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Aims.e purpose of this study was to comparemethods for handlingmissing data in analysis of the National Tuberculosis Surveil-
lance System of the Centers for Disease Control and Prevention. Because of the high rate of missing human immunode�ciency
virus (HIV) infection status in this dataset, we used multiple imputation methods to minimize the bias that may result from less
sophisticated methods. Methods. We compared analysis based on multiple imputation methods with analysis based on deleting
subjects with missing covariate data from regression analysis (case exclusion), and determined whether the use of increasing
numbers of imputed datasets would lead to changes in the estimated association between isoniazid resistance and death. Results.
Following multiple imputation, the odds ratio for initial isoniazid resistance and death was 2.07 (95% CI 1.30, 3.29); with case
exclusion, this odds ratio decreased to 1.53 (95% CI 0.83, 2.83). e use of more than 5 imputed datasets did not substantively
change the results. Conclusions. Our experience with the National Tuberculosis Surveillance System dataset supports the use of
multiple imputation methods in epidemiologic analysis, but also demonstrates that close attention should be paid to the potential
impact of missing covariates at each step of the analysis.

1. Background

Missing data is a common problem in epidemiologic
research. Analytic techniques used in multivariable analysis,
such as regression models, rely on methods that exclude
cases with missing covariate data from analysis. is missing
data approach has important limitations. First, case exclusion
will always lead to loss of statistical power. Second, case
exclusion will introduce bias into the analysis if excluded
subjects differ from included subjects inways that are relevant
for the parameter of interest [1]. e potential for bias using
case exclusion depends on the mechanism for missingness.
For missing-at-random (MAR) data, the missingness of a
particular observation depends only on observed covariates,

and for missing-not-at-random (MNAR) data, missingness
may depend on both observed and unobserved covariates.
For eitherMAR orMNAR data, case exclusion will introduce
bias, as subjects excluded from analysis will differ from
subjects included in analysis according to either themeasured
or unmeasured covariates. In contrast, when data is missing-
completely-at-random (MCAR), missingness can be consid-
ered a random deletion of observations without respect to
measured or unmeasured covariates, and case exclusion does
not lead to the introduction of bias (only the loss of statistical
power) [2].

Multiple imputation methods were developed by Rubin
to account for nonresponse bias in surveys [3], and later
modi�ed by Schafer [4].e goal of multiple imputation is to
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T 1: Predictor variables included in the imputation model, with percent of nonmissing observations and 𝑃𝑃 for association with the
outcome.

Variable No. evaluated (%)
𝑁𝑁 𝑁 𝑁𝑁𝑁𝑁

𝑃𝑃

Isoniazid resistance 1614 (100) 0.02
Age categories 1614 (100) <0.01
Race 1614 (100) <0.01
Occupation 1614 (100) <0.01
Gender 1614 (100) <0.01
HIV positive 849 (53) <0.01
Injecting drug use within the previous year 1367 (85) <0.01
Drug use (noninjecting) within the previous year 1351 (84) <0.01
Alcohol use within the previous year 1340 (83) <0.01
Homeless within the previous year 1500 (93) 0.18
Abnormal chest radiograph 1525 (94) <0.01
Resident of a correctional facility at diagnosis 1604 (99) 0.03
Foreign birth 1600 (99) <0.01
Positive tuberculin skin test 953 (59) <0.01
Positive AFB smear from a nonsputum specimen 1419 (88) 0.12

create several plausible values for the missing covariates, and
consequently several complete datasets, with the imputed val-
ues generated from observed relationships between variables.
e investigator determines which variables will be used to
create the imputed datasets, speci�es the mathematical rela-
tionships between these variables (the imputation model),
and chooses the number of imputed datasets that will be
created. All predictors of missingness should be included in
the imputationmodel in order to satisfy theMARassumption
[4]. Once these complete datasets are generated, analysis is
performed on each dataset according to the hypothesis being
tested. e parameter estimates that are obtained from each
imputed dataset are combined into a single-point estimate,
and its associated error re�ects uncertainty not only within
each imputed dataset, but also between the imputed datasets
[5].

Recently, we used multiple imputation methods in our
analysis of the association of initial isoniazid resistance with
death during therapy among cases of tuberculous meningitis
(TBM) in the USA between 1993 and 2005, analyzing data
collected by the National Tuberculosis Surveillance System
(NTSS) [6]. Among 1614 patients with positive cerebrospinal
�uid cultures for M. tuberculosis, we observed a signi�cant
association between initial isoniazid resistance and death
during therapy (OR 2.07, 95% CI 1.30, 3.29). We limited our
analysis to patients with a known result from initial isoniazid
susceptibility testing, and therefore isoniazid resistance or
susceptibility was completely known for all patients in the
study. However, other clinical and demographic factors that
were evaluated as potential confounders of the relationship
between isoniazid resistance and death during therapy had
varying degrees of missingness, as shown in Table 1.

e human immunode�ciency virus (HIV) status of the
case patient was unknown in 47% of observations. HIV status

is included in the national Report of a Veri�ed Case of Tuber-
culosis (RVCT), with options including “positive,” “negative,”
“indeterminate,” “test done, results unknown,” “not offered,”
“refused,” and “unknown”; cases may also be submitted with
missing data reported (i.e., no HIV variable response option
selected). For cases reported from California during the time
period of the study, HIV status was reported as missing
for all cases. Matching was then performed through 2004
between the state tuberculosis surveillance dataset and the
state acquired immunode�ciency syndrome (AIDS) registry,
which only includes HIV-positive patients with a clinical
diagnosis of AIDS. Consequently, this matching procedure
did not identify patients who tested negative for HIV or HIV-
positive patients without a clinical diagnosis of AIDS.

We sought to further explore the methodology of the
multiple imputation in our analysis of the NTSS data. Our
goal was to compare multiple imputation with case exclusion
and to determine whether the use of increasing numbers of
imputed datasets would have changed the inference regarding
the association between initial isoniazid resistance and death
during antituberculosis therapy.

2. Methods

2.1. Setting. e NTSS has collected aggregate tuberculosis
incidence data in the USA since 1953 and individual-level
data (including antituberculosis drug susceptibilities) since
1993 [7]. In order to be included in the national count, a case
of tuberculosis must satisfy a standardized case de�nition.
We examined all tuberculosis cases reported from January 1,
1993, through December 31, 2005, during which time drug-
susceptibility and risk factor data were available for reported
cases. Institutional review board approval was obtained from
the University of Pennsylvania prior to the beginning of the
study.
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2.2. Subjects. Cases of tuberculosis are reported to the Cen-
ters for Disease Control and Prevention by state and local
health agencies, using the RVCT.is report includes clinical
and demographic information about the patient, as well as
the anatomic sites of any positive mycobacterial cultures
or smears. We selected subjects for inclusion in the cohort
if there was a report of a meningeal site of involvement,
as either a primary or secondary site of infection, with a
positive culture for M. tuberculosis from cerebrospinal �uid.
We limited enrollment to patients who were alive at diagnosis
and who initiated antituberculosis therapy.

2.3. Analysis. e goal of our analysis was to measure the
association of initial isoniazid resistance with death during
therapy in patients with tuberculous meningitis. We �rst
calculated the unadjusted association of initial isoniazid
resistance with the outcome of death during therapy.We used
a multivariable logistic regression model to simultaneously
adjust for multiple confounders.

ere are two general mathematical approaches for
model-based multiple imputation: either based on the mul-
tivariate normal distribution [4] or fully conditional speci�-
cation [8]. In a simulation study, both approaches produced
similar results and were less biased than complete exclusion
[9].We employed themultiple imputation procedure for Stata
written by Royston (ice) [10], which uses the approach of
fully conditional speci�cation (also known as the chained
equation or regression switching approach). e imputation
model included the primary exposure (isoniazid resistance),
the outcome variable (death during antituberculosis therapy),
and all potential confounding variables identi�ed based on
univariable associations with the outcome (based on𝑃𝑃𝑃𝑃𝑃𝑃𝑃,
see Table 1). Exclusion of the outcome variable in imputation
models may lead to biased estimates of regression coefficients
[11]. Because age was not normally distributed, a categorical
age variable was used in analysis.

We chose to generate 5 imputed datasets based on simula-
tion studies demonstrating little gain in statistical power for
higher numbers of imputations [3]. e 5 imputed datasets
were combined for analysis according to Rubin’s method
[3], using the mim procedure written by Royston et al. [12],
generating single estimates for the parameters of interest.
ese parameter estimates had associated error that re�ected
the degree of missingness in the original dataset.

We evaluated variables in the logistic regression model
based on their ability to change the observed associa-
tion between initial isoniazid resistance and death dur-
ing therapy. A confounder was de�ned as a variable that
changed the association of interest by greater than 15%when
included in the model.e �nal multivariable logistic regres-
sion model included the following terms: isoniazid resis-
tance, age, race/ethnicity, gender, and HIV status. Age and
race/ethnicity were confounders of the association between
isoniazid resistance and death. HIV status and gender were
not confounders but remained in the model based on our a
priori clinical reasoning. Of the four covariates that remained
in the �nal logistic regression model, only HIV status had
missing observations that had been imputed in the datasets.

T 2: Logistic regression models for death: multiple imputation
versus case exclusion.

Term Multiple imputation Case exclusion
Isoniazid resistance 2.07 (1.30, 3.29) 1.53 (0.83, 2.83)
Male gender 1.20 (0.88, 1.63) 1.16 (0.81, 1.66)
Age categories

Age ≤ 1 0.076 (0.008, 0.69) +

1 𝑃 Age ≤ 4 0.23 (0.067, 0.82) 0.61 (0.13, 2.79)
4 𝑃 Age ≤ 14 0.38 (0.102, 1.41) +

14 𝑃 Age ≤ 24 1.22 (0.64, 2.34) 1.44 (0.71, 2.93)
24 𝑃 Age ≤ 34 Reference
34 𝑃 Age ≤ 44 1.30 (0.87, 1.92) 1.11 (0.69, 1.78)
44 𝑃 Age ≤ 54 1.97 (1.23, 3.15) 1.87 (1.12, 3.13)
54 𝑃 Age ≤ 64 1.83 (1.09, 3.09) 1.13 (0.57, 2.23)
64 𝑃 Age ≤ 74 4.36 (2.48, 7.67) 5.85 (2.80, 12.19)
Age > 74 6.90 (3.85, 12.38) 2.99 (1.25, 7.12)

Race categories
White Reference
Black 1.44 (1.01, 2.06) 1.10 (0.69, 1.76)
Hispanic 1.21 (0.74, 1.99) 1.19 (0.71, 1.98)
Asian∗ 0.64 (0.30, 1.35) 0.62 (0.30, 1.28)
American Indian 9.07 (2.65, 31.02) 28.5 (3.12, 260.2)
Other∗∗ 0.85 (0.20, 3.52) 0.81 (0.15, 4.43)

HIV positive 3.57 (1.87, 6.82) 4.58 (3.13, 6.71)
∗
Includes Native Hawaiian.

∗∗Includes multiple race and unknown categories.
+ere were no deaths among patients with known HIV status in this age
group.

In the analyses presented here, we compare the inference
obtained for the association between isoniazid resistance and
death using multiple imputation with inferences obtained
based on alternate approaches: (1) case exclusion and (2)
varying the number of imputed datasets between 2 and 10.

3. Results

3.1. Multiple Imputation Compared with Case Exclusion.
Aer excluding 47% of patients with missing HIV status,
we repeated the regression model (including isoniazid resis-
tance, age, race/ethnicity, gender, and HIV status) with
the subset of subjects with HIV status reported as either
“positive” or “negative” (case exclusion). We compared esti-
mates of association for initial isoniazid resistance and other
variables obtained aer case exclusion with the estimates
obtained aer multiple imputation. We obtained notably
different estimates for the association of the older age cate-
gories with death during therapy, as well as the association
between initial isoniazid resistance and death during therapy
(Table 2). Using case-exclusion approach, the association
between isoniazid resistance and death was 1.53 (0.83, 2.83),
while the association yielded by the multiple imputation
approach was 2.07 (1.30, 3.29).

To explore why the case exclusion analysis moved the
estimate of the OR for isoniazid resistance and death during
therapy towards the null hypothesis, we examined the age



4 Epidemiology Research International

0

50

100

150

200

250

300

350

400

N
u

m
b

er
 o

f 
p

at
ie

n
ts

<
1

1
 t

o
<

4

4
 t

o
<

1
4

1
4

 t
o
<

2
4

2
4

 t
o
<

3
4

3
4

 t
o
<

4
4

4
4

 t
o
<

5
4

5
4

 t
o
<

6
4

6
4

 t
o
<

7
4

7
5

+

Age categories

HIV positive

HIV negative

HIV status unknown

F 1: Missingness of HIV infection status with respect to age
among TBM patients in the USA, from 1993 to 2005. “HIV status
unknown” includes subjects withHIV status reported to be “indeter-
minate,” “test done and results unknown,” “not offered,” “refused,”
and “unknown.” is category also includes subjects with the HIV
status response item le blank.

distributions of HIV positive subjects, HIV negative subjects,
and subjects with missing HIV status (Figure 1). Missing
HIV status was much more common in patients at the
extremes of age. Exclusion of patients with missing HIV
status preferentially excluded patients in the youngest and
oldest age categories. Previously, we found that advancing
age was a signi�cant confounder of the association between
initial isoniazid resistance and death during therapy. Older
patients were more likely to die during therapy but less
likely to be infected with an isoniazid resistant strain. As a
result, the OR for initial isoniazid resistance and death was
1.61 (95% CI 1.08, 2.41) without adjusting for age and was
1.81 (95% CI 1.19, 2.75) aer adjusting for age. erefore,
differential exclusion of patients at the extremes of age likely
decreased the ability of the multivariable model to adjust
for the confounding effect of age, masking the association
between isoniazid resistance and death during therapy.

3.2. Varying the Number of Imputations between 2 and 10.
Next, we examined whether the number of imputations
in�uenced the observed association between initial isoniazid
resistance and death during therapy. In the original analysis,
we chose to use 5 imputed datasets based on simulation stud-
ies showing little gain of efficiency with additional rounds of
imputation [3]. However, the optimal number of imputations
may depend on properties of the particular dataset, as well as
speci�c properties of the association of interest.

To further evaluate the optimal number of imputations to
use in the study of isoniazid resistance and death, we repeated
the analysis aer varying the number of imputations from 2
to 10. We examined the error associated with the coefficient
for initial isoniazid resistance in the logistic regressionmodel,
as well as the error associated with the coefficient for HIV
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F 2: Total errors for odds ratios for isoniazid resistance
and HIV in adjusted model (Adjusting for age, race/ethnicity, and
gender), with increasing numbers of imputed datasets.

infection in the same adjusted model, separating the total
error into its within- and between-imputation components.

e results of this analysis are shown in Table 3. e
error associated with the isoniazid-resistant coefficient did
not require more than 5 imputed datasets to reach a plateau.
As a result, the use of more than 5 imputations did not lead
to an increase in precision for the estimate of the association
of initial isoniazid resistance with death during therapy.
In contrast, the error associated with the HIV coefficient
continued to decrease with more than 5 imputed datasets,
with more narrow con�dence intervals as the number of
imputed datasets approached 10 (Figure 2).

4. Discussion

Multiple imputation offers important advantages over other
methods for handling missing data in epidemiologic studies,
in particular with regards to its �exibility andwide applicabil-
ity [1]. However, widespread use is limited by its theoretical
complexity and lack of familiarity among audiences outside
of statistical disciplines [13]. We have presented in detail
our experiences in order to facilitate continued use of these
techniques in the future.

We designed the imputation model in the context of
a speci�c research question, with particular concern for
the potential impact of missing HIV status. e match-
ing mechanism to obtain HIV status of tuberculosis cases
reported from California violates the “missing-at-random”
status, since missingness will partly depend on unobserved
covariates (the value of the HIV test itself). However, we
previously demonstrated that imputing HIV status for all
California cases, rather than relying on the HIV status from
matching with the AI�S registry, did not in�uence the
estimated association between isoniazid resistance and death
[6].
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T 3: Errors in coefficient estimates for increasing numbers of imputed datasets.

Number of imputed datasets
2 3 4 5 6 7 8 9 10

Coefficient for isoniazid resistance 0.71 0.72 0.72 0.73 0.72 0.73 0.73 0.74 0.74
Within-imputation error 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
Between-imputation error 0.11 0.08 0.07 0.06 0.05 0.05 0.05 0.05 0.05

Coefficient for HIV infection 1.44 1.33 1.29 1.27 1.25 1.24 1.23 1.24 1.23
Within-imputation error 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
Between-imputation error 0.31 0.28 0.24 0.22 0.20 0.19 0.17 0.16 0.16

Because of the high proportion of tuberculosis cases with
missing HIV status, we were concerned about the poten-
tial for bias with less sophisticated methods, such as the
missing indicator method. Although frequently employed
as a missing data approach, missing data categories are
less optimal than imputation since they may be difficult to
interpret as meaningful parameters, may produce large and
unstable estimates, and in some situations, may introduce
bias [14]. In our analysis, the use of a missing data category
for HIV status did not signi�cantly change the relationship
between isoniazid resistance and death during therapy that
was obtained by the multiple imputation approach (data not
shown).

In contrast, we observed signi�cant bias when we com-
pared the results obtained frommultiple imputation with the
case-exclusion method that dropped subjects without known
positive or negative HIV status from the analysis. Although
HIV itself was not a confounder of the relationship between
initial isoniazid resistance and death during therapy (unlike
age and race/ethnicity), missing HIV status was predomi-
nantly seen in subjects at the extremes of age. Because age
was a signi�cant confounder of this relationship, exclusion
of patients with missing HIV status led to an estimate of the
OR for initial isoniazid resistance and death that was biased
towards the null hypothesis.

e missing data problems that we addressed were
primarily a result of our a priori decision to allow HIV status
to remain in the model, regardless of its confounding effect
on the relationship between isoniazid resistance and death.
ese challenges illustrate the importance of considering the
effects of missing data when making a priori decisions for
multivariable model selection. While we allowed HIV status
to remain in the �nalmultivariablemodel for clinical reasons,
HIV status did not signi�cantly in�uence the observed
relationship between initial isoniazid resistance and death
during therapy. e other variables in the �nal model were
completely known and did not differ from one imputed
data set to the next. For this reason, the use of increasing
numbers of imputations did not lead to a decrease in the total
error associated with the regression coefficient for isoniazid
resistance, sincemost of the total error for this coefficient was
within-imputation error, rather than between-imputation
error. In contrast, the error associated with the coefficient
for HIV status continued to decrease beyond 5 imputed
datasets. If HIV status had been a signi�cant confounder of

the association between initial isoniazid resistance and death
during therapy, we would have expected to see both errors
continue to fall as we used increasing numbers of imputed
datasets.

In summary, we found the approach of multiple impu-
tation to be a useful method for dealing with the missing
data problem in the NTSS of the USA, overcoming the bias
inherent to case exclusion. e size of the dataset and com-
pleteness of reporting for variables such as age, gender, and
race likely enhanced the robustness of our �ndings in these
sensitivity analyses. While the use of more than 5 rounds of
imputation did not lead to a more precise estimate for the
association of initial isoniazid resistance and death during
antituberculosis therapy, our �ndings would likely have been
different if HIV status had exerted a stronger confounding
effect on this relationship.While our analysis supports the use
of multiple imputation methods in epidemiologic analysis,
it also demonstrates that close attention should be paid to
the potential impact of missing covariates at each step of the
analysis.
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