11S12 ≺ 0.

(iii) S22 ≺ 0 and S11 − S𝑇12S
−1
22S12 ≺ 0.

Lemma 6 (see [36]). Given matrices 𝑋, 𝑌, Ω = Ω𝑇, and 𝛿(𝑡)
of compatible dimensions, then

Ω + 𝑋𝛿 (𝑡) 𝑌 + 𝑌𝑇𝛿𝑇 (𝑡) 𝑋𝑇 ≺ 0, (40)

for all 𝛿(𝑡) satisfying 𝛿𝑇(𝑡)𝛿(𝑡) ⪯ 𝐼 if and only if there exists
some 𝜀 > 0 such that

Ω + 𝜀𝑋𝑋𝑇 + 𝜀−1𝑌𝑇𝑌 ≺ 0. (41)
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Theorem 7. Assume repetitive disturbance 𝑤(𝑡, 𝑘) exists in
dual-rate sampling process 𝑃𝑐, that is, 𝜔(𝑛𝑇, 𝑘 + 1) = 0 in
discrete repetitive process (27); for any 𝜀 > 0, output informa-
tion based ILC scheme described as (27) under an actuator fault
of the form (3)–(6) is stable along the trial, if there existmatrices𝑄 = diag{𝑄1, 𝑄2} ≻ 0,𝑁,𝑀, and 𝐿 such that

𝐶𝑧𝑄1 = 𝑀𝐶𝑧, (42)

[[[
−𝑄 ⋆ ⋆𝑅1 −𝑄 ⋆𝑅2 𝑅3 −𝜀𝐼

]]]
≺ 0 (43)

hold, where 𝑞𝑧 = diag{𝑞, 𝑞, . . . , 𝑞}, 𝑞0𝑧 = diag{𝑞0, 𝑞0, . . . , 𝑞0},
and

𝑅1 = [ 𝐴𝑧𝑄1 + 𝐵𝑧𝑞𝑧𝑁𝐶𝑧 𝐵𝑧𝑞𝐿−𝐶𝑧𝐴𝑧𝑄1 − 𝐶𝑧𝐵𝑧𝑞𝑧𝑁𝐶𝑧 𝑄2 − 𝐶𝑧𝐵𝑧𝑞𝑧𝐿] ,
𝑅2 = [ 0 0𝑞𝑧𝑁𝐶𝑧 𝑞𝑧𝐿] ,
𝑅3 = [𝜀𝑞0𝐵𝑇𝑧 −𝜀𝑞0𝑧 (𝐵𝑧𝐶𝑧)𝑇0 0 ] ;

(44)

then the corresponding matrices in output information based
control law (26) are given by

𝐾1 = 𝑁𝑀−1,
𝐾2 = 𝐿𝑄−12 . (45)

Proof. According to Lemma 3, we haveΦ𝑇𝑃Φ−𝑃 ≺ 0, where𝑃 = diag{𝑃1, 𝑃2} ≻ 0, and
Φ = [ 𝐴𝑧 + 𝐵𝑧Γ𝑧𝐾1𝐶𝑧 𝐵𝑧Γ𝑧𝐾2−𝐶𝑧𝐴𝑧 − 𝐶𝑧𝐵𝑧Γ𝑧𝐾1𝐶𝑧 𝐼 − 𝐶𝑧𝐵𝑧Γ𝑧𝐾2] . (46)

Applying Lemma 5 (Schur’s complement formula) toΦ𝑇𝑃Φ−𝑃 ≺ 0 gives
[[[[[[

−𝑃1 ⋆ ⋆ ⋆0 −𝑃2 ⋆ ⋆
𝐴𝑧 + 𝐵𝑧Γ𝑧𝐾1𝐶𝑧 𝐵𝑧Γ𝑧𝐾2 −𝑃−11 ⋆

−𝐶𝑧𝐴𝑧 − 𝐶𝑧𝐵𝑧Γ𝑧𝐾1𝐶𝑧 𝐼 − 𝐶𝑧𝐵𝑧Γ𝑧𝐾2 0 −𝑃−12
]]]]]]

≺ 0.
(47)

Introduce𝑄1 = 𝑃−11 and𝑄2 = 𝑃−12 , and pre- and postmultiply
(47) by matrix diag{𝑄1, 𝑄2, 𝐼, 𝐼} to yield

[[[[[[

−𝑄1 ⋆ ⋆ ⋆0 −𝑄2 ⋆ ⋆𝐴𝑧 + 𝐵𝑧Γ𝑧𝐾1𝐶𝑧𝑄1 𝐵𝑧Γ𝑧𝐾2𝑄2 −𝑄1 ⋆−𝐶𝑧𝐴𝑧 − 𝐶𝑧𝐵𝑧Γ𝑧𝐾1𝐶𝑧𝑄1 𝐼 − 𝐶𝑧𝐵𝑧Γ𝑧𝐾2𝑄2 0 −𝑄2
]]]]]]

≺ 0.
(48)

Due to Γ𝑧 = diag{(𝐼+Γ0)𝑞, (𝐼+Γ0)𝑞, . . . , (𝐼+Γ0)𝑞} = (𝐼+Γ0𝑧)𝑞𝑧
and Γ0𝑧 = diag{Γ0, Γ0, . . . , Γ0}, we can rewrite (48) as

𝐻 + 𝑋Γ0𝑧𝑌 + (𝑋Γ0𝑧𝑌)𝑇 ≺ 0, (49)

where

𝑋 = [0 0 𝐵𝑇𝑧 − (𝐶𝑧𝐵𝑧)𝑇]𝑇 ,
𝑌 = [𝑞𝑧𝐾1𝐶𝑧𝑄1 𝑞𝑧𝐾2𝑄2 0 0] ,

𝐻 = [[[[[[

−𝑄1 ⋆ ⋆ ⋆0 −𝑄2 ⋆ ⋆(𝐴𝑧 + 𝐵𝑧𝑞𝑧𝐾1𝐶𝑧) 𝑄1 𝐵𝑧𝑞𝑧𝐾2𝑄2 −𝑄1 ⋆− (𝐶𝑧𝐴𝑧 + 𝐶𝑧𝐵𝑧𝑞𝑧𝐾1𝐶𝑧) 𝑄1 𝑄2 − 𝐶𝑧𝐵𝑧𝑞𝑧𝐾2𝑄2 0 −𝑄2
]]]]]]
;

(50)

then by Lemma 6 and (6), inequality (49) is feasible if and
only if

𝐻 + [𝜀1/2𝑋𝑞0𝑧 𝜀−1/2 𝑌𝑇] [𝜀1/2𝑞0𝑧𝑋𝑇𝜀−1/2𝑌 ] ≺ 0 (51)

holds, where 𝑞0𝑧 = diag{𝑞0, 𝑞0, . . . , 𝑞0}; then application of
Schur’s complement formula to (51) gives

[[[
𝐻 ⋆ ⋆𝜀1/2𝑞0𝑧𝑋𝑇 −𝐼 ⋆𝜀−1/2𝑌 0 −𝐼

]]]
≺ 0. (52)

Pre- and postmultiplying the above inequality by diag{𝐼, 𝐼,𝐼, 𝐼, 𝜀1/2𝐼, 𝜀1/2𝐼} and applying condition (42) immediately give
the LMI of (43). This completes proof of the theorem.

Suppose nonrepetitive disturbance 𝑤(𝑡, 𝑘) exists in dual-
rate sampling process 𝑃𝑐, that is, 𝜔(𝑛𝑇, 𝑘+1) ̸= 0 in repetitive
process (27); then the 𝐻∞ robust disturbance attenuation
performance (37) should be modified as

sup
0 ̸=𝑤∈𝑙2

‖𝑒 (𝑛𝑇, 𝑘 + 1)‖ℓ2‖𝜔 (𝑛𝑇, 𝑘 + 1)‖ℓ2 < 𝛾; (53)
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consequently, we can have the following result for robust
controller design.

Theorem 8. Assume 𝜔(𝑛𝑇, 𝑘 + 1) ̸= 0; for any 𝜀 > 0,
output information based ILC scheme described as a discrete
linear repetitive process of the form (27) under an actuator
fault of the form (3)–(6) is stable along the trial and has 𝐻∞
disturbance attenuation 𝛾 > 0; hence if there exist matrices𝑄 = diag{𝑄1, 𝑄2} ≻ 0,𝑁,𝑀, and 𝐿 such that

[[[[[[[[[

−𝑄 ⋆ ⋆ ⋆ ⋆0 −𝛾𝐼 ⋆ ⋆ ⋆𝑅1 𝐹 −𝑄 ⋆ ⋆𝑅4 0 0 −𝛾𝐼 ⋆𝑅2 0 𝑅3 0 −𝜀𝐼

]]]]]]]]]
≺ 0 (54)

holds, where 𝑅1, 𝑅2, 𝑅3 are given in (44), 𝑅4 = [0 𝑄2], 𝐹 =[𝐷𝑇𝑧 −𝐷𝑇𝑧𝐶𝑇𝑧 ]𝑇, and the robust control law matrices 𝐾1 and𝐾2 are given by (45).

Proof. Suppose there exists 𝐻∞ robust disturbance attenua-
tion 𝛾 if the associated Hamiltonian function

𝐽 (𝑛𝑇, 𝑘) = Δ𝑉 (𝑛𝑇, 𝑘) + 𝛾−1 ‖𝑒 (𝑛𝑇, 𝑘 + 1)‖2
− 𝛾 ‖𝜔 (𝑛𝑇, 𝑘 + 1)‖2 < 0 (55)

holds, where Δ𝑉(𝑛𝑇, 𝑘) is the associated increment of Lya-
punov function for repetitive process (27):

𝑉 (𝑛𝑇, 𝑘) = 𝜂𝑇 (𝑛𝑇, 𝑘 + 1) 𝑃1𝜂 (𝑛𝑇, 𝑘 + 1)
+ 𝑒𝑇 (𝑛𝑇, 𝑘) 𝑃2𝑒 (𝑛𝑇, 𝑘) , (56)

where 𝑃1 ≻ 0, 𝑃2 ≻ 0, and
Δ𝑉 (𝑛𝑇, 𝑘) = 𝜂𝑇 (𝑛𝑇 + 𝑇, 𝑘 + 1) 𝑃1𝜂 (𝑛𝑇 + 𝑇, 𝑘 + 1)

+ 𝑒𝑇 (𝑛𝑇, 𝑘 + 1) 𝑃2𝑒 (𝑛𝑇, 𝑘 + 1)
− 𝜂𝑇 (𝑛𝑇, 𝑘 + 1) 𝑃1𝜂 (𝑛𝑇, 𝑘 + 1)
− 𝑒𝑇 (𝑛𝑇, 𝑘) 𝑃2𝑒 (𝑛𝑇, 𝑘) .

(57)

It is clear that (55) requiresΔ𝑉(𝑛𝑇, 𝑘) < 0 and hence the result
of Lemma 3 holds. Using (27), it is easily shown that

𝐽 (𝑛𝑇, 𝑘) = [[[
𝜂 (𝑛𝑇, 𝑘 + 1)𝑒 (𝑛𝑇, 𝑘)𝜔 (𝑛𝑇, 𝑘 + 1)

]]]
𝑇

Ψ[[[
𝜂 (𝑛𝑇, 𝑘 + 1)𝑒 (𝑛𝑇, 𝑘)𝜔 (𝑛𝑇, 𝑘 + 1)

]]]
< 0, (58)

where

Ψ = [[[[
A𝑇𝑃1A +C𝑇𝑃2C − 𝑃1 A𝑇𝑃1B0 +C𝑇𝑃2D0 A𝑇𝑃1B11 +C𝑇𝑃2B12⋆ B𝑇0𝑃1𝐵0 +D𝑇0𝑃2D0 − 𝑃2 − 𝛾−1𝐼 B𝑇0𝑃1B11 +D𝑇0𝑃2B12⋆ ⋆ B𝑇11𝑃1B11 +B𝑇12𝑃2B12 − 𝛾𝐼

]]]]
= [Φ𝑇𝐹𝑇]𝑃 [Φ 𝐹]

− [𝑃 − 𝛾−1𝐺𝑇𝐺 00 𝛾𝐼] ≺ 0,
(59)

and𝐺 = [0 𝐼] and𝑃 = diag{𝑃1, 𝑃2}. Applying the Schur com-
plement formula to (59) and defining𝑄 = 𝑃−1 = diag{𝑄1, 𝑄2}
give

[[[[[[

−𝑃 ⋆ ⋆ ⋆0 −𝛾𝐼 ⋆ ⋆Φ 𝐹 −𝑄 ⋆𝐺 0 0 −𝛾𝐼
]]]]]]

≺ 0. (60)

Moreover, pre- and postmultiplying (60) by diag{𝑄, 𝐼, 𝐼, 𝐼}
and its transpose, respectively, we have

[[[[[[

−𝑄 ⋆ ⋆ ⋆0 −𝛾𝐼 ⋆ ⋆Φ𝑄 𝐹 −𝑄 ⋆𝐺𝑄 0 0 −𝛾𝐼
]]]]]]

≺ 0; (61)

therefore, (61) also can be modified as

𝐻󸀠 + 𝑋󸀠Γ0𝑧𝑌󸀠 + (𝑋󸀠Γ0𝑧𝑌󸀠)𝑇 ≺ 0, (62)

where

𝑋󸀠 = [0 0 0 𝐵𝑇𝑧 − (𝐶𝑧𝐵𝑧)𝑇 0]𝑇 ,
𝑌󸀠 = [𝑞𝑧𝐾1𝐶𝑧𝑄1 𝑞𝑧𝐾2𝑄2 0 0 0 0] ,
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𝐻󸀠 =
[[[[[[[[[[[[

−𝑄1 ⋆ ⋆ ⋆ ⋆ ⋆0 −𝑄2 ⋆ ⋆ ⋆ ⋆0 0 −𝛾𝐼 ⋆ ⋆ ⋆(𝐴𝑧 + 𝐵𝑧𝑞𝑧𝐾1𝐶𝑧) 𝑄1 𝐵𝑧𝑞𝑧𝐾2𝑄2 𝐷𝑧 −𝑄1 ⋆ ⋆− (𝐶𝑧𝐴𝑧 − 𝐶𝑧𝐵𝑧𝑞𝑧𝐾1𝐶𝑧) 𝑄1 𝑄2 − 𝐶𝑧𝐵𝑧𝑞𝑧𝐾2𝑄2 −𝐶𝑧𝐷𝑧 0 −𝑄2 ⋆0 𝑄2 0 0 0 −𝛾𝐼

]]]]]]]]]]]]

.

(63)

Similar to the proof of Theorem 7, another application of
Lemmas 6 and 5 immediately gives (54).

The following analysis is to prove the 𝐻∞ robust dis-
turbance attenuation 𝛾. For any positive integers 𝑁1, 𝑁2,
when all the initial conditions 𝜂(0, 𝑘) and 𝑒(𝑛𝑇, 0) in (57) are
assumed to be zero, we have

𝑁1∑
𝑛=0

𝑁2∑
𝑘=0

Δ𝑉 (𝑛𝑇, 𝑘)
= 𝑁2∑
𝑘=0

𝜂 ((𝑁1 + 1) 𝑇, 𝑘 + 1)𝑇 𝑃1𝜂 ((𝑁1 + 1) 𝑇, 𝑘 + 1)
+ 𝑁1∑
𝑛=0

𝑒 (𝑛𝑇,𝑁2 + 1)𝑇 𝑃2𝑒 (𝑛𝑇,𝑁2 + 1) ≥ 0.
(64)

Using (55) and (64) yields

𝑁1∑
𝑛=0

𝑁2∑
𝑘=0

(𝛾−1 ‖𝑒 (𝑛𝑇, 𝑘 + 1)‖2ℓ2 − 𝛾 ‖𝜔 (𝑛𝑇, 𝑘 + 1)‖2ℓ2)
≤ 𝑁1∑
𝑛=0

𝑁2∑
𝑘=0

(Δ𝑉 (𝑛𝑇, 𝑘) + 𝛾−1 ‖𝑒 (𝑛𝑇, 𝑘 + 1)‖2ℓ2
− 𝛾 ‖𝜔 (𝑛𝑇, 𝑘 + 1)‖2ℓ2) = 𝑁1∑

𝑛=0

𝑁2∑
𝑘=0

𝐽 (𝑛𝑇, 𝑘) < 0;
(65)

then (53) is satisfied; this means the ILC control process
(27) has robust disturbance attenuation 𝛾 and the proof is
complete.

It should be emphasized that condition (42) is not an
inequality form; it cannot be directly solved by LMI tools.
Therefore, one can first determine𝑄1,𝑄2,𝑁, and 𝐿 by solving
the LMI (43) or (54) and then get

𝑀 = 𝐶𝑧𝑄1𝐶+𝑧 , (66)

where 𝐶+𝑧 is the right inverse of matrix 𝐶𝑧. However, in some
cases, it is impossible to obtain the matrix 𝑀 by using the
above formulation. Therefore, condition (42) in Theorems 7
and 8 can be converted into the following inequality [37]:

(𝑀𝐶𝑧 − 𝐶𝑧𝑄1)𝑇 (𝑀𝐶𝑧 − 𝐶𝑧𝑄1) ≺ 𝜁𝐼, (67)

where 𝜁 is a sufficiently small positive scalar. Observe that if
the value of the scalar 𝜁 is sufficiently small, condition (42) is
approximately satisfied. Thus one obtains the LMI condition
using the Schur complement formula:

Minimize 𝜁
subject to [𝜁𝐼 𝐶𝑧𝑄1 − 𝑀𝐶𝑧⋆ 𝜁𝐼 ] ≻ 0. (68)

6. Case Study

To illustrate the validity of the proposed design method, a
system of two noninteracting flow tanks in series including
pipelines and valves is considered for process control [38].
The material balance equations that govern the system in the
disturbance-free and fault-free case shown in Figure 2 are

𝐴𝑐1 dℎ1d𝑡 = 𝐹𝑖 − 𝑐1ℎ1,
𝐴𝑐2 dℎ2d𝑡 = 𝑐1ℎ1 − 𝑐2ℎ2,

(69)

where 𝐴𝑐1 and 𝐴𝑐2 are the cross-sectional areas of tanks 1
and 2, unmeasurable states ℎ1 and ℎ2 are the liquid levels for
tanks 1 and 2, 𝑐1 and 𝑐2 are constants which depend on the
valves, and input𝐹𝑖 is themeasured inlet flow rate.Meantime,
amplifier element is used when the measured output signal
outlet flow rate𝐹𝑜2 is very small and nominally equal to 5𝑐2ℎ2.
Thus (69) can be written in state-space form

𝑥̇ (𝑡, 𝑘) = 𝐴𝑐𝑥 (𝑡, 𝑘) + 𝐵𝑐𝑢 (𝑡, 𝑘)
𝑦 (𝑡, 𝑘) = 𝐶𝑐𝑥 (𝑡, 𝑘) , (70)

where

𝐴𝑐 = [[[[
−𝑐1𝐴𝑐1 0
𝑐1𝐴𝑐2

−𝑐2𝐴𝑐2
]]]]
,
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Figure 2: Simple structure diagram of two flow tanks in series.

𝐵𝑐 = [[
1𝐴𝑐10 ]] ,

𝐶𝑐 = [0 5𝑐2] ,
𝑢 (𝑡, 𝑘) = 𝐹𝑖,
𝑦 (𝑡, 𝑘) = 𝐹𝑜2,

𝑥𝑇 (𝑡, 𝑘) = [ℎ1 ℎ2] .
(71)

Due to the differences of distance between the control
points of tanks and flow rates to the sensors at the bot-
tom of each tank, output time delay commonly appears
in the system, which gives rise to instability and poor
performance. Consider the case where the unknown exter-
nal bounded disturbance stream (Stream 6 in Figure 2) is
introduced into tank 2 for 𝑡 > 0. The state-space form (71)
becomes

𝑥̇ (𝑡, 𝑘) = 𝐴𝑐𝑥 (𝑡, 𝑘) + 𝐵𝑐𝑢 (𝑡, 𝑘) + 𝐷𝑐𝑤 (𝑡, 𝑘) ,
𝑦 (𝑡, 𝑘) = 𝐶𝑐𝑥 (𝑡 − 𝜏) , (72)

where 𝑤(𝑡, 𝑘) represents the unknown external bounded
disturbance stream and 𝜏 > 0 is the fixed delay. In the
following simulations, the model parameters used are 𝐴𝑐1 =𝐴𝑐2 = 0.8, 𝑐1 = 0.3, 𝑐2 = 0.2, 𝜏 = 1, 𝐷𝑐 = [0 0.1]𝑇, the
input updating time 𝑇1 = ℎ and the output sampling period𝑇2 = 5ℎ, and then frame period 𝑇 = 5ℎ. Applying the Euler
concretization method with a sampling period ℎ = 1𝑠 to (72)
results in the following discrete systemmodel of the form (9),
where

𝐴ℎ = [[
0.6873 0
0.2745 0.7788]] ,

𝐵ℎ = [[
1.0424
0.1910]] ,

𝐶ℎ = [0 1] ,
𝐷ℎ = [0 0.0834]𝑇 ,
𝑑 = 1.

(73)

Partial degradation and wear from repeated control
operation can lead to faults arising during the trials and it is
assumed that an actuator fault occurs in the operation valve.
As a numerical example, it is assumed that 0.6 ≤ Γ ≤ Γ ≤Γ = 1; hence 𝑞 = 0.8 and 𝑞0 = 0.25. Suppose no actuator
faults occur before 𝑘 = 15 trials have elapsed. Applying the
lifting technology, this dual-rate sampling tank model can be
converted into a lifting linear discrete model of the form (17),
where

𝐴𝑧 =
[[[[[[[[[

0.1534 0 0 0
0.3994 0.2865 0 0

0 0 0.1534 0
0 0 0.3994 0.2865

]]]]]]]]]
,

𝐵𝑧

=
[[[[[[[[[

0.2326 0.3384 0.4924 0.7164 1.0424 0
0.5229 0.5521 0.5354 0.4349 0.191 0

0 0.2326 0.3384 0.4924 0.716 1.0424
0 0.5229 0.5521 0.5354 0.4349 0.191

]]]]]]]]]
,

𝐶𝑧 = [0 1 0 0] ,
𝐷𝑧

=
[[[[[[[[[

0 0 0 0 0 0
0.0186 0.0271 0.0394 0.0573 0.0834 0

0 0 0 0 0 0
0 0.0186 0.0271 0.0394 0.0573 0.0834

]]]]]]]]]
.

(74)

If we also force the input variable 𝐹𝑖 to be just updated in
slow sampling period 𝑇, then 𝑢(𝑛𝑇 − ℎ, 𝑘) = 𝑢(𝑛𝑇 − 𝑇, 𝑘)
and 𝑢(𝑛𝑇, 𝑘) = 𝑢(𝑛𝑇+ℎ, 𝑘) = 𝑢(𝑛𝑇+2ℎ, 𝑘) = 𝑢(𝑛𝑇+3ℎ, 𝑘) =𝑢(𝑛𝑇 + 4ℎ, 𝑘); hence the dual-rate sampling tank model can
be of the form (19), where 𝐴 𝑠 = 𝐴𝑧, 𝐶𝑠 = 𝐶𝑧, 𝐷𝑠 = 𝐷𝑧,𝐵𝑠 = [ 𝐴4ℎ𝐵ℎ 𝐴3

ℎ
𝐵ℎ+𝐴

2

ℎ
𝐵ℎ+𝐴ℎ𝐵ℎ+𝐵ℎ

0 𝐴4
ℎ
𝐵ℎ+𝐴

3

ℎ
𝐵ℎ+𝐴

2

ℎ
𝐵ℎ+𝐴ℎ𝐵ℎ+𝐵ℎ

].
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The initial state vector on each trial is assumed to be zero,∀𝑘 ≥ 0, and the reference trajectory is

𝑦𝑟 (𝑛𝑇) =
{{{{{{{{{{{{{

0.001𝑛𝑇, 0 ≤ 𝑛 < 100
0.5, 100 ≤ 𝑛 < 200
0.0003𝑛𝑇 + 0.2, 200 ≤ 𝑛 < 300
0.65, 300 ≤ 𝑛 ≤ 400.

(75)

Introduce the root mean square (RMS) to evaluate track-
ing performance from trial to trial:

𝐻(𝑘) = √ 1400
400∑
𝑛=1

𝑒2 (𝑛𝑇, 𝑘), (76)

where the smaller the value of 𝐻(𝑘), the better the tracking
performance along the 𝑘th trial. Next two possible scenarios
are considered.

Scenario 1 (repetitive disturbance with a constant fault). It is
assumed that 𝑤(𝑛ℎ, 𝑘) = 0.1 sin(0.2𝑛) in this scenario; hence𝜔(𝑛𝑇, 𝑘 + 1) = 0. Consider the case when the operating
valve is always partially blocked in tank system (9).This con-
stant partial fault causes the actuator to drop to 80% of its
normal value; hence Γ = 0.8. For single-rate sampling sys-
tem model with matrices {𝐴 𝑠, 𝐵𝑠, 𝐶𝑠}, using LMI toolbox to
solve inequality (68) in Theorem 7 gives the corresponding
matrices in (45) as

𝐾1 = [−0.4120 −0.2312]𝑇 ,
𝐾2 = [0.2001 0.1058]𝑇 (77)

and achieves minimum 𝜁 = 0.6148. Furthermore, we can
also obtain the dual-rate sampling controller matrices from
matrices {𝐴𝑧, 𝐵𝑧, 𝐶𝑧}:
𝐾1
= [−0.1457 −0.1167 −0.1017 −0.0606 0.0241 0.0256]𝑇 ,
𝐾2 = [0.2821 0.2054 0.1716 0.0861 −0.0846 −0.0476]𝑇 .

(78)

𝜁 = 0.0126. Substituting (77) and (78) into (26) gets single-
rate sampling and dual-rate sampling fault-tolerant ILC law
(22), respectively. Based on (16), we can find that single-rate
sampling controller is just updated in sampling time 𝑛𝑇, but
dual-rate sampling controller is updated in every sampling
time 𝑛𝑇, 𝑛𝑇+ℎ, 𝑛𝑇+2ℎ, 𝑛𝑇+3ℎ, and 𝑛𝑇+4ℎ; the total sample
number of dual-rate sampling controllers is five times that of
the single-rate sampling controllers.The simulation results of
input, output, and tracking error are shown in Figures 3–9.

Before the constant fault occurs, the tracking error rapidly
converges into a steady state from trail to trial. As soon as the
fault occurs, the output responses deviate from the reference
trajectory and the tracking performance deteriorates. How-
ever, the tracking performance can achieve an excellent level
again after some trials and even restore it to the original level
under the fault-tolerant controller.This result can be reflected

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Trial number

H
(k
)

Dual-rate
Single-rate

Dual-rate
Single-rate

10 15 20
0

0.1

0.2

0.3

0.4

Trial number

H
(k
)

Figure 3: The RMS performance for Scenario 1.
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Figure 4: The single-rate input 3D curve for Scenario 1.

clearly in Figure 3, where the values of RMS for different
trials are presented. Obviously, compared with the single-
rate sampling controller, the dual-rate sampling controller
has the advantage of faster convergence which ensures the
reliable stability of the tank system. The effectiveness of the
proposed scheme is thus illustrated under both normal and
fault scenario.

Scenario 2 (nonrepetitive disturbance with a time-varying
fault). In this scenario, the operation valve is partly blocked
by a time-varying fault in tank system (9), and the time-
varying fault matrix Γ = 0.8 + 0.2 sin(0.2𝑛) is used here. In
this case, nonrepetitive disturbance exists, and 𝑤(𝑛ℎ, 𝑘) =0.1 sin(0.01𝑘) and 𝜔(𝑛𝑇, 𝑘 + 1) ̸= 0. Solving the LMI of (68)
inTheorem 8 also gives the single-rate and dual-rate ILC law
matrices:

𝐾1 = [−0.6204 −0.6236]𝑇 ,
𝐾2 = [0.3003 0.2233]𝑇 . (79)
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Figure 5: The single-rate output curve for Scenario 1.
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Figure 6: The dual-rate input 3D curve for Scenario 1.
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Figure 7: The dual-rate output curve for Scenario 1.

𝜁 = 0.6662, and
𝐾1
= [−0.4622 −0.3833 −0.3392 −0.2128 0.0507 0.0811]𝑇 ,
𝐾2 = [0.5141 0.3844 0.3072 0.1231 −0.2366 −0.0405]𝑇 .

(80)
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Figure 8: The single-rate tracking error 3D curve for Scenario 1.
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Figure 9: The dual-rate tracking error 3D curve for Scenario 1.
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Figure 10: The RMS performance for Scenario 2.

𝜁 = 0.5205, and the 𝐻∞ disturbance attenuation is 𝛾 =1.3244 and 𝛾 = 1.1040, respectively. The simulation results
are shown in Figures 10–16. From these figures, the robustness
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Figure 11: The single-rate input 3D curve for Scenario 2.
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Figure 12: The single-rate output curve for Scenario 2.
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Figure 13: The dual-rate input 3D curve for Scenario 2.

and convergence of the designed control system along both
sampling number and trial directions can be guaranteed even
with a certain degree of nonrepetitive external disturbance.
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Figure 14: The dual-rate output curve for Scenario 2.
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Figure 15: The single-rate tracking error 3D curve for Scenario 2.
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Figure 16: The dual-rate tracking error 3D curve for Scenario 2.

7. Conclusion and Future Works

This paper deals with the iterative learning fault-tolerant
tracking control problem for a class of linear dual-rate
sampling processes with actuator fault and output time delay.
Firstly, the dual-rate sampling system is described in slow
sampling rate model by lifting technology. Then we designed
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the output information based robust fault-tolerant ILC law
based on the repetitive process theory. Sufficient conditions
for the ILC law with stability and disturbance attenuation
performance are given in terms of the corresponding linear
matrix inequalities. Finally, the control simulation of the two
noninteracting flow tanks in series verifies the effectiveness
of this design method.

This proposed approach is not applicable for nonuniform
sampling processes now; the uncertainty and time variation
of the refresh time interval in nonuniform sampling processes
make the system modeling very complicated by lifting tech-
nology. Moreover, the extension to multiple-input multiple-
output systems may also cause computation burden issue
when using expanding vector to design ILC law. But there
are still many areas to which further research could profitably
be directed. Possible further research directions include the
optimization of 𝐻∞ robust performance 𝛾. Another area is
to use the proposed control algorithm to deal with dual-
rate sampling processes with external bounded disturbances
in both the state and output sides. Extending the theory to
simultaneously dispose state delay and input delay is also a
possible topic for future work.
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