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The fractional subequationmethod is applied to solve Cahn-Hilliard and Klein-Gordon equations of fractional order.The accuracy
and efficiency of the scheme are discussed for these illustrative examples.

1. Introduction

Fractional calculus deals with fractional integrals and deriva-
tives of any order [1–8]. Numbers of very interesting and
novel applications of fractional partial differential equations
(FPDEs) in physics, chemistry, engineering, finance, biology,
hydrology, signal processing, viscoelastic materials, frac-
tional variational principles, and so forth, developed mainly
in the last few decades [1–15], have led recently to an intensive
effort to find accurate and stable numerical methods that are
also straightforward to be implemented.

Also, the exact solutions of most of the FPDEs cannot be
found easily; thus analytical and numerical methods must be
used. Some of the numerical methods for solving fractional
differential equations (FDE) and FPDEs were discussed in
(see [7, 16–23] and the references therein).

By taking into account the results from [24], a new direct
method titled fractional subequation method to search for
explicit solutions of FPDEs was proposed [25].We notice that
themethod relies on the homogeneous balance principle [26],
Jumarie’smodifiedRiemann-Liouville derivative [27, 28], and
the symbolic computation. With the help of this method,
some exact solutions of nonlinear time fractional biological

population model as well as the (4 + 1)-dimensional space-
time fractional Fokas equation were reported [25]. Recently,
the improved fractional subequation method was proposed,
and it was used to solve the following two FPDEs in fluid
mechanics [29].

In this paper, we suggest the fractional subequation
method and utilize this method to solve the following two
FPDEs.

(a) The space-time fractional Cahn-Hilliard equation in
the form
𝐷
𝛼

𝑡
𝑢 − 𝛾𝐷

𝛼

𝑥
𝑢 − 6𝑢(𝐷

𝛼

𝑥
𝑢)
2

− (3𝑢
2

− 1)𝐷
2𝛼

𝑥
𝑢

+ 𝐷
4𝛼

𝑥
𝑢 = 0,

(1)

where 0 < 𝛼 ≤ 1 and 𝑢 are the functions of (𝑥, 𝑡).
For the case corresponding to 𝛼 = 1, this equation is
related with a number of interesting physical pheno-
mena like the spinodal decomposition, phase separa-
tion, andphase ordering dynamics.On the other hand
it becomes important in material sciences [30, 31].
However we notice that this equation is very difficult
to be solved and several articles investigated it (see,
e.g., [32] and the references therein).
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(b) The nonlinear fractional Klein-Gordon equation [33]
with quadratic nonlinearity reads as

𝐷
2𝛼

𝑡𝑡
𝑢 − 𝐷

2𝛼

𝑥𝑥
𝑢 + 𝛾𝑢 − 𝛽𝑢

2

= 0, 𝛾, 𝛽 ̸= 0. (2)

We notice that the nonlinear fractional Klein-Gordon equa-
tion describes many types of nonlinearities. On the other
hand the Klein-Gordon equation plays a significant role in
several real world applications, for example, the solid state
physics, nonlinear optics, and quantum field theory.

The paper suggests a fractional subequation method to
find the exact analytical solutions of nonlinear fractional
partial differential equations with the Jumarie’s modified Rie-
mann-Liouville derivative of order 𝛼 which is defined as [27]

𝐷
𝛼

𝑥
𝑓 (𝑥) =

{{{{{{{{{{{

{{{{{{{{{{{

{

1

Γ (1 − 𝛼)
∫
𝑥

0

(𝑥 − 𝜉)
−𝛼−1

[𝑓 (𝜉) − 𝑓 (0)] ,

𝛼 < 0,

1

Γ (1 − 𝛼)

𝑑

𝑑𝑥
∫
𝑥

0

(𝑥 − 𝜉)
−𝛼

[𝑓 (𝜉) − 𝑓 (0)] ,

0 < 𝛼 < 1,

[𝑓(𝛼−𝑛) (𝑥)]
(𝑛)

, 𝑛 ≤ 𝛼 < 𝑛 + 1, 𝑛 ≥ 1.

(3)

As pointed out by Kolwankar and Gangal [34], even though
the variable 𝑡 is taking all real positive values the actual
evolution takes place only for values of 𝑡 in the fractal set
𝐶. We take 𝜒(𝑡) = 1 which is a flag function. We conclude
that, from the viewpoint of the Kolwankar-Gangal’s local
fractional derivative, the parameter 𝛼 is the fractal dimension
of time. Thus, the approximate solution is generated by
some distribute function defined over the fractal sets in
some closed interval [0, 1]. They are continuous but not dif-
ferentiable functions with respect to 𝑡.

The organization of the manuscript is as follows. In
Section 2, we briefly explain the fractional subequation
method for solving fractional partial differential equations. In
Section 3, we extend the application of the proposed method
to two nonlinear equations. Finally, Section 4 is devoted to
our conclusions.

2. The Method

The fundamental ingredients of the fractional subequation
method for solving fractional partial differential equations
are described in [29].The starting point is to consider a given
nonlinear fractional partial differential equation in 𝑢(𝑥, 𝑡)

𝑝 (𝑢, 𝑢
𝑥
, 𝑢
𝑡
, 𝐷
𝛼

𝑡
𝑢,𝐷
𝛼

𝑥
𝑢, . . .) = 0, 0 < 𝛼 < 1, (4)

where 𝐷𝛼
𝑡
𝑢 and 𝐷𝛼

𝑥
𝑢 are Jumarie’s modified Riemann-Liou-

ville derivatives of 𝑢, 𝑢 = 𝑢(𝑥, 𝑡) is an unknown function, and
𝑃 is a polynomial in 𝑢 and its various partial derivatives, in
which the highest order derivatives and nonlinear terms are
involved.

To specify 𝑢 explicitly, we use in this paper the proposal
in four basic steps proposed in [29, 35]; namely, we reduce, by
using the traveling wave transformation, the given nonlinear

FPDE to a nonlinear fractional differential equation (FDE).
After that we assume that the reduced equation obtained
previously admits the following solution

𝑢 (𝜉) =

𝑛

∑
𝑖=0

𝑎
𝑖
𝜑
𝑖

, (5)

where 𝑎
𝑖
(𝑖 = 0, 1, . . . , 𝑛 − 1, 𝑛) are constants to be found,

𝑛 denotes a positive integer determined by balancing the
highest order derivatives with the highest nonlinear terms
in (4) or the modified one (see [35] for more details), and
the new variable 𝜑 = 𝜑(𝜉) fulfilling the fractional Riccati
equation:

𝐷
𝛼

𝜉
𝜑 = 𝜎 + 𝜑

2

, 0 < 𝛼 ≤ 1. (6)

The next step is to substitute (5) along with (6) into the
modified version of the equation and to use the properties of
Jumarie’s modified Riemann-Liouville derivative, in order to
get a polynomial in 𝜑(𝜉). Requesting all coefficients of𝜑𝑘 (𝑘 =
0, 1, 2, . . .) to be zero, we end up to a set of overdetermined
nonlinear algebraic equations for 𝑐, 𝑘, 𝑎

𝑖
(𝑖 = 0, 1, . . . , 𝑛 −

1, 𝑛).
Finally, assuming that 𝑐, 𝑘, 𝑎

𝑖
(𝑖 = 0, 1, . . . , 𝑛 − 1, 𝑛) are

obtained by solving the algebraic equations in the previous
step, and substituting these constants and the solutions of (6)
into (5), we get the explicit solutions of (4).

3. Main Results

In this section, we apply the method presented in Section 2
for solving the FPDEs (1) and (2), respectively.

Example 1. We consider the space-time fractional Cahn-
Hilliard equation as

𝐷
𝛼

𝑡
𝑢 − 𝛾𝐷

𝛼

𝑥
𝑢 − 6𝑢(𝐷

𝛼

𝑥
𝑢)
2

− (3𝑢
2

− 1)𝐷
2𝛼

𝑥
𝑢 + 𝐷

4𝛼

𝑥
𝑢 = 0.

(7)

Making use of the travelling wave transformation

𝑢 = 𝑢 (𝜉) , 𝜉 = 𝑘𝑥 + 𝑐𝑡. (8)

Equation (7) is reduced into a nonlinear FDE easy to solve,
namely,

𝑐
𝛼

𝐷
𝛼

𝜉
𝑢 − 𝛾𝑘

𝛼

𝐷
𝛼

𝜉
𝑢 − 6𝑢(𝑘

𝛼

𝐷
𝛼

𝜉
𝑢)
2

− (3𝑢
2

− 1) 𝑘
2𝛼

𝐷
2𝛼

𝜉
𝑢

+ 𝑘
4𝛼

𝐷
4𝛼

𝜉
𝑢 = 0.

(9)

Next we suppose that (9) has a solution in the form given
below

𝑢 =

𝑛

∑
𝑖=0

𝑎
𝑖
𝜑
𝑖

, (10)

where 𝜑 obeys the subequation (6).
By balancing the highest order derivative terms and

nonlinear terms in (9), gives the value of 𝑛 = 1, we substitute
(10), along with (6), into (9), and then setting the coefficients
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of 𝜑𝑗 (𝑗 = 0, 1, . . . , 5) to zero, we finally end up with a system
of algebraic equations, namely,

𝑎
1
𝜎𝑐
𝛼

− 6𝑎
0
𝑎
2

1
𝜎
2

𝑘
2𝛼

− 𝑎
1
𝛾𝜎𝑘
𝛼

= 0,

−6𝑎
3

1
𝜎
2

𝑘
2𝛼

− 16𝑎
1
𝜎
2

𝑘
4𝛼

− 6𝑎
2

0
𝑎
1
𝜎𝑘
2𝛼

+ 2𝑎
1
𝜎𝑘
2𝛼

= 0,

𝑎
1
𝑐
𝛼

− 24𝑎
0
𝑎
2

1
𝜎𝑘
2𝛼

− 𝑎
1
𝛾𝑘
𝛼

= 0,

−18𝑎
3

1
𝜎𝑘
2𝛼

− 40𝑎
1
𝜎𝑘
4𝛼

− 6𝑎
2

0
𝑎
1
𝑘
2𝛼

+ 2𝑎
1
𝑘
2𝛼

= 0,

−18𝑎
0
𝑎
2

1
𝑘
2𝛼

= 0,

−12𝑎
3

1
𝑘
2𝛼

− 24𝑎
1
𝑘
4𝛼

= 0.

(11)

Solving the set of algebraic equations yields

𝑎
0
= 0, 𝑎

1
= ±𝑖√2𝑘2𝛼, (12)

where 𝑘2𝛼 = 1/2𝜎, 𝑐𝛼 = 𝑘𝛼 and 𝜎 denotes an arbitrary con-
stant.

By using (8)–(12) after some tedious calculations, the
exact solutions of (7), namely, generalized hyperbolic func-
tion solutions (see [24] for their definitions) and generalized
trigonometric function solutions are obtained as

𝑢 =

{{{{{{{{{

{{{{{{{{{

{

±𝑖√2𝑘2𝛼 (√−𝜎tanh
𝛼
(√−𝜎 (𝑘𝑥 + 𝑐𝑡))) , 𝜎 < 0,

±𝑖√2𝑘2𝛼 (√−𝜎coth
𝛼
(√−𝜎 (𝑘𝑥 + 𝑐𝑡))) , 𝜎 < 0,

±√2𝑘2𝛼 (√𝜎tan
𝛼
(√𝜎 (𝑘𝑥 + 𝑐𝑡))) , 𝜎 > 0,

±𝑖√2𝑘2𝛼 (√𝜎cot
𝛼
(√𝜎 (𝑘𝑥 + 𝑐𝑡))) , 𝜎 > 0.

(13)

We stress on the fact that when 𝛼 → 1 these obtained exact
solutions give the ones of the standard form equation of the
space-time fractional Cahn-Hilliard equation (7).

Example 2. The next step is to investigate the fractional
nonlinear Klein-Gordon equation in the following form:

𝐷
2𝛼

𝑡𝑡
𝑢 − 𝐷

2𝛼

𝑥𝑥
𝑢 + 𝛾𝑢 − 𝛽𝑢

2

= 0. (14)

To solve (14), we perform the traveling wave transforma-
tion

𝑢 = 𝑢 (𝜉) , 𝜉 = 𝑘𝑥 + 𝑐𝑡; (15)

therefore (14) is reduced to the following nonlinear fractional
ODE, namely,

𝑐
2𝛼

𝐷
2𝛼

𝜉
𝑢 − 𝑘
2𝛼

𝐷
2𝛼

𝑢 + 𝛾𝑢 − 𝛽𝑢
2

= 0. (16)

Next, we assume that (16) admits a solution in the form

𝑢 =

𝑛

∑
𝑖=0

𝑎
𝑖
𝜑
𝑖

. (17)

At this stage we apply the same technique as in the case of
the previous example. Namely, by balancing the highest order
derivative terms and nonlinear terms in (16), then substitut-
ing (17), with 𝑛 = 2, with (6) into (16), we finally obtain the
corresponding system of algebraic equations as

−𝑎
2

0
𝛽 + 𝑎
0
𝛾 + 2𝑎

2
𝜎
2

𝑐
2𝛼

− 2𝑎
2
𝜎
2

𝑘
2𝛼

= 0,

𝑎
1
𝛾 − 2𝑎

0
𝑎
1
𝛽 + 2𝑎

1
𝜎𝑐
2𝛼

− 2𝑎
1
𝜎𝑘
2𝛼

= 0,

−𝑎
2

1
𝛽 + 𝑎
2
𝛾 − 2𝑎

0
𝑎
2
𝛽 + 8𝑎

2
𝜎𝑐
2𝛼

− 8𝑎
2
𝜎𝑘
2𝛼

= 0,

−2𝑎
1
𝑎
2
𝛽 + 2𝑎

1
𝑐
2𝛼

− 2𝑎
1
𝑘
2𝛼

= 0,

−𝑎
2

2
𝛽 + 6𝑎

2
𝑐
2𝛼

− 6𝑎
2
𝑘
2𝛼

= 0.

(18)

After using the Mathematica to solve (18) the following solu-
tions are reported:

𝑎
0
=
𝛾 + 8𝜎𝑐2𝛼 − 8𝜎𝑘2𝛼

2𝛽
, 𝑎

1
= 0,

𝑎
2
= −

6 (𝑘2𝛼 − 𝑐2𝛼)

𝛽
,

(19)

where 𝜎 denotes an arbitrary constant. Finally, from (15)–
(19) we obtain the following generalized hyperbolic function
solutions, generalized trigonometric function solutions, and
the rational solution of (14) as

𝑢 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝛾+8𝜎𝑐
2𝛼−8𝜎𝑘2𝛼

2𝛽
+
6𝜎 (𝑘2𝛼−𝑐2𝛼)

𝛽

× (tanh2
𝛼
(√−𝜎𝜉)) , 𝜎 < 0,

𝛾 + 8𝜎𝑐2𝛼 − 8𝜎𝑘2𝛼

2𝛽
+
6𝜎 (𝑘2𝛼 − 𝑐2𝛼)

𝛽

× (coth2
𝛼
(√−𝜎𝜉)) , 𝜎 < 0,

𝛾 + 8𝜎𝑐2𝛼 − 8𝜎𝑘2𝛼

2𝛽
−
6𝜎 (𝑘2𝛼 − 𝑐2𝛼)

𝛽

× (tan
𝛼
(√𝜎𝜉)) , 𝜎 > 0,

𝛾 + 8𝜎𝑐2𝛼 − 8𝜎𝑘2𝛼

2𝛽
−
6𝜎 (𝑘2𝛼 − 𝑐2𝛼)

𝛽

× (cot
𝛼
(√𝜎𝜉)) , 𝜎 > 0,

𝛾

2𝛽
−
6 (𝑘2𝛼 − 𝑐2𝛼) Γ2 (1 + 𝛼)

𝛽(𝜉𝛼 + 𝜔)
2

, 𝜎 = 0,

(20)

where 𝜉 = 𝑘𝑥 + 𝑐𝑡.
As𝛼 → 1 (20) the results obtained above become the ones

of (14).
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4. Conclusions

In this paper, a fractional subequation method is used to
construct the exact analytical solutions of the space-time frac-
tional Cahn-Hilliard (1) and the fractional nonlinear Klein-
Gordon equation (2). These solutions include the general-
ized hyperbolic function solutions, generalized trigonometric
function solutions, and rational function solutions, which
may be very useful to further understand the mechanisms of
the complicated nonlinear physical phenomena and FPDEs.
Also, this method help us to find all exact solutions of the Fan
subequations involving all possible parameters, it is concise
and efficient. Mathematica has been used for computations
and programming in this work.
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