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A new nonconforming mixed finite element scheme for the second-order elliptic problem is proposed based on a new mixed
variational form. It has the lowest degrees of freedom on rectangular meshes. The superclose property is proven by employing
integral identity technique.Then global superconvergence result is derived through interpolation postprocessing operators. At last,
some numerical experiments are carried out to verify the theoretical analysis.

1. Introduction

Mixed finite element method (MFEM) is an important
branch of FEMs and has been used widely in numerical
computation of practical problems. A lot of studies on
this aspect have been devoted to the second-order elliptic
problems [1–5], inwhich two approximation spaces ofMFEM
should satisfy the famous B-B condition [6]. However, since
the variable 𝑢 and flux 𝜓 = ∇𝑢 belong to 𝐿

2
(Ω) and

𝐻(div, Ω), respectively, it is not easy to construct a stable
MFE space pair. In order to circumvent or ameliorate this
deficiency, many approaches have been proposed, such as
the least squares FEM [7], stabilization FEM [8], and 𝐻

1-
Galerkin FEM [9]. Recently, [10] presented a new MFEM, in
which B-B condition is automatically satisfied when𝑀

ℎ
and

𝐻
ℎ
meet a relation of inclusion; that is, ∇𝑀

ℎ
⊂ 𝐻
ℎ
, where

𝑀
ℎ
and𝐻

ℎ
are finite element approximation spaces of 𝑢 and

flux 𝜓, respectively. This advantage makes the construction
of stable MFE space pair extremely simple and convenient. A
family of triangular and rectangular conforming MFE space
pairs with lower degrees of freedom is constructed in [10], in
which the total degrees of freedom of first-order and second-
order MFE schemes are about 5𝑁

𝑝
and 16𝑁

𝑝
, respectively;

herein𝑁
𝑝
denotes the number of nodal points in subdivision.

Later, [11] derived the similar results with [10] for conforming
MFEM and gave a numerical example.

In this paper, motivated by the idea of [10, 11], we first
construct a new nonconforming MFEM (NMFEM). The
original variable 𝑢 is approximated by the constrained 𝑄

rot
1

element space [12] and the flux 𝜓 by piecewise constant
vectors space, respectively. Note that the total degrees of
freedom of the NMFEM are only about 3𝑁

𝑝
, the lowest on

rectangular meshes. We prove that it satisfies B-B condition.
Then by the use of integral identity technique, we derive the
superclose property for 𝑢 in energy norm and flux 𝜓 in 𝐿

2

norm. Furthermore, the global superconvergence result with
orderO(ℎ2) is obtained through interpolation postprocessing
operators. Finally, some numerical results are provided to
verify the theoretical analysis. It is observed that, compared
with FEM using 4-node quadrilateral (FEM-Q4) and MFEM
(𝑢 and flux 𝜓 are approximated by piecewise constants and
the Raviart-Thomas element, resp.), NMFEM behaves well
and has higher rates than MFEM, and it has almost the same
rate as FEM-Q4 for 𝑢 in 𝐿2 norm, but a higher rate than FEM-
Q4 for 𝑢 in energy norm. Moreover, NMFEM is effective and
accurate for the diffusion problem studied in [13].

The remainder of this paper is organized as follows. In
Section 2, we introduce NMFEM and derive the superclose
property and superconvergence results. In Section 3, we carry
out some numerical experiments to show the performance of
NMFEM.
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We will use standard notations for the Sobolev spaces
𝐻
𝑚
(Ω) with norm ‖ ⋅ ‖

𝑚
and seminorm | ⋅ |

𝑚
, 𝐻𝑚(𝐾) with

norm ‖ ⋅ ‖
𝑚,𝐾

and seminorm | ⋅ |
𝑚,𝐾

, where 𝑚 > 0 is an
integer. Besides, let ‖ ⋅ ‖

0
and ‖ ⋅ ‖

0,𝐾
be the 𝐿2(Ω) norm and

𝐿
2
(𝐾) norm, respectively. Throughout the paper, 𝐶 denotes a

positive constant independent of the mesh parameter ℎ and
may be different at each appearance.

2. Superconvergence Analysis for NMFEM

Consider the following elliptic problem:

−Δ𝑢 = 𝑓, in Ω,

𝑢 = 0, on 𝜕Ω,

(1)

where Ω ⊂ 𝑅
2 is a bounded convex polygon domain, 𝑓 ∈

𝐿
2
(Ω).
Let 𝜓 = ∇𝑢, and then problem (1) is equivalent to the

following equations:

𝜓 − ∇𝑢 = 0, in Ω,

− div𝜓 = 𝑓, in Ω,

𝑢 = 0, on 𝜕Ω.

(2)

We adopt a new mixed variational form in [10] of problem
(2). Find (𝜓, 𝑢) ∈ 𝐻 ×𝑀 such that

𝑎 (𝜓, 𝜑) + 𝑏 (𝜑, 𝑢) = 0, ∀𝜑 ∈ 𝐻,

𝑏 (𝜓, V) = 𝐺 (V) , ∀V ∈ 𝑀,

(3)

where𝐻 = (𝐿
2
(Ω))
2,𝑀 = 𝐻

1

0
(Ω), 𝑎(𝜓, 𝜑) = ∫

Ω
𝜓 ⋅ 𝜑 𝑑𝑥 𝑑𝑦,

𝑏(𝜑, V) = − ∫
Ω
𝜑 ⋅ ∇V 𝑑𝑥 𝑑𝑦, 𝐺(V) = − ∫

Ω
𝑓V 𝑑𝑥 𝑑𝑦.

Obviously, 𝑎(⋅, ⋅) and 𝑏(⋅, ⋅) are continuous bilinear func-
tionals, 𝐺(⋅) is a continuous linear functional, and for all 𝜑 ∈

𝐻, 𝑎(𝜑, 𝜑) = ∫
Ω
𝜑 ⋅ 𝜑 𝑑𝑥 𝑑𝑦 = ‖𝜑‖

2

0
. Moreover, for V ∈ 𝑀, we

have ∇V ∈ 𝐻. So there exists a constant 𝛽 > 0 such that

sup
𝜑 ∈ 𝐻

𝑏 (𝜑, V)




𝜑



0

≥

𝑏 (−∇V, V)

‖−∇V‖0
= |V|1 ≥ 𝛽‖V‖1, (4)

that is, the B-B condition is satisfied, and therefore (3) has a
unique solution (𝜓, 𝑢).

Let𝑄((𝜓, 𝑢), (𝜑, V)) = 𝑎(𝜓, 𝜑)+𝑏(𝜑, 𝑢)−𝑏(𝜓, V), and then
(3) can be written as

𝑄 ((𝜓, 𝑢) , (𝜑, V)) = −𝐺 (V) , ∀𝜑 ∈ 𝐻, V ∈ 𝑀. (5)

Let 𝑇
ℎ
be a rectangular partition of the domain Ω. For a

given element 𝐾 ∈ 𝑇
ℎ
, its four vertices are denoted by 𝑎

1
=

(𝑥
𝐾
−ℎ
𝑥
, 𝑦
𝐾
−ℎ
𝑦
), 𝑎
2
= (𝑥
𝐾
+ℎ
𝑥
, 𝑦
𝐾
−ℎ
𝑦
), 𝑎
3
= (𝑥
𝐾
+ℎ
𝑥
, 𝑦
𝐾
+

ℎ
𝑦
), 𝑎
4
= (𝑥
𝐾
−ℎ
𝑥
, 𝑦
𝐾
+ℎ
𝑦
), and four edges by 𝑙

𝑖
= 𝑎
𝑖
𝑎
𝑖+1

(𝑖 =

1, 2, 3, 4 mod 4), ℎ
𝐾
= max

𝐾∈𝑇ℎ
{ℎ
𝑥
, ℎ
𝑦
}, ℎ = max

𝐾∈𝑇ℎ
ℎ
𝐾
. Let

�̂� = [−1, 1] × [−1, 1] be the reference element with nodes
𝑎
1
= (−1, −1), 𝑎

2
= (1, −1), 𝑎

3
= (1, 1), 𝑎

4
= (−1, 1) and edges

̂
𝑙
𝑖
= 𝑎
𝑖
𝑎
𝑖+1

(𝑖 = 1, 2, 3, 4 mod 4).

Define the affine mapping 𝐹 : �̂� → 𝐾 by

𝑥 = 𝑥
𝐾
+ ℎ
𝑥
𝜉,

𝑦 = 𝑥
𝐾
+ ℎ
𝑦
𝜂.

(6)

Let𝑃
1
(�̂�) be the space of polynomialswith degrees≤1defined

on �̂�, and then the constrained 𝑄
rot
1

element space CRℎ
0
is

defined by [12]:

CRℎ
0
= {V; V|𝐾 = V̂ ∘ 𝐹−1, V̂ ∈ 𝑃

1
(�̂�) ,

∫

𝑙

[V] 𝑑𝑠 = 0, 𝑙 ⊂ 𝜕𝐾, ∀𝐾 ∈ 𝑇
ℎ
} ,

(7)

where [V] denotes the jump value of V across the boundary 𝑙,
and [V] = V if 𝑙 ⊂ 𝜕Ω.

Let𝑁𝑉
𝑖
denote the number of interior nodes. It has been

proven in [12] that dim(CRℎ
0
) = 𝑁

𝑉

𝑖
and𝑃
1
(�̂�) = span{ ̂𝜙

𝑖
, 𝑖 =

1 ∼ 4}, where ̂
𝜙
𝑖
are defined associated with nodes 𝑎

𝑖
(𝑖 =

1, 2, 3, 4) of �̂� as

̂
𝜙
1
=

1

4

(1 − 𝜉 − 𝜂) ,
̂
𝜙
2
=

1

4

(1 + 𝜉 − 𝜂) ,

̂
𝜙
3
=

1

4

(1 + 𝜉 + 𝜂) ,
̂
𝜙
4
=

1

4

(1 − 𝜉 + 𝜂) .

(8)

We choose the following FE spaces 𝑀
ℎ
and 𝐻

ℎ
to

approximate𝑀 and𝐻, respectively:

𝑀
ℎ
= CRℎ
0
,

𝐻
ℎ
= {𝑞 = (𝑞

1
, 𝑞
2
) ; 𝑞




𝐾

∈ (𝑄
0
(𝐾))
2

, ∀𝐾 ∈ 𝑇
ℎ
} ,

(9)

where 𝑄
0
(𝐾) is the space of constants on 𝐾. Obviously, the

total degree of freedoms of the nonconforming MFE space
pair𝐻

ℎ
×𝑀
ℎ
is 3𝑁
𝑝
, and ‖ ⋅ ‖

ℎ
= (∑
𝐾∈𝑇ℎ

| ⋅ |
2

1,𝐾
)
1/2 is a norm

over𝑀
ℎ
.

Then the MFE approximation of problem (3) is to find
(𝜓
ℎ
, 𝑢
ℎ
) ∈ 𝐻

ℎ
×𝑀
ℎ
such that

𝑎 (𝜓
ℎ
, 𝜑
ℎ
) + 𝑏
ℎ
(𝜑
ℎ
, 𝑢
ℎ
) = 0, ∀𝜑

ℎ
∈ 𝐻
ℎ
,

𝑏
ℎ
(𝜓
ℎ
, V
ℎ
) = 𝐺 (V

ℎ
) , ∀V

ℎ
∈ 𝑀
ℎ
,

(10)

where 𝑏
ℎ
(𝜑
ℎ
, V
ℎ
) = −∑

𝐾∈𝑇ℎ
∫
𝐾
𝜑
ℎ
⋅ ∇V
ℎ
𝑑𝑥 𝑑𝑦.

For V
ℎ
∈ 𝑀
ℎ
, from the affinemapping𝐹 and the definition

of𝑀
ℎ
, we can get V

ℎ
|
𝐾
∈ 𝑃
1
(𝐾), and then ∇V

ℎ
|
𝐾
∈ (𝑄
0
(𝐾))
2,

that is, ∇V
ℎ
∈ 𝐻
ℎ
. Thus

sup
𝜑ℎ ∈ 𝐻ℎ

𝑏
ℎ
(𝜑
ℎ
, V
ℎ
)





𝜑
ℎ




0

≥

𝑏
ℎ
(−∇V
ℎ
, V
ℎ
)





−∇V
ℎ




0

=

∑
𝐾∈𝑇ℎ

∫
𝐾
∇V
ℎ
⋅ ∇V
ℎ
𝑑𝑥 𝑑𝑦





−∇V
ℎ




0

=





V
ℎ






2

ℎ





V
ℎ




ℎ

=




V
ℎ




ℎ
,

(11)

that is, the discrete B-B condition holds, and (10) has a unique
solution (𝜓

ℎ
, 𝑢
ℎ
).

For all (𝑞
ℎ
, 𝜆
ℎ
) ∈ 𝐻

ℎ
× 𝑀
ℎ
, let 𝑄

ℎ
((𝑞
ℎ
, 𝜆
ℎ
), (𝜑
ℎ
, V
ℎ
)) =

𝑎(𝑞
ℎ
, 𝜑
ℎ
) + 𝑏
ℎ
(𝜑
ℎ
, 𝜆
ℎ
) − 𝑏
ℎ
(𝑞
ℎ
, V
ℎ
), and then we can prove the

following two important lemmas.
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Lemma 1. For all (𝑞
ℎ
, 𝜆
ℎ
) ∈ 𝐻
ℎ
×𝑀
ℎ
, the following inequality

holds:

sup
(𝜑ℎ ,Vℎ)∈𝐻ℎ× 𝑀ℎ

𝑄
ℎ
((𝑞
ℎ
, 𝜆
ℎ
) , (𝜑
ℎ
, V
ℎ
))





𝜑
ℎ




0
+




V
ℎ




ℎ

≥ 𝐶 (




𝑞
ℎ




0
+




𝜆
ℎ




ℎ
) .

(12)

Proof. In order to prove (12), we will construct a pair
(𝜑
ℎ
, V
ℎ
) ∈ 𝐻
ℎ
×𝑀
ℎ
satisfying

𝑄
ℎ
((𝑞
ℎ
, 𝜆
ℎ
) , (𝜑
ℎ
, V
ℎ
)) ≥ 𝐶 (





𝑞
ℎ




0
+




𝜆
ℎ




ℎ
) (




𝜑
ℎ




0
+




V
ℎ




ℎ
) .

(13)

Obviously,

𝑄
ℎ
((𝑞
ℎ
, 𝜆
ℎ
) , (𝑞
ℎ
, 𝜆
ℎ
)) =





𝑞
ℎ






2

0
. (14)

On the other hand, for a given arbitrary but fixed 𝜆
ℎ
∈ 𝑀
ℎ
, by

the discrete B-B condition, there exists a 𝑤
ℎ
∈ 𝐻
ℎ
such that

∑

𝐾∈𝑇ℎ

∫

𝐾

𝑤
ℎ
⋅ ∇𝜆
ℎ
𝑑𝑥 𝑑𝑦 ≥





𝑤
ℎ




0





𝜆
ℎ




ℎ
,





𝑤
ℎ




0
=




𝜆
ℎ




ℎ
.

(15)

So, for 0 < 𝑟 < 1, there holds

𝑄
ℎ
((𝑞
ℎ
, 𝜆
ℎ
) , (−𝑟𝑤

ℎ
, 0))

= −𝑟𝑎 (𝑞
ℎ
, 𝑤
ℎ
) + 𝑟 ∑

𝐾∈𝑇ℎ

∫

𝐾

𝑤
ℎ
⋅ ∇𝜆
ℎ
𝑑𝑥 𝑑𝑦

≥ −𝑟




𝑞
ℎ




0





𝜆
ℎ




ℎ
+ 𝑟





𝜆
ℎ






2

ℎ

≥ −𝑟




𝑞
ℎ






2

0
+

3

4

𝑟




𝜆
ℎ






2

ℎ
.

(16)

As a result, setting (𝜑
ℎ
, V
ℎ
) = (𝑞

ℎ
− 𝑟𝑤
ℎ
, 𝜆
ℎ
), we have

𝑄
ℎ
((𝑞
ℎ
, 𝜆
ℎ
) , (𝑞
ℎ
− 𝑟𝑤
ℎ
, 𝜆
ℎ
))

= 𝑄
ℎ
((𝑞
ℎ
, 𝜆
ℎ
) , (𝑞
ℎ
, 𝜆
ℎ
))

+ 𝑄
ℎ
((𝑞
ℎ
, 𝜆
ℎ
) , (−𝑟𝑤

ℎ
, 0))

≥ (1 − 𝑟)




𝑞
ℎ






2

0
+

3

4

𝑟




𝜆
ℎ






2

ℎ
,

(17)

which implies that

𝑄
ℎ
((𝑞
ℎ
, 𝜆
ℎ
) , (𝑞
ℎ
− 𝑟𝑤
ℎ
, 𝜆
ℎ
))

≥ 𝐶
1
(




𝑞
ℎ






2

0
+




𝜆
ℎ






2

ℎ
)

≥

𝐶
1

2

(




𝑞
ℎ




0
+




𝜆
ℎ




ℎ
)
2

,

(18)

where 𝐶
1
= min{1 − 𝑟, (3/4)𝑟}.

Note that




𝑞
ℎ
− 𝑟𝑤
ℎ




0
+




𝜆
ℎ




ℎ

≤




𝑞
ℎ




0
+ 𝑟





𝑤
ℎ




0
+




𝜆
ℎ




ℎ

=




𝑞
ℎ




0
+ (1 + 𝑟)





𝜆
ℎ




ℎ

≤ (1 + 𝑟) (




𝑞
ℎ




0
+




𝜆
ℎ




ℎ
) ,

(19)

and we have
𝑄
ℎ
((𝑞
ℎ
, 𝜆
ℎ
) , (𝑞
ℎ
− 𝑟𝑤
ℎ
, 𝜆
ℎ
))

≥

𝐶
1

2 (1 + 𝑟)

(




𝑞
ℎ




0
+




𝜆
ℎ




ℎ
) (




𝑞
ℎ
− 𝑟𝑤
ℎ




0
+




𝜆
ℎ




ℎ
) ,

(20)

which follows the desired result (12).
Let Π

ℎ
and 𝐼
ℎ
denote the associated interpolation opera-

tors of 𝑀
ℎ
and conforming bilinear element space, respec-

tively. Let 𝜋
ℎ
be the 𝑄

rot
1

element interpolation operator
[14]; that is, for all V ∈ 𝐻

1
(𝐾), 𝜋

ℎ
V ∈ 𝑄

rot
1

satisfying
∫
𝑙
𝜋
ℎ
V 𝑑𝑠 = ∫

𝑙
V 𝑑𝑠, where 𝑄rot

1
= {V
ℎ
; V
ℎ
|
𝐾
∈ span{1, 𝑥, 𝑦, 𝑥2 −

𝑦
2
},∫
𝑙
[V
ℎ
]𝑑𝑠 = 0, 𝑙 ⊂ 𝜕𝐾}. It has been shown in [12] that, for

all V ∈ 𝐻
2
(𝐾), Π

ℎ
V = 𝜋

ℎ
𝐼
ℎ
V ∈ 𝑀

ℎ
because 𝑥𝑦 is a bubble

function for 𝜋
ℎ
.

Lemma 2. Assume that 𝑢 ∈ 𝐻3(Ω), 𝜓 ∈ (𝐻
2
(Ω))
2, we have

𝑏
ℎ
(𝜓 − 𝐽

ℎ
𝜓, V
ℎ
) = 0, ∀V

ℎ
∈ 𝑀
ℎ
, (21)

∑

𝐾∈𝑇ℎ

∫

𝐾

∇ (𝑢 − Π
ℎ
𝑢) ⋅ 𝜑
ℎ
𝑑𝑥 𝑑𝑦 ≤ 𝐶ℎ

2
‖𝑢‖3





𝜑
ℎ




0
, ∀𝜑

ℎ
∈ 𝐻
ℎ
,

(22)

∑

𝐾∈𝑇ℎ

∫

𝜕𝐾

𝜓 ⋅ 𝑛V
ℎ
𝑑𝑠 ≤ 𝐶ℎ

2



𝜓



2





V
ℎ




ℎ
, ∀V

ℎ
∈ 𝑀
ℎ
, (23)

where 𝐽
ℎ

: (𝐿
2
(Ω))
2

→ 𝐻
ℎ
is a interpolation operator

satisfying ∫
𝐾
(𝜓 − 𝐽

ℎ
𝜓)𝑑𝑥 𝑑𝑦 = 0.

Proof. Since (23) has been proven by one of the authors in
[15], we only need to prove (21) and (22).

In fact, because 𝜕V
ℎ
/𝜕𝑥 and 𝜕V

ℎ
/𝜕𝑦 are constants on each

𝐾 ∈ 𝑇
ℎ
, we have

𝑏
ℎ
(𝜓 − 𝐽

ℎ
𝜓, V
ℎ
) = − ∑

𝐾∈𝑇ℎ

∫

𝐾

(𝜓 − 𝐽
ℎ
𝜓) ⋅ ∇V

ℎ
𝑑𝑥 𝑑𝑦 = 0,

(24)

which is (21).
On the other hand, note that

∫

𝐾

∇ (𝑢 − Π
ℎ
𝑢) ⋅ 𝜑
ℎ
𝑑𝑥 𝑑𝑦

= ∫

𝐾

∇ (𝑢 − 𝐼
ℎ
𝑢) ⋅ 𝜑
ℎ
𝑑𝑥 𝑑𝑦

+ ∫

𝐾

∇ (𝐼
ℎ
𝑢 − Π

ℎ
𝑢) ⋅ 𝜑
ℎ
𝑑𝑥 𝑑𝑦.

(25)

Since 𝜑
ℎ
= (𝜑
1ℎ
, 𝜑
2ℎ
) is a constant vector on 𝐾 and Π

ℎ
V =

𝜋
ℎ
𝐼
ℎ
V, it follows from integration by parts that

∫

𝐾

∇ (𝐼
ℎ
𝑢 − Π

ℎ
𝑢) ⋅ 𝜑
ℎ
𝑑𝑥 𝑑𝑦

= 𝜑
ℎ




𝐾
∫

𝜕𝐾

(𝐼
ℎ
𝑢 − 𝜋
ℎ
𝐼
ℎ
𝑢) 𝑑𝑠

= 𝜑
ℎ




𝐾
∫

𝜕𝐾

(𝐼
ℎ
𝑢 − 𝐼
ℎ
𝑢) 𝑑𝑠 = 0.

(26)
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Furthermore, let 𝐹(𝑦) = (1/2)((𝑦 − 𝑦
𝐾
)
2
− ℎ
2

𝑦
). Note that

(𝑢−𝐼
ℎ
𝑢)(𝑥
𝐾
±ℎ
𝑥
, 𝑦
𝐾
±ℎ
𝑦
) = 0 and𝐹(𝑦

𝐾
±ℎ
𝑦
) = 0. Employing

integral identity technique [16], we have

∫

𝐾

𝜕 (𝑢 − 𝐼
ℎ
𝑢)

𝜕𝑥

𝜑
1ℎ
𝑑𝑥 𝑑𝑦

= 𝜑
1ℎ




𝐾
∫

𝐾

𝐹

(𝑦)

𝜕 (𝑢 − 𝐼
ℎ
𝑢)

𝜕𝑥

𝑑𝑥 𝑑𝑦

= 𝜑
1ℎ




𝐾
(𝐹

(𝑦
𝐾
+ ℎ
𝑦
)∫

𝑙3

𝜕 (𝑢 − 𝐼
ℎ
𝑢)

𝜕𝑥

𝑑𝑥

− 𝐹

(𝑦
𝐾
− ℎ
𝑦
)∫

𝑙1

𝜕 (𝑢 − 𝐼
ℎ
𝑢)

𝜕𝑥

𝑑𝑥

−∫

𝐾

𝐹

(𝑦)

𝜕
2
(𝑢 − 𝐼

ℎ
𝑢)

𝜕𝑥𝜕𝑦

𝑑𝑥 𝑑𝑦)

= −𝜑
1ℎ




𝐾
(𝐹 (𝑦

𝐾
+ ℎ
𝑦
)∫

𝑙3

𝜕
2
(𝑢 − 𝐼

ℎ
𝑢)

𝜕𝑥𝜕𝑦

𝑑𝑥

− 𝐹 (𝑦
𝐾
− ℎ
𝑦
)∫

𝑙1

𝜕
2
(𝑢 − 𝐼

ℎ
𝑢)

𝜕𝑥 𝜕𝑦

𝑑𝑥

−∫

𝐾

𝐹 (𝑦)

𝜕
3
(𝑢 − 𝐼

ℎ
𝑢)

𝜕𝑥𝜕𝑦
2

𝑑𝑥 𝑑𝑦)

= 𝜑
1ℎ




𝐾
∫

𝐾

𝐹 (𝑦)

𝜕
3
(𝑢 − 𝐼

ℎ
𝑢)

𝜕𝑥 𝜕𝑦
2

𝑑𝑥 𝑑𝑦

≤ 𝐶ℎ
2
‖𝑢‖3,𝐾





𝜑
1ℎ




0,𝐾

.

(27)

Similarly,

∫

𝐾

𝜕 (𝑢 − 𝐼
ℎ
𝑢)

𝜕𝑦

𝜑
2ℎ
𝑑𝑥 𝑑𝑦 ≤ 𝐶ℎ

2
‖𝑢‖3,𝐾





𝜑
2ℎ




0,𝐾

. (28)

Therefore, from (25)–(28), we have

∑

𝐾∈𝑇ℎ

∫

𝐾

∇ (𝑢 − Π
ℎ
𝑢) ⋅ 𝜑
ℎ
𝑑𝑥 𝑑𝑦

= ∑

𝐾∈𝑇ℎ

∫

𝐾

∇ (𝑢 − 𝐼
ℎ
𝑢) ⋅ 𝜑
ℎ
𝑑𝑥 𝑑𝑦

= ∑

𝐾∈𝑇ℎ

(∫

𝐾

𝜕 (𝑢−𝐼
ℎ
𝑢)

𝜕𝑥

𝜑
1ℎ
𝑑𝑥 𝑑𝑦+∫

𝐾

𝜕 (𝑢−𝐼
ℎ
𝑢)

𝜕𝑦

𝜑
2ℎ
𝑑𝑥 𝑑𝑦)

≤ 𝐶ℎ
2
‖𝑢‖3





𝜑
ℎ




0
.

(29)

The proof is completed.

Now we start to state the following superclose property.

Theorem 3. Assume that (𝜓, 𝑢) and (𝜓
ℎ
, 𝑢
ℎ
) are the solutions

of (3) and (10), respectively; 𝑢 ∈ 𝐻
3
(Ω), 𝜓 ∈ (𝐻

2
(Ω))
2, there

holds




𝜓
ℎ
− 𝐽
ℎ
𝜓



0
+




𝑢
ℎ
− Π
ℎ
𝑢



ℎ
≤ 𝐶ℎ
2
(‖𝑢‖3

+




𝜓



2
) . (30)

Proof. For (𝜑
ℎ
, V
ℎ
) ∈ 𝐻
ℎ
×𝑀
ℎ
, from (2) and (10), we have

𝑎 (𝜓, 𝜑
ℎ
) + 𝑏
ℎ
(𝜑
ℎ
, 𝑢) = 𝑎 (𝜓

ℎ
, 𝜑
ℎ
) + 𝑏
ℎ
(𝜑
ℎ
, 𝑢
ℎ
) = 0,

𝑏
ℎ
(𝜓, V
ℎ
) − 𝑏
ℎ
(𝜓
ℎ
, V
ℎ
)

= 𝑏
ℎ
(𝜓, V
ℎ
) − 𝐺 (V

ℎ
)

= − ∑

𝐾∈𝑇ℎ

∫

𝐾

𝜓 ⋅ ∇V
ℎ
𝑑𝑥 𝑑𝑦

+ ∑

𝐾∈𝑇ℎ

∫

𝐾

𝑓V
ℎ
𝑑𝑥 𝑑𝑦

= − ∑

𝐾∈𝑇ℎ

∫

𝜕𝐾

𝜓 ⋅ 𝑛V
ℎ
𝑑𝑥 𝑑𝑦

+ ∑

𝐾∈𝑇ℎ

∫

𝐾

(div𝜓 + 𝑓) V
ℎ
𝑑𝑥 𝑑𝑦

= − ∑

𝐾∈𝑇ℎ

∫

𝜕𝐾

𝜓 ⋅ 𝑛V
ℎ
𝑑𝑥 𝑑𝑦.

(31)

Applying (31) yields

𝑄
ℎ
((𝜓 − 𝜓

ℎ
, 𝑢 − 𝑢

ℎ
) , (𝜑
ℎ
, V
ℎ
))

= ∑

𝐾∈𝑇ℎ

∫

𝜕𝐾

𝜓 ⋅ 𝑛V
ℎ
𝑑𝑥 𝑑𝑦, ∀ (𝜑

ℎ
, V
ℎ
) ∈ 𝐻

ℎ
×𝑀
ℎ
.

(32)

Using (12) in Lemma 1 and (32), we can obtain




𝜓
ℎ
− 𝐽
ℎ
𝜓



0
+




𝑢
ℎ
− Π
ℎ
𝑢



ℎ

≤ 𝐶 sup
(𝜑ℎ ,Vℎ)∈𝐻ℎ×𝑀ℎ

𝑄
ℎ
((𝜓
ℎ
− 𝐽
ℎ
𝜓, 𝑢
ℎ
− Π
ℎ
𝑢) , (𝜑

ℎ
, V
ℎ
))





𝜑
ℎ




0
+




V
ℎ




ℎ

≤ 𝐶 sup
(𝜑ℎ ,Vℎ)∈𝐻ℎ×𝑀ℎ

( (𝑄
ℎ
((𝜓 − 𝐽

ℎ
𝜓, 𝑢 − Π

ℎ
𝑢) , (𝜑

ℎ
, V
ℎ
))

− ∑

𝐾∈𝑇ℎ

∫

𝜕𝐾

𝜓 ⋅ 𝑛V
ℎ
𝑑𝑥 𝑑𝑦)

× (




𝜑
ℎ




0
+




V
ℎ




ℎ
)
−1

)

= 𝐶 sup
(𝜑ℎ ,Vℎ)∈ 𝐻ℎ×𝑀ℎ

((𝑎 (𝜓 − 𝐽
ℎ
𝜓, 𝜑
ℎ
) + 𝑏
ℎ
(𝜑
ℎ
, 𝑢 − Π

ℎ
𝑢)

− 𝑏
ℎ
(𝜓 − 𝐽

ℎ
𝜓, V
ℎ
)

− ∑

𝐾∈𝑇ℎ

∫

𝜕𝐾

𝜓 ⋅ 𝑛V
ℎ
𝑑𝑥 𝑑𝑦)

× (




𝜑
ℎ




0
+




V
ℎ




ℎ
)
−1

) .

(33)

Hence the desired result follows from the interpolation
theorem and Lemma 2.

In order to derive global superconvergence for 𝑢 and
flux 𝜓, we introduce the following postprocessing operators
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Figure 1: The exact flux 𝜓
1
(a) Numerical approximation 𝜓

1ℎ
(b).
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Figure 2: The exact flux 𝜓
2
(a) and numerical approximation 𝜓

2ℎ
(b).
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Figure 3: The exact displacement 𝑢 (a) and numerical approximation 𝑢
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(b).
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Figure 4: The superclose results (a) and the superconvergence results (b).

Table 1: Superclose results of 𝜓 and 𝑢.

𝑁 ‖𝜓
ℎ
− 𝐽
ℎ
𝜓‖
0

Rate ‖𝑢
ℎ
− Π
ℎ
𝑢‖
ℎ

Rate
8
2 0.00210961611276 / 0.00313196226739 /
16
2

5.305340499025525𝑒 − 004 1.99146324331851 7.857858400185900𝑒 − 004 1.99485875617198
32
2

1.328284185506180𝑒 − 004 1.99788150355682 1.966221092417072𝑒 − 004 1.99871061529750
64
2

3.321927509970684𝑒 − 005 1.99947134660916 4.916651922457212𝑒 − 005 1.99967742778650
128
2

8.305579254650728𝑒 − 006 1.99986789716594 1.229231701395274𝑒 − 005 1.99991934319524
256
2

2.076442340906698𝑒 − 006 1.99996697808428 3.073122207277826𝑒 − 006 1.99997983495344

𝐼
2ℎ

: 𝑢 ∈ (𝐻
2
(Ω) ∩ 𝐻

1

0
(Ω)) → 𝐼

2ℎ
𝑢 ∈ 𝑄

2
(𝜅) and 𝐽

2ℎ
:

𝜓 ∈ (𝐻
1
(Ω))
2
→ 𝐽
2ℎ
𝜓 ∈ (𝑄

1
(𝜅))
2 as 𝐼

2ℎ
𝑢(𝑎
𝑖
) = 𝑢(𝑎

𝑖
),

𝑖 = 1, . . . , 9, and ∫
𝐾𝑗

(𝜓 − 𝐽
2ℎ
𝜓) = 0, 𝑗 = 1, 2, 3, 4, where

𝑢(𝑎
𝑖
) are the value of 𝑢 on the nodes 𝑎

𝑖
and 𝑎

𝑖
are nodes of

𝑇
ℎ
on macroelement 𝜅, while 𝜅 ∈ 𝑇

2ℎ
consists of the four

small elements 𝐾
𝑗
in 𝑇
ℎ
(𝑗 = 1, 2, 3, 4), and 𝑄

1
(𝜅) and 𝑄

2
(𝜅)

are bilinear and biquadratic piecewise polynomials spaces,
respectively. It can be checked that the following properties
hold:

𝐼
2ℎ
Π
ℎ
𝑢 = 𝐼
2ℎ
𝑢,





𝐼
2ℎ
𝑢 − 𝑢




ℎ
≤ 𝐶ℎ
2
|𝑢|3

,





𝐼
2ℎ
V
ℎ




ℎ
≤ 𝐶





V
ℎ




ℎ
, ∀V

ℎ
∈ 𝑀
ℎ
,

𝐽
2ℎ
𝐽
ℎ
𝜓 = 𝐽
2ℎ
𝜓,





𝐽
2ℎ
𝜓 − 𝜓




0
≤ 𝐶ℎ
2



𝜓



2
,





𝐽
2ℎ
𝜑
ℎ




0
≤ 𝐶





𝜑
ℎ




0
, ∀𝜑

ℎ
∈ 𝐻
ℎ
.

(34)

Thenwe can have the following superconvergence result.

Theorem 4. Under the assumptions inTheorem 3, there holds





𝑢 − 𝐼
2ℎ
𝑢
ℎ




ℎ
+




𝜓 − 𝐽
2ℎ
𝜓
ℎ




0
≤ 𝐶ℎ
2
(‖𝑢‖3

+




𝜓



2
) . (35)

Proof. It follows from (30) in Theorem 3, (34), and the
triangle inequality that





𝑢 − 𝐼
2ℎ
𝑢
ℎ




ℎ
+




𝜓 − 𝐽
2ℎ
𝜓
ℎ




0

≤




𝑢 − 𝐼
2ℎ
Π
ℎ
𝑢



ℎ
+




𝐼
2ℎ
Π
ℎ
𝑢 − 𝐼
2ℎ
𝑢
ℎ




ℎ

+




𝜓 − 𝐽
2ℎ
𝐽
ℎ
𝜓



0
+




𝐽
2ℎ
𝐽
ℎ
𝜓 − 𝐽
2ℎ
𝜓
ℎ




0

≤




𝑢 − 𝐼
2ℎ
Π
ℎ
𝑢



ℎ
+




𝐼
2ℎ
(Π
ℎ
𝑢 − 𝑢
ℎ
)



ℎ

+




𝜓 − 𝐽
2ℎ
𝐽
ℎ
𝜓



0
+ ‖





𝐽
2ℎ
(𝐽
ℎ
𝜓 − 𝜓

ℎ
)



0

≤




𝑢 − 𝐼
2ℎ
𝑢



ℎ
+ 𝐶





Π
ℎ
𝑢 − 𝑢
ℎ




ℎ

+




𝜓 − 𝐽
2ℎ
𝜓



0
+ 𝐶





𝐽
ℎ
𝜓 − 𝜓

ℎ




0

≤ 𝐶ℎ
2
(‖𝑢‖3

+




𝜓



2
) ,

(36)

which is the desired result.

3. Numerical Experiments

In this section, some numerical examples and comparison
with other methods are presented to confirm theoretical
analysis and good performance of NMFEM.
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Table 2: Superconvergence results of 𝜓 and 𝑢.

𝑁 ‖𝜓 − 𝐽
2ℎ
𝜓
ℎ
‖
0

Rate ‖𝑢 − 𝐼
2ℎ
𝑢
ℎ
‖
ℎ

Rate
8
2 0.00438686071544 / 0.00401808068890 /
16
2 0.00109136640979 2.00705335488651 9.832140356840235𝑒 − 004 2.03092911988780

32
2

2.724757835149567𝑒 − 004 2.00193562594041 2.445206258258704𝑒 − 004 2.00754934612234
64
2

6.809546234729317𝑒 − 005 2.00049744480245 6.105100787093085𝑒 − 005 2.00186914715453
128
2

1.702238617992853𝑒 − 005 2.00012537844145 1.525782546054283𝑒 − 005 2.00046574790862
256
2

4.255503868189354𝑒 − 006 2.00003141881610 3.814148839722483𝑒 − 006 2.00011631625361

Table 3: Superclose results of 𝜓 and 𝑢.

𝑁 ‖𝜓
ℎ
− 𝐽
ℎ
𝜓‖
0

Rate ‖𝑢
ℎ
− Π
ℎ
𝑢‖
ℎ

Rate
8
2 0.02493802431889 / 0.03360261961598 /

16
2 0.00619633909611 2.00885917091448 0.00820721453088 2.03360913804615

32
2 0.00154620480519 2.00268467156460 0.00203799536238 2.00974189629474

64
2

3.863629284378830𝑒 − 004 2.00070284735607 5.086068699851279𝑒 − 004 2.00252791412788
128
2

9.657883351384945𝑒 − 005 2.00017773032582 1.270955080172888𝑒 − 004 2.00063790775102
256
2

2.414396265195381𝑒 − 005 2.00004455935162 3.177035666820934𝑒 − 005 2.00015984995534
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Figure 5: Convergence rates of 𝑢 in 𝐿2 norm.

We consider the problem (1) with Ω = [0, 1]
2 and the

exact solution is 𝑢 = 𝑥𝑦(1 − 𝑥)(1 − 𝑦), and then the flux field
𝜓 = (𝜓

1
, 𝜓
2
) can be expressed as 𝜓

1
= 𝑦(1 − 2𝑥)(1 − 𝑦), 𝜓

2
=

𝑥(1 − 𝑥)(1 − 2𝑦). We divide the domain Ω into a family
of quasiuniform rectangles with number of 𝑁. The figures
of exact solution (𝑢, 𝜓) of problem (1) and finite element
approximation (𝑢

ℎ
, 𝜓
ℎ
) with𝑁 = 64

2 are plotted in Figures 1,
2, and 3, respectively.

In Tables 1 and 2, we present the superclose and supercon-
vergence results of the original variable 𝑢 in energy norm and
flux 𝜓 in 𝐿2 norm with 𝑁 = 8

2
; 16
2
; 32
2
; 64
2
; 128
2
; 256
2,

respectively. It is clearly that ‖𝜓
ℎ
− 𝐽
ℎ
𝜓‖
0
, ‖𝑢
ℎ
− Π
ℎ
𝑢‖
ℎ
,

‖𝜓 − 𝐽
2ℎ
𝜓
ℎ
‖
0
, and ‖𝑢 − 𝐼

2ℎ
𝑢
ℎ
‖
ℎ
are converged at order 2 with

C
on
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Figure 6: Convergence rates of 𝑢 in energy norm.

respect to ℎ, which coincide with our theoretical analysis
in Theorems 3 and 4. In order to describe the results more
intuitively, we plot the errors in the logarithm scales in
Figure 4.

Moreover, we compare the results of NMFEM with those
of FEM using 4-node quadrilateral (FEM-Q4) andMFEM (𝑢
and flux 𝜓 are approximated by piecewise constants and the
Raviart-Thomas element, resp.).

The convergence rates of errors of 𝑢 in 𝐿
2 and energy

norm are shown in Figures 5 and 6. The comparison of the
flux 𝜓 in 𝐿

2 norm of NMFEM with MFEM is also given in
Figure 7. It is observed that (a) the convergence rates of 𝑢 and
flux𝜓 in 𝐿2 norm ofNMFEMare better than those ofMFEM;
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Table 4: Superconvergence results of 𝜓 and 𝑢.

𝑁 ‖𝜓 − 𝐽
2ℎ
𝜓
ℎ
‖
0

Rate ‖𝑢 − 𝐼
2ℎ
𝑢
ℎ
‖
ℎ

Rate
8
2 0.07704230005041 / 0.06805851358971 /
16
2 0.01905713318621 2.01531966736879 0.01670893020781 2.02615627537278

32
2 0.00474917374465 2.00458266513090 0.00415565843089 2.00747038382646

64
2 0.00118603209709 2.00153348351974 0.00103721683378 2.00235955252584

128
2

2.964169140807930𝑒 − 004 2.00044337559203 2.591844848686839𝑒 − 004 2.00066626183030
256
2

7.409813186219603𝑒 − 005 2.00011869741141 6.478819154402888𝑒 − 005 2.00017656612731
C
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Figure 7: Convergence rates of the flux 𝜓 in 𝐿2 norm.
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Figure 8: The superclose results (a) and the superconvergence results (b).
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(b) NMFEM has almost the same rate as FEM-Q4 for 𝑢 in 𝐿2
norm, but a higher rate than FEM-Q4 for 𝑢 in energy norm.

Furthermore, a numerical experiment is carried out to
demonstrate the effectiveness and accuracy of NMFEM for
the following diffusion problem:

− div (𝐷∇𝑢) = 𝑓, in Ω,

𝑢 = 𝑢
𝜕
, on 𝜕Ω,

(37)

where 𝑓 is the source term and 𝑓 ∈ 𝐿
2
(Ω), 𝑢

𝜕
is the

boundary data, the permeability 𝐷 is a symmetric tensor-
valued function such that (a) 𝐷 is piecewise Lipschitz-
continuous on Ω and (b) the set of the eigenvalues of 𝐷 is
included in [𝜆min, 𝜆max] (with 𝜆min > 0) for all (𝑥, 𝑦) ∈ Ω.

As [13], we consider the problem (37) withΩ = [0, 1]
2,

𝐷 = (

1 0

0 1
) if 𝑥 ≤ 0.5,

𝐷 = (

100 0

0 0.01
) if 𝑥 > 0.5,

(38)

and the analytical solution

𝑢 = cos (𝜋𝑥) sin (𝜋𝑦) if 𝑥 ≤ 0.5,

𝑢 = 0.01 cos (𝜋𝑥) sin (𝜋𝑦) if 𝑥 > 0.5.

(39)

Let 𝜓 = 𝐷∇𝑢, we can get the superclose and superconver-
gence results of 𝑢 in energy norm and flux 𝜓 in 𝐿2 norm.The
errors are listed in Tables 3 and 4 and plotted in the logarithm
scales in Figure 8, respectively.

Acknowledgments

The authors would like to express their sincere thanks to the
anonymous referee for his many helpful suggestions, which
contribute significantly to the improvement of the paper.The
research is supported by the NSF of China (no. 10971203; no.
11271340), Research Fund for theDoctoral ProgramofHigher
Education of China (no. 20094101110006), and Foundation of
He’nan Educational Committee (no. 13B110144).

References

[1] P.-A. Raviart and J. M.Thomas, “Amixed finite element method
for 2nd order elliptic problems,” in Mathematical Aspects of
Finite Element Methods, vol. 606 of Lecture Notes in Mathemat-
ics, pp. 292–315, Springer, Berlin, Germany, 1977.

[2] M. Farhloul and M. Fortin, “A nonconforming mixed finite
element for second-order elliptic problems,”NumericalMethods
for Partial Differential Equations, vol. 13, no. 5, pp. 445–457, 1997.

[3] B. Cockburn, G. Kanschat, I. Perugia, and D. Schötzau, “Super-
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