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Pulmonary thromboembolism (PTE) is part of a larger clinicopathological entity, venous thromboembolism. It is also a
complex, multifactorial disorder divided into four major disease processes including venous thrombosis, thrombus in transit,
acute pulmonary embolism, and pulmonary circulation reconstruction. Even when treated, some patients develop chronic
thromboembolic pulmonary hypertension. PTE is also a common fatal type of pulmonary vascular disease worldwide, but earlier
studies primarily focused on the pathological changes in the blood component of the disease. With contemporary advances
in molecular and cellular biology, people are becoming increasingly aware of coagulation pathways, the function of vascular
smooth muscle cells, microparticles, and the inflammatory pathways that play key roles in PTE. Combined hypoxia and immune
research has revealed that PTE should be regarded as a class of complex diseases caused by multiple factors involving the vascular
microenvironment and vascular cell dysfunction.

1. Introduction

Venous thromboembolism (VTE), a combination of deep
venous thrombosis (DVT) and pulmonary embolism (PE), is
a major cause of morbidity and death in patients worldwide.
PE is a common and potentially fatal disease that is caused by
a perfusion defect due to an embolus blocking blood flow in
the lungs [1]. VTE comprises all types of venous thrombosis
in the various compartments, whether superficial or in the
deep veins. PTE is also regarded as an acute complication
of DVT [2]. The incidence of VTE is 1 : 1000 per year, and
that of PE is approximately 50 in 100,000 per year in Europe
[3, 4]. Similarly, in the USA it affects an estimated number
of 900,000 people each year, resulting in large numbers of
hospitalizations and approximately 300,000 deaths [5].

Clinically, based on the classification of patients with
acute PE based on early mortality risk, patients with high-
risk PE (presenting with shock or hypotension) need to
receive reperfusion therapy with thrombolysis, and low-risk
(pulmonary embolism severity index [PESI] classes I-II or
simplified pulmonary embolism severity index [sPESI] = 0)

and intermediate-risk (PESI classes III-IV or sPESI ≥ 1) PEs
are usually treated with anticoagulation and thrombolysis
therapies to reconstruct the normal pulmonary hemody-
namics [6]. The process of thrombolysis depends on two
methods of clearing blood clots: thrombus dissolution by the
endogenous fibrinolytic system and thrombus recanalization
by the vascular microenvironment [7, 8]. In addition to
traditional anticoagulants (e.g., heparin, warfarin) [9], novel
anticoagulant drugs (e.g., dabigatran, rivaroxaban) and new
medical materials have also played an important role in
the prevention and treatment of PTE [10, 11]. However,
confusion still exists for certain patients. Even after formal
treatment, such as continuous anticoagulant therapy for 3–6
months, normal pulmonary circulatory function cannot be
reconstructed after PTE. These patients often end up with
chronic thromboembolic pulmonary hypertension (CTEPH)
[12].

In 1856, Virchow concluded that vessel wall injury, blood
stasis, and hypercoagulability are the three synergic abnor-
malities that cause VTE [13]. The critical event in venous
thrombosis is thrombin generation from the coagulation
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pathways, initialized by activated tissue factor (TF) [14]. In
contrast, thrombus elimination is the result of a long-term
interaction between the fibrinolysis system and the vascular
microenvironment [15, 16]. Many discoveries from recent
studies have shown that the activation and signal transduc-
tion of protease activated receptors (PARs), pulmonary artery
smooth muscle cells (PASMCs) responses to hypoxia, cell-
cell interactions mediated by extracellular vesicles (EVs),
such as microparticles (MPs), and inflammation are the
diverse mechanisms associated with the occurrence and
development of PTE. This review discusses these potential
mechanisms and aims to elucidate the detailed pathophysi-
ology of PTE.

2. PARs: Activation and Venous Thrombosis

The initial event of PTE is venous thrombosis [14]. As a
result, PE is considered an acute complication of DVT, and
postthrombotic syndrome (PTS) is a long-term complica-
tion of DVT [17]. Therefore, a close relationship has been
observed between PTE and coagulatory function. PARs serve
as a significant driving force in the coagulation cascade
and signal transduction pathways [18–20], and they may
play an extremely important role in the process of PTE.
PARs are seven-transmembraneG-protein-coupled receptors
and include four family members, named PAR1–PAR4 [21].
PAR1, PAR3, and PAR4 are mainly cleaved and activated
by thrombin, which acts as a key serine protease in the
coagulation cascade [22–24]. However, PAR2 is a receptor
for mast cell tryptase, coagulation factors VIIa and Xa, and
trypsin [25, 26]. This family is widely distributed through-
out various organs of the body, such as the cardiovascu-
lar system, respiratory system, nervous system, and renal
system [27]. Particularly, in the circulation system, it can
promote the activation of platelets [28] or endothelial cells
[29] and TF regulation in the pathological process [30].
PAR4-deficient mice are protected against thromboplastin-
induced PE [31]. However, it is important to note that
there are species differences in the expression of PARs in
platelets. For example, rat and mice platelets lack PAR1
[32, 33].

The activation of PARs requires proteolytic cleavage
at the N-terminal extracellular domain, which generates
a new N-terminal domain that functions as a tethered
ligand by binding intramolecularly to the receptor, triggering
transmembrane signaling [18]. PAR-agonist peptides (PAR-
APs) are structurally similar to the tethered ligands and
can activate PARs independently of protease activity and
receptor cleavage [26]. Activated PARs initiate cell signaling
via the recruitment of heterotrimeric G proteins, including
Gi, G12/13, and Gq [21]. Subsequently, downstream cellular
responses lead to nociception, inflammation, cell migration,
and proliferation, which often occur in pulmonary diseases
[34].

PARs are expressed on both endothelial cells (ECs) and
vascular smooth muscle cells (VSMCs). ECs mainly express
PAR1, and other types of PARs are also present in very low
amounts [35]. To represent typical vascular endothelial cells

(VECs), human umbilical vein endothelial cells (HUVECs)
and pulmonary artery endothelial cells (PAECs) are used
to study the relationship between ECs and coagulation
function [36, 37]. It has been demonstrated that TF-FVIIa-
Xa complexes can transmit signals by PAR1 and TF-FVIIa
complexes directly have a function that activates PAR2 [38].
These significant events occur during the process of clot
formation and increased pulmonary vascular resistance in
PTE.

However, studies suggest that the activation of TF and
PARs is far more complex than once thought [39]. After
specific peptide binding and activation, PAR1 and PAR2,
which are expressed in HUVECs, and TF, which is expressed
in ECs, can be induced by the redox-sensitive signaling
pathway. The key signaling molecules of the common path-
way are reactive oxygen species (ROS) generated by the
mitochondrial electron transport chain and simultaneously
activated ERK1/2 and MAPKp38. Mitochondrial complex III
is mostly involved in the generation of ROS induced by PAR1
and PAR2. Researchers have also discovered that thrombin
and PAR2-AP have a similar pharmacological activity to
induce the production of TF mediated by mitochondrial
complexes I and III [39, 40]. This finding contradicts the
previous theory that the TF-VIIa complex activates PARs
signal transduction independently [38]. Low concentrations
of thrombin, which accumulates in the valve pocket, and local
prolonged hypoxia caused by blood stasis are the two major
characteristics of the initiation process of venous thrombosis
[41, 42]. In addition, the expression of TF at the embolism site
is not significantly increased [43]. A reasonable assumption
is that if TF is activated strongly and immediately on VECs
through mROS, which are induced by thrombin or hypoxia
in acute PE, then it may play a central role in the triggering
and spread of thrombi. This mechanism can explain the
strengthened process of thrombosis in the acute phase of
PTE. It also demonstrates that activation and regulation of
TF and PARs are bidirectional.

Previous studies have shown that venous thrombi are
mainly composed of fibrin and red blood cells [44, 45], and
the role and function of platelets inVTE are rarely implicated.
However, many recent studies show that platelets are a very
important factor in thromboembolic disease. It was noted
that venous thrombi contain platelets, and platelet activation
is associated with thrombus initiation and propagation [46,
47]. PARs are important in multiple regulation pathways
of platelet activation and directly or indirectly affect the
progression of PTE. It is known that PAR1 can mediate the
activation of human platelets by thrombin at low concen-
trations, but PAR4 plays a similar role at high thrombin
concentrations if PAR1 is absent [18]. Recent research has
shown that Prohibitin l (PHB1), expressed on the platelet
membrane, has the function of microcontrol action on the
PAR1 signaling pathway [48]. Experiments have confirmed
that PHB1 is a type of membrane protein from human
platelets that participates in the pathological activation of
PAR1 and is induced by low concentrations of thrombin in
PAR1-mediated platelet aggregation. Once PAR1 in HUVECs
is activated, PHB1 also has an impact on the degradation and
internalization of PAR1 [49].
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3. Functional Proteins in PASMCs:
A Link between Pulmonary
Vasoconstriction and Hypoxia

The pulmonary vascular wall consists of three layers: the
adventitia, media, and intima [50]. PASMCs located in the
media are highly specialized cells. Differentiated SMCs (also
called the “contractile phenotype”) differ from other types
of blood vessel cells, and their proliferation and synthesis
abilities are inhibited [15, 51]. Under the effect of oxygen
concentrations, PASMCs maintain vascular tension through
the regulation of contraction and relaxation [52, 53].They can
express proteins associated with contraction function [54]
and ion channels that participate in the process of pulmonary
vasoconstriction [55, 56].

Arterial hypoxemia, caused by the mismatching of ven-
tilation and perfusion, is due to a thrombus obstructing the
pulmonary artery or its branches in acute PE [57]. Hypoxic
pulmonary vasoconstriction (HPV) can also elevate the pul-
monary artery pressure (PAP) by increasing the pulmonary
vascular resistance [58]. The exact mechanism has not been
fully clarified, but PASMCs play an important role in HPV.
Previous studies have suggested that oxygen concentrations
can be “sensed” by mitochondria [40] or NADPH oxidases
[59] from PASMCs related to the alteration of ROS. There
is a debate in the literature regarding whether ROS levels
increase or decrease during hypoxia [60–62]. However, it
is known that ROS has the function of regulating the K+
and Ca2+ channels in PASMCs [63, 64]. Redox-sensitive
K+ channels were found to be inhibited under hypoxia,
and membrane potential changes and voltage-gated L-type
Ca2+ channels were activated. Elevated intracellular Ca2+
concentrations from the internal release of calcium, or the
influx of extracellular calcium, produce signals that trigger
PASMCs contraction by activating actin and myosin.

Presently, the theory regarding the precise mechanism
of HPV remains unclear. For example, the functions of
actin-associated proteins in PTE are largely unknown. We
have shown that hypoxia can regulate the production of
two actin-associated proteins through the hypoxia inducible
factor (HIF) pathway in human or rat PASMCs. HIF-1𝛼
can induce the expression of the capping protein CapG,
and HIF-2𝛼 can induce the expression of transgelin (SM22)
[65, 66]. CapG is an actin regulatory protein that can
modulate actin length by binding and capping the end of actin
filaments in a Ca2+- and polyphosphoinositide-dependent
manner [67]. Transgelin can participate in the organization
of actin distribution by interacting with actin and plays an
important role in the regulation of PASMCs contraction in
a Ca2+-independent manner [68, 69]. The upregulation of
these two proteins contributes to the increased motility and
contraction of PASMCs under acute or sustained exposure
to low-oxygen environments. These observations indicate
that the two oxygen-sensing pathways that are dependent on
ROS or HIF may both play a significant role in pulmonary
vasoconstriction after PE.

Acute hypoxia in PTE causes clinical manifestations,
including vascular contraction, alveolar hypoxia, and the

increased blood coagulation activity [42, 70]. However,
unlike acute hypoxia, sustained hypoxia ismore common in a
variety of pulmonary vascular diseases [71].The upregulation
of transgelin and CapG enhances the migratory ability of
PASMCs during the process of vascular remodeling caused by
chronic hypoxia [66, 72]. In future studies, it would be inter-
esting to focus on the differences in the mechanism between
CTEPH associated with PTE and hypoxic pulmonary hyper-
tension (HPH), due to lung disease and/or hypoxia. Hypoxia
also overcomes the balance of ACE/ACE2 expression levels
by HIF-1𝛼 [73] and plays key roles in promoting the contrac-
tion and proliferation of PASMCs by inhibiting the ACE2-
Ang(1–7)-Mas axis.The administration of recombinantACE2
suppresses the pulmonary vasoconstriction response to acute
hypoxia that occurs in pulmonary hypertension (PH) related
to high altitude [74], which is similar to the symptoms
of acute PE. Moreover, the functions of the contraction,
secretion, growth, and migration of PASMCs greatly affect
thrombus dissolution and recanalization, which are closely
associated with the prognosis of an individual patient after
acute PE.

4. Microparticles: A Potential
Biomarker for PTE

EVs are nanosized, membrane-limited vesicles released from
cells that participate in cell-cell communication [75]. Several
types of cells are capable of releasingEVs,which can transport
DNA, RNA, lipids, and proteins [76] by shedding vesicles
from their plasma membrane. Due to the release of EVs
from cells throughout the body, they can also be detected
in diverse body fluids [75] and in cell culture supernatants
[77]. Cells produce different subtypes of EVs that vary in
size, including microvesicles (MVs)/microparticles (MPs),
exosomes, oncosomes, and apoptotic bodies [78]. MVs and
exosomes are generated by normal and cancer cells [76].
The mechanism of intercellular information transmission
by these two major types of EVs has also been extensively
studied. MVs that contain cytoplasmic cargos are 0.1–1 𝜇m
in diameter and come directly from the plasma membrane
[78, 79]. MPs and exosomes can be released from VECs
and VSMCs induced by hypoxia [80], shear stress [81], or
cytokines [82] during the disease process. Therefore, they
are regarded as potential biomarkers for the diagnosis or
prognosis of PTE and provide a new treatment strategy in
addition to anticoagulation and thrombolysis [83].

MPs seem to be associated with a hypercoagulable state,
which predisposes a person to thrombosis but does not
determine its occurrence. The levels of circulating tissue
factor bearing MP (TF+MPs) [84] or phosphatidylserine
(PS+) and lactadherin+ MPs [85] are higher in patients with
a hypercoagulable status than in control subjects. Elevated
circulating MP-TF activity is associated with thrombosis
and worsened survival in patients with pancreaticobiliary
cancers (PBCs) [86]. Increased levels of glial-derived and/or
TF+MPs are also noted in glioblastoma multiforme (GBM)
patients both before and even more so after the neoplasm is
treated, suggesting a contribution of TF+/GFAP-MPs to the
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risk of VTE [87]. Watts and colleagues [88] demonstrated
that MP protein composition changes and the proteins
involved in clot formation increase during PE compared with
controls. The process of acute PE in a rat model induced
by injection with polystyrene microspheres also showed that
the proteins inside MPs have prothrombotic characteristics
related to fibronectin, fibrinogen, and vonWillebrand factor.
However, in another study, Garcia Rodriguez and colleagues
[89] demonstrated that plasma MP-TF activity in patients
presenting with clinically suspected PE was not associated
with confirmedPE. In both groups of patients presentingwith
symptoms of PE, the median MP-TF activities were signifi-
cantly higher than those in the healthy controls, especially in
patients with the presence of active cancer or cardiovascular
disease. These findings suggest that the high MP-TF activity
levels found in cancer patients with acute VTE originate from
aggressive tumour cells rather than an acute thromboembolic
event.

Valuable biomarker candidates must possess specificity,
sensitivity, timeliness, and a biological gradient. Associations
between elevated MPs levels and an increased risk of VTE
have been found in patients with underlying diseases such
as high-grade glioma [90] or in patients undergoing in vitro
fertilization [91] to treat infertility. However, confusion and
contradictions are still present in clinical studies [92, 93].
Further research should focus on the following problems:

(I) The limitations of current assays in measuring MPs
may be divided into sizing, probing, and counting
[94]. The resultant difference between flow cytom-
etry and other methods such as enzyme-linked
immunosorbent assays is a widespread problem
because a standardized conversion between the two
methods is difficult and lacking.

(II) Some studies have shown that PS- or TF-dependent
procoagulant activity is consistent with a hyper-
coagulable status and the occurrence of VTE [85,
95]. Further studies are necessary to identify the
diagnostic value and clinical significance of different
procoagulant markers fromMPs.

(III) MPs are derived from various cells, including blood
cells, ECs, SMCs, andmalignant cells [96].Mesenchy-
mal stem cells, which are applied to biotherapy, can
also releaseMVs [97], and PTE is one of themost seri-
ous complications during the treatment procedures
[98]. Thus, distinguishing the source of MPs is one
of the core problems associated with using MPs as a
biomarker to diagnose or assess the prognosis of PTE.

(IV) In the process of collecting and detecting blood
samples, researchers often overlook the fact that
different treatment methods or drug applications
involving anticoagulants have potential effects on the
production or function of TF+MPs [99]. Antitumor
therapies, such as chemotherapy, may also increase
the level and/or activity of TF+MP [100, 101].

5. Inflammation: A Close Association with
the Occurrence of PTE

Under the condition of multiple stimuli such as hypoxia or
trauma, inflammation is a trigger for pulmonary endothelial
dysfunction and platelet activation [102, 103]. Evidence has
implicated the presence of inflammation with acute PE,
including the observation that the white blood cell (WBC)
count and neutrophil-to-lymphocyte ratio (NLR) are associ-
ated with short-term outcomes in PE patients. Venetz et al.
[104] demonstrated that patients with an elevatedWBCcount
(>9.8 × 109/L) have a significantly higher 30-day mortality
than patients who do not, after adjustment for thrombolytic
therapy and for patient- and hospital-related confounders.
Previous studies [105] have shown that an elevated WBC
count may be a marker for hypercoagulability and that
the WBC count correlates with levels of fibrinogen, factor
VII, and factor VIII. A retrospective cohort study [106],
including 667 PE patients, further showed that leukocytosis
and the systemic inflammatory response are prognostic
factors for 30-day mortality after PE. Other researchers
have also observed that the platelet-to-lymphocyte ratio
(PLR) is an independent predictor of mortality in acute PE
patients, which is significantly correlated with PESI scores
[107]. Moreover, the NLR is considered a better indepen-
dent predictor of in-hospital mortality and may be used
for clinical risk classification because of its reliability in
the distinction between massive and submassive embolism
[108].

Furthermore, the key role of neutrophils in PTE has been
confirmed by a series of experimental studies. Cytokine-
induced neutrophil chemoattractant-1 (CINC-1) expression
increased 18- and 24-fold at 6 and 18 h after PE, respectively,
and an influx of neutrophils was observed, with a significant
upregulation 18 h after PE [109]. Neutrophilic inflammation
is also observed in the lungs in an acute PE model in which
bronchoalveolar lavage-associated neutrophils showed an
almost 6-fold increase in rats with severe PTE compared with
controls or rats with moderate PTE [110]. These results show
that neutrophils contribute to right ventricular dysfunction
and lung damage in rat PE. However, there was a remarkable
difference between acute PH caused by PTE and chronic PH
caused by HPH or CTEPH [111]. Some scholars believe that
inflammation is an important pathological process of right
ventricular damage after PE and can indirectly lead to a poor
clinical outcome [112].

An increasing number of studies have also found that
patients with chronic inflammatory disorders of the airway,
such as asthma and chronic obstructive pulmonary disease
(COPD), are at high risk of PTE. In a population-based,
case-control retrospective study [113] that included 909,638
individuals (429,962 males and 479,676 females) aged over 14
years and 55,500 (6.1%) individuals suffering from asthma,
the prevalence of PE was found to be substantially higher
among asthmatic patients than in the nonasthmatic general
population (0.26% versus 0.17%). A retrospective study [114]
that included 648 patients with asthma (283 with severe
and 365 patients with mild-to-moderate asthma) showed
an almost 9-fold higher risk of PE in patients with severe
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Figure 1: Protease activated receptors (PARs), pulmonary artery smooth muscle cells (PASMCs), microparticles (MPs), and inflammation
are associated with pulmonary thromboembolism (PTE). Biomedical research has shown that PARs modulate thrombosis by activating ECs,
and functional proteins (e.g., CapG, transgelin, and ACE2) in PASMCs have an important function in pulmonary vasoconstriction. Clinical
research links MPs and hypercoagulability to venous thromboembolism. Epidemiological studies have shown that inflammation is a risk
factor for PTE.

asthma and a 3.5-fold higher risk of PE in patients with mild-
to-moderate asthma than in the general population. Oral
corticosteroid use was also found to be an independent risk
factor for PE. In a large cohort study [115] that included 31,356
asthmatic patients and 125,157 nonasthmatic controls, the
overall incidence rate of PE showed a 3.30-fold increase in the
asthmatic patients compared with the nonasthmatic cohort
(10.2 versus 3.09 per 100,000 person-years). One hypothesis
is that asthma may reduce the process of clot retraction,
which makes the thrombus stronger and more resistant to
shear stresses and fibrinolysis. Recent studies have confirmed
that asthma is associated with a significant inhibition of clot
retraction [116]. The potential mechanism is that reactive
nitrogen species produced in the lungs of asthmatic patients
may reduce platelet contractility through the diminution of
platelet energy production.

Several studies have also shown an increased preva-
lence of PE in COPD patients. COPD is associated with
an increased risk of VTE, and PE presentation is more
significantly associated with COPDpatients than non-COPD
patients (OR 1.64, 95%CI 1.49–1.80) [117]. Specifically, COPD
is associated with an increased risk of mortality (10.8% versus
7.6%), minor bleeding (4.5% versus 2.3%), and first VTE
recurrences as PE (1.5% versus 1.1%) during the 3-month
follow-up. Similar to asthma, COPD patients present more
frequently with PE than with DVT [114, 117]. A retrospective
population-based cohort study [118] using data retrieved
from Taiwan’s National Health Insurance Research Database
(2000 to 2008), including 355,878 COPDpatients and 355,878
comparison patients, shows that the prevalence of PE in
COPD patients is 3.45-fold higher than that in non-COPD
patients and increases with age. Severely exacerbated COPD
patients, especially those with immobility/obesity [119] or
those requiring ICU admission [120], have an increased risk
of PE.

The complex relationship between PTE and respiratory
allergy/inflammatory diseases is partly attributed to various
types of inflammatory cytokines and immune cells. Proin-
flammatory activity is one of the predominant features in
interleukin familymembers [121], but somemembers have an
anti-inflammatory function [122]. For example, M1- or M2-

type macrophages play different roles in tissue damage and
inflammatory responses [123].More importantly, neutrophils
are simultaneously involved in thrombosis and thrombolysis,
which are two key processes in PTE. Neutrophil extracellular
traps (NETs) are considered to be one of the basic structures
of thrombosis [124], and the dissolution of NETs can also
affect thrombus dissolution and recanalization [125]. Anti-
inflammatory treatment for PTE is not as simple as anticoag-
ulation therapy, but it will be a focus of future studies because
of its potential implications in PTE.

6. Summary and Perspective

PTE is more closely associated with coagulation function
than lung cancer, pneumonia, and other common respiratory
diseases. Virchow’s Triad preliminarily revealed the internal
relationships between coagulant function abnormality and
pathological changes in the vessel wall, based on venous
thrombosis, which is the initial event of pulmonary throm-
boembolism. Focusing on amolecular and cellular view, con-
temporary research reveals that the function of coagulation
involving vascular endothelium in PTE is affected by hypoxia
or inflammation, and developing an efficient test for the
diagnosis and prognosis of PTE depends on the knowledge
of the balance between prothrombotic and antithrombotic
factors in the lung.

The aim of contemporary research is to understand the
pathogenesis of PTE (Figure 1). Various laboratory stud-
ies have demonstrated the importance of PAR activation,
hypoxia signaling pathways, and the generation of MPs.
However, the inflammatory response is a link involving the
above three events in PTE and may have an overall influence
on signal transduction in the progression of the disease,
depending on ECs or platelets [8, 126, 127]. Compared with
traditional anticoagulation and thrombolysis therapy based
on the theory of thrombosis, the activation and regula-
tion of inflammatory pathways are complex. For example,
inflammasomes are activated in diseases associated with
sterile inflammation [128] and can sometimes be initiated by
peptide secretions of the host at earlier stages of infection
or trauma, to protect the host against microbial infection
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[129]. Some inflammatory factors also have a function as
a two-way switch, and specific types of leukocytes, such as
neutrophils, participate in the two important processes of
thrombosis and thrombolysis in PTE. This finding suggests
that immunization therapy for PTE is destined to be useful
and that a purely anti-inflammatory treatment cannot be
used, periodically, to suppress the inflammatory process.
Inflammation andmetabolism also have a very complex link.
Extracellular ATP has a proinflammatory role in the process
of infection, and this effect is produced by the activation
of inflammasomes [130]. Additionally, hypoxia induces the
caspase-1-mediated activation of the NALP3 inflammasome
in chronic HPH [131].

Numerous clinical studies involving PTE have summa-
rized the spectrum of risk factors associated with the occur-
rence and development of disease [132], and the prevention
and treatment of PTE have a high rate of success based
on current risk stratification. Similarly, the complex cellular
and molecular mechanisms must also be explained through
basic researchwhichmay generate new therapeutic strategies.
Due to the improvements in animal models [133], research
developments in the field of PH are more comprehensive
and have a more specific theoretical depth than do those in
the field of PTE. It is worth learning from the experiences
gained from studies in PH. In addition to anticoagulant and
thrombolytic therapy, new targeted drugs and treatments
must be perfected based on the progress of PTE animal
models and research methods, as well as on integrating, the
involvement of anticoagulants, procoagulants, fibrinolytics,
and the immune system, rather than focusing solely on the
thrombus.
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