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3D reconstruction based on structured light or laser scan has been widely used in industrial measurement, robot navigation, and
virtual reality. However, most modern range sensors fail to scan transparent objects and some other special materials, of which the
surface cannot reflect back the accurate depth because of the absorption and refraction of light. In this paper, we fuse the depth
and silhouette information from an RGB-D sensor (Kinect v1) to recover the lost surface of transparent objects. Our system is
divided into two parts. First, we utilize the zero and wrong depth led by transparent materials from multiple views to search for
the 3D region which contains the transparent object. Then, based on shape from silhouette technology, we recover the 3D model
by visual hull within these noisy regions. Joint Grabcut segmentation is operated on multiple color images to extract the silhouette.
The initial constraint for Grabcut is automatically determined. Experiments validate that our approach can improve the 3D model
of transparent object in real-world scene. Our system is time-saving, robust, and without any interactive operation throughout the
process.

1. Introduction

3D reconstruction based on structured light, including fringe
pattern, infrared speckle, TOF, and laser scan, is widely used
in industrial measurement, robot navigation, and virtual
reality for its accurate measurement. In spite of the good
performance in specific settings, it is troublesome for struc-
tured light to scan transparent objects.The transparent object
which belongs to nonspecular surface can not reflect correct
depth due to the properties of light absorption, reflection, and
refraction.Therefore, some 3D acquisition systems have been
specially developed for transparent object [1–3].

On the other hand, the popularity of consumer-grade
RGB-D sensor, such as Kinect, makes it easier to combine
depth and RGB information to improve a 3D scanning
system. It occurs to us that we can recover the transparent
surface by combining a passive reconstruction method as
transparent objects appear in a stabler shape on color images.
Since the transparent object is commonly with less texture,
shape from silhouette (SFS) is considered more suitable to
address the transparent issue. In addition, the flaw of SFS
that fails to shape the concave objects can be remedied by
structured light.

Some researchers have tried to fuse the depth and
silhouette information for 3D scan. Yemez and Wetherilt [4]
present a 3D scan systemwhich fuses laser scan and SFS to fill
holes of the surface. Narayan et al. [5] fuse the visual hull and
depth images on the 2D image domain. And their approach
can obtain high-qualitymodel for simple, concave, and trans-
parent objects with interactive segmentation. However, both
of them only achieve good results in the lab environment but
are not applied for natural scene with complex background.

Lysenkov et al. [6] propose a practical method for dealing
with transparent objects in real world. Our idea is similar
to theirs. We also try to look for approximate region of
transparent object and some other nonspecular objects cued
by noise from depth sensor before we use Grabcut [7]
(classical image matting method) to extract their silhouettes
on color images.

The main contributions of this paper are
(i) a complete system tackling the problem of volumetric

3D reconstruction of transparent objects based on
multiple RGB-D images with known poses,

(ii) a novel pipeline that localizes transparent object
before recovering the model by SFS,
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Figure 1: System overview; TSDF: truncated signed distance function; SFS: shape from silhouette.

(iii) a robust transparent object localization algorithm
cued by both zero depth (ZD) and wrong depth
(WD),

(iv) our system which is able to cope with real-world data
and does not need any interactive operations.

2. Related Work

2.1. Transparent Object Localization. The property of trans-
parent and translucent objects in active and passive recon-
struction systems is complex and elusive because it is influ-
enced by many factors [8]. So most of the previous work on
transparent object localization in real world tends to focus on
the appearance of transparent object, rather than regularizing
the expected model.

Klank et al. [9] derive the internal sensory contradiction
from two TOF cameras to detect and reconstruct transparent
objects. Wang et al. [10] integrate a glass boundary detector
into a MRF framework to localize glass object on a pair of
RGB-D images. Reference [6] develops a robotic grasping
system which can address transparent issue. In the part of
reconstruction, [6] detects transparent pixels by ZD on a
depth image and provides the initialization for Grabcut [7]
to make further segmentation on the corresponding color
image. Alt et al. [11] propose an approach to detect trans-
parent objects by searching for geometry inconsistency and
background distortion caused by refraction and reflection of
infrared light from Kinect.

All the works above localize the transparent object on 2D
image domain, and [6, 10] segment independently from each
RGB-D frame. But many other kinds of ZD and WD noise

are included in depth image, such as shadow noise, which
raise the risk of overestimation of transparent region. To that
end, we explore a novel strategy to jointly detect transparent
objects in 3D space from multiple depth images.

2.2.Multiview Segmentation. Multiview segmentation (MVS)
is the key problem of shape from silhouette, and two main
streams of technology are available in previous work.

One is joint segmentation directly in 3D volume accord-
ing to the observation from multiple views [12–14]. These
papers, respectively, extend active contour, Bayesian infer-
ence, andGrabcut to 3D by a volumetric representation.MVS
on transparent objects is challenging because of their similar
color and intensity to the background. In this situation,
the boundary information on color images becomes more
important but is easily broken when carried from 2D to 3D
volume. 3D boundary term only can help smooth the surface
but fail to correct the wrong segmentation.

Our method falls on the other stream: segmentation on
images [15–17]. Zhang et al. [15] let multiple color images
share the GMM color model of foreground and background
and propagate the segmentation cues across views by sil-
houette consistency which is induced by depth. Considering
the fact that transparent object reflects unreliable depth, we
jointly segmentmultiple RGB-D images based onGrabcut [7]
in another way.

3. System Overview

Figure 1 provides the pipeline of the proposed method. The
input data of the system consist of both depth and color
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video collected from multiple views by an RGB-D sensor,
for example, Kinect v1. We assume that the poses of each
depth and color camera have been known by calibration or
a continuous tracker, for example, Kinectfusion [18].

For each depth frame, we firstly classify the depth pixels
into several categories: measured depth, nonmeasured depth
which can be further classified into shadow noise, out-of-
range noise, and special surface noise. Then, for measured
depth, we follow the truncated signed distance function
(TSDF) [19] to integrate range points to the global voxel grid
and obtain the original model which may miss the trans-
parent object. In another process, an algorithm is proposed
to search for the noise regions in 3D working space. Three
variables are combined to find the voxels with heavy noise.
The variables are, respectively, the cues of zero-depth pixels,
the variance of signed distance, and the frame-frame depth
consistency. One or more noise regions determined by these
noisy voxels are considered as containing the transparent
object or some other special materials.

Then, we reproject each noise region onto color frames to
obtain a sequence of child color images. After that, silhouettes
are extracted on child images to recover the missing surface
owned by transparent object. For segmentation, we extend
the Grabcut [7] to an unsupervised and joint manner.
“Unsupervised” means the initial constraint of Grabcut such
as labeling a priori foreground and background pixels are
automatically generated with the guidance of the noise
regions. “Joint” contains two layers of meaning. One is that
we jointly consider observed depth and color information to
determine the a priori pixels; the other is that the color GMM
model of Grabcut is shared by multiple child images. At
last, the TSDF model and generated visual hull are fused for
complete model.

It should be noted that, unlike other systems [4, 5], we
deform the visual hull in severalmuch smaller volume instead
of the whole working space. Thus, the complexity and work
load of SFS can be relieved. In the next two sections, the
algorithmof noise region search and jointmultiview segmen-
tation will be discussed in detail.

4. Noise Region Search

There exists various kinds of noise on depth images captured
by range sensor. ForKinect v1, zero depth (ZD)may be caused
by out-of-range noise, shadow noise, specular or nonspecular
surface noise, and lateral noise. Wrong depth may be intro-
duced by specular or nonspecular surface and the deviation
of the sensor itself [20]. So we do not consider it a feasible
way to localize and recover noise region caused by transpar-
ent materials directly on depth images in a natural scene.
We take a more robust scheme to search for the regions of
special surface in 3D space.

4.1. Depth Classification. To avoid interference of other types
of noise, we classify depth pixels on each depth image into
several categories before we try looking for noise region of
interest.

First, the measured depth is retained without any opera-
tion.

Second, we detect the shadow noise by the approach
proposed by Yu et al. [21]. The shadow noise appears where
objects obstruct the path of structured light from projector to
the camera in a triangulation measurement system.

Third, the ZD out of range are classified. Some noise of
this class is ZD caused by too far or too near measurement;
the other is ZD from certain noise source but beyond the
boundary of the working space. The depth range of the
working space is set by two values, min𝑍 and max𝑍. For
each depth frame, we let every ZD pixel march along four
directions (up, down, left, and right) pixel by pixel on the
image plane.Once itmeets a pixel whose depth ismeasured as
well as the value being between min𝑍 and max𝑍, we score
the ZD pixel by +4 and stop the marching. Once the pixel
meets a measured pixel whose depth is beyond the working
space, we score it by −1 and stopmarching.We try looking for
the out-of-range ZD pixels of which region is adjacent to out-
of-range depth. If the ZD pixel marches until it meets the
boundary of image, it will be scored by −4. After finishing
the scoring in the four directions, the ZD pixels whose score
is smaller than 0 are seen as out-of-range noise. In addition,
for the following operation, we also distinguish the too far
and too near ZD and then fill the too far ZD by a large depth
value which stands for background.

The ZD pixels left which have not been classified are
seen as the noise led by transparent object or other special
materials. The result of depth classification can be found in
Figure 2. Although some out-of-range ZD pixels are under-
estimated and mistaken for transparent noise due to our
conservative scheme, the error has a little effect on our
following noise region search in 3D space.

4.2. Search Heavy Noisy Voxels. Observed by Kinect v1, there
are two common kinds of depth appearance of transparent
object. Illustrated in Figure 3, at the bottom of the bottle with
water, the zero-depth noise appears and is consistent across
multiple depth frames. The other kind of appearance exists
at the neck of the bottle, where it is mixed with zero depth
and wrong depth that shift from real value.Themixed region
observed is quite unstable and keeps on changing from frame
to frame even when the depth camera and scene both keep
still. For convenience, we name the two kinds of appearance
zero depth (ZD) and wrong depth (WD) in the following
description.

We use three statistics to comprehensively evaluate the
noise severity of each voxel to find both ZD region and WD
region in 3D space.

First, as to find ZD region, we accumulate the transparent
ZD (classified in last subsection) for each voxel by backpro-
jecting them to global voxel grid. The 2D ZD region can be
propagated from multiple images to voxel grid while some
interfering ZD noise which has beenmisclassified will spread
over the volume. In the case of fixed background, even the
interfering pixels from background detected in the same
position across continuous frames can be scattered due to the
change of camera’s pose.

Second, at the same time, we fuse depth data into 3D
model with TSDF representation; we calculate the variance of
signed distance function (SDFV) to find the WD region. The
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Figure 2: Depth classification result; (a) is color image and (b) is depth image after depth classification. Green: measured depth and the
intensity stands for different depth values. Since the 255 intensity value is not enough for the depth value representation, the measured depth
is drawn periodically to reflect the depth change. Cyan: shadow noise. white: score ∈ [−∞, −4)means out-of-range ZD. Pink and red: score∈ [−4, 0] means out-of-range ZD, and pink labels too far ZD which should be filled by background depth. Yellow: score ∈ (0,∞) means
possible transparent noise.

Figure 3: 3D point clouds show two kinds of depth appearance of transparent object; Green rectangles label the zero-depth noise which is
consistent across frames. Yellow rectangles label the wrong depth noise mingled with zero depth which keeps on changing across frames; the
wrong depth may be drifted to a farther location than the real value.

voxels in WD region should have quite high value of SDFV
because of drifted and inconsistent depth mixed with ZD in
that region. However, due to the inaccuracy of the poses of
camera estimated and the deviation of measurement of depth
sensor, high SDFVmay also lie near the surface of the opaque
object.

Exploiting the fact that the depth of WD pixels keeps on
changing at every moment, we turn to use the third variable

“frame-frame depth difference” to suppress the interference.
The depth difference is the residual of corresponding pixels
on two neighbor depth frames. Then the residual is accumu-
lated onto each voxel in 3D space and searches for the region
of transparent object with the high residual accumulation.
The ability of this feature to searchWDregion alone isweak in
that random background also generates relative high frame-
frame depth difference and the air within the voxel grid can
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Table 1: The behaviors of different statistics confronted with differ-
ent cases; the symbols √, , ×, and R indicate high, medium, low,
and random values, respectively.

Total ZD SDFV Diff Correct
Normal object ×  × ×
Air × × R ×
ZD region √ × × √
WD region × √ √ √

be led into WD region. But the value around the surface of
the opaque object is low and it is enough for us to find WD
region combined with SDFV.

The reason why we combine the above three statistics to
search for noise region is concluded in Table 1. The last
column gives an ideal algorithm to distinguish the noise
region from normal object and air correctly. Our idea can be
expressed by (1) approximately where the subscript𝐻means
the voxels with high value of certain variables.

NoisyVoxels = ZD𝐻 ∪ (SDFV𝐻 ∩ Diff𝐻) , (1)

𝑑𝑘 (𝑋) =
{{{{{{{{{

−𝜇, sdf < −𝜇 or ZD voxel,
sdf , |sdf | ≤ 𝜇 ,
𝜇, sdf > 𝜇.

(2)

For opaque model fusion, we calculate a projective TSDF
[19] in the samemanner of Kinectfusion [18]. Considering the
ZD included, we set the SDFs of ZD voxels (projected onto
ZD pixel) as −𝜇when truncating SDF by (2). SDFs in front of
the surface are assumed negative while behind is positive.The
TSDFs from multiple frames are fused by simple weighted
average (3), where𝐷 is TSDF, 𝑘 denotes 𝑘th depth frame, and𝑊 is weight function controlled by the distance and angle of
measurement.

𝐷𝑘+1 (𝑋) = 𝑊𝑘 (𝑋)𝐷𝑘 (𝑋) + 𝑤𝑘+1 (𝑋) 𝑑𝑘+1 (𝑋)𝑊𝑘 (𝑋) + 𝑤𝑘+1 (𝑋) ,
𝑊𝑘+1 (𝑋) = 𝑊𝑘 (𝑋) + 𝑤𝑘+1 (𝑋) , 𝑋 ∈ R

3.
(3)

At the same time, we incorporate our algorithm to search
heavy noisy voxels as defined above.

4.2.1. ZD Accumulation. When each voxel is projected onto
depth images by (4) and assigned SDF value, the ZD is accu-
mulated by theway.𝑇𝑘,𝑔 denotes the 6-DOF transformmatrix
that converts voxels from global coordinate to local. 𝐾 is
the intrinsic parameter of the camera and 𝜋 denotes perspec-
tive projection.

𝑃𝑘 = 𝑇𝑘,𝑔𝑋, 𝑇𝑘,𝑔 = [𝑅𝑘,𝑔 𝑡𝑘,𝑔0 1 ] ,
𝑥𝑘 = ⌊𝜋 (𝐾𝐼𝑅𝑃𝑘)⌋ , 𝑥 ∈ R

2.
(4)

We add the severity of a voxel 𝑆𝑘(𝑋) from all depth frames
observed for finding ZD region. Meantime, positive votes are

given when the voxel falls on “transparent noise” (TN) pixel
and negative ones are given when the voxel can be seen in
front of the surface.

ZD (𝑋) = ∑
𝑘≥0

𝑆𝑘 (𝑋) ,

𝑆𝑘 (𝑋) =
{{{{{{{{{

1, if depth𝑘 (𝑥𝑘) ∈ TN,
−1, if 𝑑𝑘 (𝑋) < 0, depth𝑘 (𝑥𝑘) ∉ TN,
0, otherwise.

(5)

After voting, thresholds are set for each voxel to find ZD
regions. Every threshold is proportional to the number of
frames and inversely proportional to the 𝑂(𝑋); the times of
the voxel are occluded as we take into account the fact that the
transparent object can be blocked by other simple objects.

ZD𝐻 fl {𝑋 | ZD (𝑋) > 𝛼 [FrameNum − 𝑂 (𝑋)]} . (6)

𝛼 equals 0.9 in practice. The 𝑂(𝑋) also needs to be truncated
when assuming that the times of occlusion are smaller than
half of the total number of frames. Otherwise, the solid voxels
that belong to normal object will be introduced into ZD
region incorrectly due to a tiny threshold.

𝑂 (𝑋) = min(∑
𝑘≥0

𝑜𝑘 (𝑋) , 0.5FrameNum) ,

𝑜𝑘 (𝑋) = {{{
1, if 𝑑𝑘 (𝑋) = 𝜇,
0, otherwise.

(7)

4.2.2. SDFV. TheWD caused by transparent object is usually
drifted to a farther location than the real surface and is
always surrounded by ZD. As to distinguishWDby SDFV, we
truncate SDF of ZD voxels as 𝜇 before calculating the SDFV.

𝑑𝑘 (𝑋) = {{{
𝜇, ZD voxel,
𝑑𝑘 (𝑋) , otherwise. (8)

To calculate variance, the new TSDF 𝐷𝑘(𝑋) and square of it𝑄𝑘(𝑋) are updated frame by frame.

𝐷𝑘 (𝑋) = 𝑊𝑘 (𝑋) 𝑑𝑘 (𝑋) + 𝑤𝑘+1 (𝑋) 𝑑𝑘+1 (𝑋)𝑊𝑘 (𝑋) + 𝑤𝑘+1 (𝑋) ,

𝑄𝑘+1 (𝑋) = 𝑊𝑘 (𝑋)𝑄𝑘 (𝑋) + 𝑤𝑘+1 (𝑋) 𝑑2𝑘+1 (𝑋)𝑊𝑘 (𝑋) + 𝑤𝑘+1 (𝑋) .
(9)

And the SDFV can be computed as

𝑉𝑘 (𝑋) = 𝑄𝑘 (𝑋) − 𝐷2𝑘 (𝑋) . (10)

Note that the air among multiple objects may also output
high variance of TSDF since it is hidden for several times.
Therefore, we enlarge the weight of voxel whose TSDF = −𝜇
while reducing the weight when it equals 𝜇 but not obtained
by ZD Voxel. It enhances the robustness against occlusion.
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We define SDFV𝐻 as follows, where 𝛽 is an experimental
threshold set as 0.8 in practice.

SDFV𝐻 fl {𝑋 | 𝑉 (𝑋) > 𝛽𝜇} . (11)

4.2.3. Depth Difference. Each voxel is projected onto the 𝑘th
and (𝑘 − 1)th frame to calculate the difference of raw depth
(except filled too far ZD) and accumulate the difference.

Diff (𝑋) = ∑
𝑘>0

depth𝑘 (𝑥𝑘) − depth𝑘−1 (𝑥𝑘−1) . (12)

Then Diff𝐻 is defined assuming we can tolerate 𝛾 average
difference for each frame.

Diff𝐻 fl {𝑋 | Diff (𝑋) > 𝛾FrameNum} . (13)

For reducing memory and computation load, “depth
difference” of voxels ∈ SDFV𝐻 can be calculated after TSDF
integration and SDFV computation are finished.

4.3. Partition the Noise Regions. After detecting noisy voxels
by (1), we turn to partitioning the noise regions. On account
of not learning the number of noise regions, we firstly use 𝐾
means to classify the noisy voxels into 𝐾 clusters. For each
cluster, a 3D bounding box is assigned to hold it. The 3D
bounding box is represented by the base point, length, width,
and height. Then any overlapping bounding boxes in 3D
working space should be merged as a bigger one. Final noise
regions are fixed until there are no overlapping bounding
boxes in working space.

5. Multiview Segmentation

The aim of our work remaining is to reconstruct the trans-
parent object within the detected noise regions. We apply
Grabcut [7] to make multiview segmentation for silhouette.
The manual operations for initial constraint can be replaced
with automatic ones which are guided by noisy voxels and
depth images. In our case, segmenting is a quite challenging
task due to the similar appearance of transparent object with
its background. Fortunately, two extra advantages can be
exploited: multiple images and depth. Although we cannot
estimate the shape of transparent object from its inaccurate
depth, the depth images may help us to determine part of the
background.

5.1. Generate A Priori Constraint for Grabcut. Grabcut is an
interactive segmentation based on color Gaussian Mixture
Model (GMM). The original method involves some manual
operations, such as placing a bounding box and drawing
scribbles to initialize the foreground and background pixels.
In our work, the 3D bounding box of noise region is projected
onto every color image to determine the 2D bounding box
which can enclose the transparent object. And the a priori
foreground pixels are generated by projecting the noisy voxels
onto color images. The relative poses of color and depth
cameras are calibrated in advance. To relieve the complexity
and computation of the segmentation, we tailor a child image
from original image by expanding the 2D bounding box a

Noisy voxels

Noise region

Child image

Rectangle

Center
Removed pixel 

Figure 4: Generate and adjust a priori constraint for Grabcut,
yellow points on the images label the a priori foreground pixels,
green rectangle is the child image tailored from color images, and
the pixels out of blue rectangle are a priori background pixels.
On the right shows the operation in which we remove some a
priori foreground pixels which are far from the center along several
directions.

little (30 pixels for each edge of the rectangle). The operation
is illustrated in (Figure 4).

5.2. Adjust A Priori Constraint. The noise regions found via
our method in the last section can cover the real region of
transparent object, but usually a little bigger. Some noisy
pixels projected onto images may fall beyond the real object
and result in bad constraint. As to ensure the validity of
a priori foreground, we need corrode the a priori pixels.
We calculate the center of them first and then along several
directions the pixels far away from the center are removed
(right of Figure 4). The distance along a certain direction is
calculated by the distance from the pixel to the line passing
the center. The threshold for removing far pixels is decided
by the farthest point along the direction.

Furthermore, we supply the a priori background pixels
with the help of depth. The 3D bounding box of noise region
is transformed from global to local and obtain the depth
range for each color image. Considering the drifted depth
phenomenon, we also include the depth corresponding to
the original a priori foreground pixels to update the depth
range. All the pixels with out-of-range depth can be seen
as background. And, induced by depth, the color frames
in which transparent object is fully or partly occluded by
nontransparent object should be deleted and do not join the
shape from silhouette process.

5.3. Joint Grabcut. The appearances of object are similar
across multiple views while the background is random in
colors. So on the one hand we let each image share the
same foreground GMM when making jointly segmentation
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using Grabcut. On the other hand, we build multiple GMM
for background which are only shared among neighboring
color images. In practice, we count the key color frames used
to deform visual hull and let every 5 neighboring frames
share a background GMM. The child images are segmented
iteratively simultaneously via Max-Flow algorithm. After
every iteration, the sharedGMMis learned fromall themasks
by EM learning. The silhouettes are extracted until Grabcut
achieves the convergence. To avoid overcarving, we use soft
visual hull: the voxel is judged as foreground if it falls in 𝜆 of
all silhouettes. Stable behavior observed is setting 𝜆 = 0.9.

Finally, we fuse the visual hull and TSDF for a final
complete model. We simply accept the voxels as foreground
judged by either visual hull or TSDF. The range of TSDF is[−𝜇, 𝜇] and isosurface lies where 𝐷(𝑋) = 0, while we assign
probability on visual hull whose range is [0, 1] and crossing
value is 𝜆. We unify the range and zero-crossing value of both
and get the 𝐹(𝑋) by (14). We extract the isosurface where𝐹(𝑋) = 0 using marching cubes [22].

𝐹 (𝑋) = max(2𝜇(∑𝑁−1𝑛=0 sil𝑛 (𝑋)𝑁 − 𝜆) ,𝐷 (𝑋)) ,
𝑋 ∈ R

3,
(14)

where

sil𝑛 (𝑋)
= {{{

1, if falls on silhouette of 𝑛th color frames,

0, otherwise.

(15)

6. Experiment

To evaluate the proposedmethod, we collect a group of RGB-
D data by Kinect v1 from multiple views. We take two kinds
of experimental method:

(i) Put objects on a rotation stage, and calibrate the
relative motion of Kinect and rotation stage. The
camera can cover objects in 360 degrees. Data list
includes 600 depth images with 640 ∗ 480 resolution
and 40 color imageswith 1280∗960 resolution (Figure
5(a) and the first four examples in Figures 6(a), 6(b),
and 6(c)).

(ii) Hold Kinect in hand to scan a group of objects in a
cluttered office. Kinectfusion [18] is employed to track
the camera’s motion.

6.1. Experiments on Noise Region Search. First four pieces of
data showed in Figure 6 are captured by a static Kinect and
a rotation platform. In the last two examples, the Kinect is
handed and moved to scan a static scene.

In Figure 6(a), red points are the reprojection of noisy
voxels detected by our method. It demonstrates that, whether
with fixed or changing background, the noisy regions can
both be correctly found. Our method which directly searches
the noise regions on volume grids can output accurate results

Table 2: Error of silhouettes (percent).

Spirit up Spirit down Mineral Bottle
Independent 6.13 1.32 7.86 7.69
Joint 3.00 0.86 5.71 5.55

and be robust against slight occlusion. Although the regions
found are a little bigger than the real value, we hardlymiss the
transparent and other nonspecular objects (mouse in 4th row
of Figure 6 absorbs the IR of Kinect) which could potentially
destroy the 3D model. The regions have good guidance and
initialization for subsequent SFS step. Figure 6(b) shows the
results of ZD regions when we do not take wrong depth into
account. Some noise regions are left out in that case. It is
proved that the combination of three statics for noise region
search enhances the viability of the proposed method.

Noisy pixels led by transparent or other special object are
often submerged in other kinds of noise, for example, shadow
noise and lateral noise. So it is difficult to localize the trans-
parent object in the image domain. Even with refinement
by the aid of color information [6], the results are far from
satisfactory on real-world data, which can be illustrated by
Figure 6(c).Themethod of [6] is reimplemented by ourselves
through OPENCV. In comparison, our approach performs
better than [6] and the results showed in [11].

6.2. Experiments on 3D Reconstruction. We jointly segment
multiple color images for silhouettes of transparent objects.
We compare ourmethod with the independent segmentation
via Grabcut [7] algorithm; we use source code provided by
OPENCV. Illustrated in Figure 7, our joint segmentation
which combines the depth to supply background information
and shares the GMM model is able to obtain more accurate
silhouettes. In addition, to quantitatively evaluate the results,
we take 4 examples of our data andmanually label the ground
truth. Silhouette error is measured by the percentage of false
pixels compared to the ground truth in child images. The
child images are automatically generated by noisy regions as
described above. The results can be found in Table 2.

Some examples of final 3Dmodels scanned by our system,
shown in Figure 8, validate that it can recover the lost
surface of transparent object in 3D reconstruction based
on structured light, for example, Kinectfusion [18]. Our
approach can provide much better visualization than original
model but still with limits on measurement precision.

7. Conclusions

In this paper, we localize the regions of transparent object
based on volumetric 3D reconstruction in natural environ-
ment and then refine the 3D model by silhouettes within the
regions.The experiments show that our approach can get reli-
able locations of transparent object and some other unami-
able materials which disturb the 3D reconstruction based on
structured light. And the silhouettes jointly extracted from
multiviews can recover transparent meshes and improve the
3D model scanned by Kinectfusion.
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(a)

(b)

(c)

(d)

Figure 5: Results on noise region. (a) Color images captured by stationary camera with a rotating platform. (b)The noisy voxels detected by
multiple depth images are in red. (c) and (d) show the experimental results done by a moving Kinect; the background is changing in these
two cases.
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(a) Ours (b) ZD (c) Lysenkov’ 13

Figure 6: (a) Noisy voxels detected by our method, red points are reprojection of the voxels on a color image. (b) Reprojection of ZD region
on a color image. (c) 2D noise regions detected by [6]. The sequence of examples is the same as Figure 5.
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Grabcut

Joint segmentation

Figure 7: Examples of silhouettes.

Kinfu [18]

Ours

Figure 8: Comparison of 3D model scanned by Kinectfusion and our approach.
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Our future work will focus on the camera’s poses opti-
mization which can improve the visual hull of transparent
object further. And we plan to implement our noise region
search algorithm with GPU to develop an online detector,
followed by the brief offline SFS computation.
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