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SHORT BOWEL SYNDROME, AND ENTERAL
AND PARENTERAL NUTRITION

The topic of intestinal adaptation to nutritional stress has
been reviewed (1). After distal small bowel resection, the
proximal remnant develops a motor pattern similar to that
of the intact distal ileal remnant, with prolongation of
small intestinal transit time. While structural adaptation
of both circular and longitudinal muscle occurs, the
changes in smooth muscle function after intestinal resec-
tion are relatively minor and transient (2). The surgical
approach of intestinal lengthening as a management strat-
egy of the short bowel syndrome actually impairs the nu-
tritional status of the experimental animal, with associated
motor disruption and an attenuated increase in the ex-
pected postresection enteroglucagon levels (3). After by-
pass of the ileocolonic junction, there is an increased
growth of anaerobic intestinal bacteria and luminal short

chain fatty acids, but this growth does not influence the
structural adaptation of the small intestine (4).

For patients with intestinal failure, total parenteral nu-
trition (TPN) given at home (HPN) may be lifesaving.
HPN improves the quality of life, particularly of younger
persons or those not dependent on narcotic drugs (5).
However, TPN is associated with a loss of mucosal struc-
ture and increased intestinal permeability (6). Uptake of
microparticles is increased within the Peyer’s patch dome
in TPN-treated animals (7). TPN-associated cholestasis
in infants may be improved by the daily intravenous injec-
tion of cholecystokinin (8,9).

Enteral nutrition is the preferable route of nutritional
supplementation in patients with an intact intestinal tract.
The risk of exogenous microbial contamination of enteral
feeds may be reduced by the use of sterile, prepackaged en-
teral feeds. However, there may be endogenous contami-
nation of the enteral feeds with bacteria from retrograde
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spread of the patient’s own intestinal microflora (10). Oral
glutamine decreases bacterial translocation and improves
the survival of mice with experimental gut-origin sepsis
(11). In contrast, the induction of abscesses by the subcu-
taneous injection of turpentine in rats followed by their
supplementation with enteral glutamine does not appear to
be advantageous (12). In patients with upper gastrointesti-
nal cancer, supplementation of the enteral diet with ar-
ginine, RNA and omega-3 fatty acids leads to a reduction
in the concentration of tumour necrosis factor-alpha
(TNF-�) and interleukin (IL)-6 (13). Adding arginine to
TPN solutions decreases bacterial translocation and in-
creases IL-2 production in rats during prolonged admini-
stration of TPN (14).

A diet providing 20 g/day of lactose with no more than
4 g/day as milk is well tolerated in most patients with short
bowel syndrome, suggesting that a strict lactose-free diet
may not be necessary (15). Clearly this diet needs to be ad-
justed on a person-to-person basis.

DIABETES MELLITUS
The absorption of fructose is increased in animals with ex-
perimental diabetes mellitus (DM) due to enhancement in
the levels of the fructose transporter in the brush border
membrane (BBM) (GLUT5), as well as to increased
amounts of the fructose and glucose transporter in the ba-
solateral membrane (GLUT2). Curiously, GLUT2 is also
over-expressed in the BBM of DM patients (16). In the
small intestine of diabetic patients, changes in the glucose
transporter are accompanied by increases in the number of
the enterocytes, but there are no changes in the morphol-
ogy of the cells (17). Insulin reduces the up-regulated
transport of glucose within 12 h in the ileum and within
two days in the jejunum. The alterations in ileal uptake of
glucose are correlated with changes in the microvillus
height (18).

While the uptake of many nutrients is enhanced in DM
patients, the uptake and translocation of microparticles are
actually reduced. This reduction is possibly the result of
gastric retention and altered intestinal permeability (19).
Gastroporesis is frequent in diabetic patients, and altera-
tions in small intestinal motility are also common. Slow in-
testinal transit may be responsible for bacterial
overgrowth, whereas rapid transit leads to diarrhea due to
‘intestinal hurry’. In patients with type I DM and sympa-
thetic denervation, there is an abnormally rapid transit of a
liquid meal through the distal small intestine (20).

ETHANOL
The effect of alcohol on the gastrointestinal tract has been
reviewed (21). Exposure of the intestinal mucosa to
physiologically relevant concentrations of ethanol (ie,
concentrations found in the human upper small intestine
during moderate alcohol intake) results in morphological
alterations and increased permeability due to the release of
histamine from intestinal mast cells. Mast cell histamine
release is mediated by leukocytes and by reactive oxygen

metabolites (especially those generated by xanthine oxi-
dase). The released mast cell histamine promotes leuko-
cyte infiltration and mediates the ethanol-associated
effects (22). Pretreatment of animals with alcohol reduces
the effects of a subsequent ethanol exposure on permeabil-
ity and mast cell histamine release, suggesting that adap-
tive cytoprotection is possible (23).

Clinical learning point: Mast cell histamine release may
play a role in the damaging effect of ethanol on the small
intestine. Previous exposure to low concentrations of
ethanol may be beneficial, leading to adaptive cytopro-
tection.

The inhibitory effect of acute ethanol toxicity on small
intestinal protein synthesis is enhanced by thyroid hor-
mone and reduced by adrenal hormones (24).

EARLY DEVELOPMENT AND AGEING
The topics of neonatal gut development and postnatal ad-
aptation have been reviewed (25), as have the topics of di-
gestion in the newborn (26), neonatal intestinal
metabolism (27) and gastrointestinal motility in the neo-
nate (28). When infants are born before term, their small
intestinal functions are incompletely developed and they
are unable to tolerate enteral feedings. Postnatal intestinal
development is influenced by genetic and dietary factors.
For example, colostrum in pigs contains a trypsin-labile
component that can increase BBM lactase and alkaline
phosphatase activities in the newborn intestine (29).

The process of ageing is associated with functional and
structural changes in the small intestine. Gastrointestinal
disorders of the elderly are clinically important (30), and
the effects of ageing on intestinal lipid absorption have
been reviewed (31). The proliferative potential of the in-
testinal tract may be exaggerated with age. Neurotensin
(NT) stimulates growth of the small intestine, reverses the
small bowel mucosal atrophy associated with feeding rats
an elemental diet and augments intestinal regeneration af-
ter small bowel resection. The proliferative potential of
the small bowel mucosa in response to the administration
of NT is maintained with age. However, the specific ac-
tivities of sucrase and maltase do not change with NT
treatment in old or in young animals, suggesting that the
effect of NT is predominantly on the mucosal structure
and not specifically on disaccharidase activity (32).

In humans, a substantial reduction in the number of
myenteric neurons has been noted with ageing, but small
intestinal transit time does not change. The cholinergic re-
sponses in the rat small intestine are well maintained with
age, while the nitrergic contribution to nonadrenergic
noncholinergic (NANC) relaxation decreases with age
(33).

ABDOMINAL IRRADIATION
Radiation therapy is important for the management of pa-
tients with certain intra-abdominal neoplastic disorders
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such as rectal cancer and Hodgkin’s disease. The response
of the microvasculature to radiation is the dose-limiting
factor for this form of therapy. Within hours of exposure
to radiation, there is neutrophil recruitment and increased
intracellular generation of reactive oxygen species. Oxy-
gen radicals may be derived from xanthine oxidase and
from phagocytic leukocytes, as well as from water radioly-
sis. Activated leukocytes represent the major source of
oxidants generated in the mesenteric microvasculature af-
ter abdominal irradiation (34).

The prodromal period of the acute radiation syndrome
is characterized by anorexia, nausea, vomiting and diar-
rhea. There are associated functional alterations in intesti-
nal motility and transport. Increased tone and contractions
of the intestine and delayed gastric emptying contribute to
the gastrointestinal-related radiation symptoms. Radiation
increases the sensitivity of intestinal smooth muscle to
cholinergic stimulation. Pretreatment of guinea pigs with a
5-hydroxytryptamine (HT)3 receptor antagonist prevents
the effect of radiation on motility and reduces pellet expul-
sion to below normal (35). Ionizing radiation attenuates
intestinal enzyme activities and vasoactive intestinal pep-
tide (VIP) receptor affinity, but increases VIP receptor
numbers (36). Recombinant human IL-11 given to mice
abolishes the cytotoxic effect of 5-fluorouracil and pro-
longs the survival time of the animals by protecting clono-
genic cells in the intestinal crypts (37). The clinical role of
IL-11 in preventing radiation damage to the bowel remains
to be established.

CELL PROLIFERATION AND
MUCOSAL GROWTH

Despite rapid proliferation of the intestinal epithelium,
there is precise spatial differentiation in the crypt-to-villus
tip (‘vertical’) axis as well as in the duodenal-to-colonic
(‘horizontal’) axis. In fetal isograft intestine, expression of
apolipoprotein (Apo) A-IV and liver fatty acid-binding
protein (FABP) genes is recapitulated during villus mor-
phogenesis, but spatial patterns of gene expression are al-
tered. This suggests that a ‘basal’ differentiation program
is encoded in fetal endoderm and mesenchyme, and that
extracellular substances contained in the intestinal lumen
or extrinsic to the intestine play an important modulatory
role in generating spatial differentiation during ontogeny
(38).

Receptors for growth hormone (GH) have been found
in the gastrointestinal tract. Many of the growth-
promoting effects of GH are mediated by insulin-like
growth factor (IGF-1), which has receptors in the intesti-
nal epithelium. GH or GH-dependent factors act as intes-
tinal growth factors whose function it is to promote the
homeostatic or steady-state regulation of mucosal epithe-
lial growth (39). IGF-1 is a single-chain peptide with a va-
riety of biological activities, including stimulation of cell
proliferation. In young piglets, IGF-1 is absorbed inde-
pendently of gut closure (40). Cortisone, tri-
iodothyronine and IGF-1 play a causative role in the tim-

ing of the changes of BBM enzymes that coincide with
weaning. The concentration of IGF-1 in maternal milk is
reflected in the concentration of the peptide in gastric con-
tents (41). IGF-1 increases intestinal weight, protein and
DNA content in neonatal pigs (42). IGF-1 synergistically
enhances epidermal growth factor (EGF)-stimulated pro-
liferation of intestinal epithelial cells. EGF may serve as a
competence factor, priming the cells for the subsequent ac-
tion of IGF-1 (43). IGF-1 enhances mucosal growth fol-
lowing massive small bowel resection and selectively
stimulates growth of the proximal intestine in suckling
rats (44). Intestinal adaptation after extensive small bowel
resection in rats is augmented by the provision of diet sup-
plemented with the amino acid glutamine or by the admini-
stration of IGF-1, which increases ileal DNA content,
weight and protein, as well as IGF-1 mRNA expression
(45).

Clinical learning point: The administration of intestinal
growth factors such as glutamine, arginine, GH, IGF or
EGF may accelerate intestinal adaptation in patients
with short bowel syndrome.

EGF promotes intestinal growth, ion transport and nu-
trient absorption, and plays a protective role against ileal
mucosal injury induced by Triton X-100 (Union Carbide
Corporation, Connecticut) (46). Transforming growth
factor (TGF)-alpha stimulates proliferation, while TGF-�
is a potent inhibitor of proliferation in intestinal epithelial
cells. Acute intestinal epithelial cell injury in vivo is asso-
ciated with compensatory changes in the expression of
TGF-� and TGF-� (47). TGF-� and IGF-1 are members
of the EGF family. TGF-� stimulates proliferation of rat
intestinal tissue during the developmental period (48).
TGF-� immunoreactive protein is present in the small in-
testinal crypt epithelium in suckling pigs (49). TGF-� and
TGF-� play a role in the repair of the intestine after
phytohemagglutinin-induced acute epithelial injury (47).
In addition, TGF-� , TGF-� and EGF are important in the
repair of mouse jejunum after radiation treatment (50).

The presence of the receptor for EGF on the basolateral
surface of the enterocyte suggests that EGF may play a role
in stimulating the repair of the intestine, rather than in
maintaining normal gut growth (51). EGF and TGF-�
bind to a common receptor in the gastrointestinal tract,
and both EGF and TGF-� increase the intestinal crypt cell
production rate. EGF increases plasma peptide YY, entero-
glucagon and gastrin levels, whereas the equivalent dose of
TGF-� causes a rise in only plasma gastrin concentrations
(52). TGF-� is less mitogenic and has fewer hormonal ef-
fects than EGF.

Various cytokines also play an important part in the
modulation of epithelial cell proliferation and differentia-
tion. The intestinal epithelial cell population produces
IL-6, IL-8, TGF-�, TGF-�, IGF-1 and IGF-2. The cells
respond to IL-1, IL-2, interferon-gamma (IFN-�), TNF-�,
TGF-� and its homologues EGF, TGF-� and human
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growth factor. In addition, members of the fibroblast
growth factor (FGF) family play a role in the regulation of
the intestinal epithelium. IL-2 increases the expression of
the EGF receptor in Caco-2 cells (53). This demonstrates
an integration between cytokines and growth factor
ligand-receptor systems in intestinal epithelial cells (IEC),
which had not been previously recognized. In IEC-6, IL-6
is secreted across the apical and basal surfaces in response
to TNF-� (54). IL-4 has no effect on IL-6 secretion but
stimulates epithelial cell proliferation (55). Stimulation of
epithelial cell restitution is enhanced by IL-2 and is medi-
ated through a TGF-�-dependent pathway (56).

TNF-� exerts its effects through two glycoprotein re-
ceptors on the cell membrane. In physiological concentra-
tions, TNF-� stimulates proliferation, yet in pathological
concentrations it inhibits proliferation. These effects are
mediated differentially by the two TNF-� receptors, with
the TNF-� R1 receptor inhibiting proliferation and the
TNF-� R2 receptor promoting proliferation (57).

The trefoil peptides are small, highly stable molecules
secreted by the mammalian gastrointestinal tract that play
a role in tissue repair. The name trefoil (three leaf) derives
from the three intrachain loops predicted to arise from the
distinctive pairing of six cysteine residues. Three human
trefoil peptides have been localized to mucus-secreting epi-
thelia in the gut (58). Human intestinal trefoil factor
(hITF) is a secretory polypeptide found mainly in the hu-
man gastrointestinal tract. hITF is a member of the newly
characterized trefoil factor or P-domain peptide family rep-
resenting putative growth factors. Localization of hITF in
the hypothalamoneurohypophysial system suggests a pos-
sible link between intestinal proliferation and the central
nervous system.

Bombesin stimulates proliferation in the normal intes-
tine as well as in animals with atrophic or injured mucosa
(59).

Clinical learning point: Intestinal proliferation may be
influenced by chemicals in the central nervous system,
such as hITF.

Nutrient delivery to the apical as well as to the basal
surface of the IEC membrane may promote intestinal
epithelial differentiation, proliferation and mucosal heal-
ing (60). Thyroid hormone is an important regulator of
gut mucosal growth, differentiation and intestinal barrier
function. Thyroid hormone induces intestinal alkaline
phosphatase expression at the level of gene transcription
(61). Small IECs express receptors for thyrotropin-
releasing hormone (TRH) and are a primary source of
intestine-derived thyroid-stimulating hormone (TSH).
The gene for the TSH receptor is expressed in intestinal T
cells but not in epithelial cells. This raises the possibility
that TSH may be a key immunoregulatory mediator in the
intestine (62).

Tissue-specific post-translational processing of proglu-
cagon in the intestine liberates a number of proglucagon-

derived peptides, including glicentin, oxyntomodulin,
glucagon-like peptide 1 (GLP-1) and GLP-2. GLP-2
stimulates crypt cell proliferation and growth of the bowel
(63). Intestinal proglucagon is a polyprotein precursor
that undergoes post-translational processing to yield sev-
eral glucagon-related peptides, such as glicentin and oxyn-
tomodulin (collectively termed the enteroglucagons). The
gut peptide oxyntomodulin is one of the four major pep-
tides (glicentin, GLP-1 and GLP-2) derived post-
translationally from a single proglucagon precursor. Oxyn-
tomodulin is cosecreted by L cells in the distal small intes-
tine and colon, and stimulates total intestinal glucose
uptake in rats (64). In the jejunum, proglucagon mRNA
levels fall with fasting and increase with refeeding. Plasma
enteroglucagon and GLP-1 levels correlate with jejunal
proglucagon mRNA (65). Enteroglucagon gene expres-
sion does not play a role in the intestinal adaptation that
occurs in the small intestine of lambs infected with Tri-

chostrongylus colubriformis (66).
The glucose-dependent insulin-releasing polypeptide

(GIP) may function as a GLP-1 secretogogue (67).
Basement membrane matrix proteins promote intestinal

epithelial differentiation and inhibit proliferation (68).
Basement membranes are composed predominately of
laminin, type IV collagen, nidogen/entactin and heparin
sulphate proteoglycans. Extracellular matrix proteins (es-
pecially fibronectin and type IV collagen) enhance epithe-
lial restitution (69). Laminins and their integrin receptors
influence wound-induced epithelial cell migration (70).
Laminin promotes the electrophysiological restoration and
epithelial restitution of the intestine, and may play an im-
portant part in the orchestration of epithelial integrity and
barrier function (71). The beta2-integrin family of adhe-
sion molecules and their ligands (the intercellular adhe-
sion molecule) are present on the endothelium of human
intestine (72). Lactoferrin inhibits cell migration and may
play a role in wound healing (73).

Each intestinal crypt is likely served by only one stem
cell (74). Levels of regulators of the G1/S transition, cy-
clin D1 and cyclin-dependent kinase 2, fall as epithelial
cells complete their terminal differentiation (75).

DIAGNOSTIC TECHNIQUES
The presence of a small bowel obstruction may be sus-
pected clinically. Plain abdominal radiographic findings
that support the diagnosis include multiple air-fluid levels
and minimal colonic gas. In almost 90% of patients, a cor-
rect diagnosis of adhesive obstruction may be made by en-
teroclysis. However, false-negative enteroclysis
examinations may occur, particularly when obstruction
occurs intermittently. Radiopaque markers may be used in
patients suspected of having partial obstructions; these
markers coalesce in the region of the obstruction (76).

Infectious gastroenteritis can be divided into the cate-
gories of traveller’s diarrhea, antibiotic-associated diarrhea
and domestically acquired diarrhea. Laboratory tests are
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often used in the investigation of patients with acute diar-
rhea presenting to an emergency department, but these
tests seldom contribute to the evaluation of patients with
domestically acquired gastroenteritis (77).

During the immediate postoperative period, it may be
difficult to distinguish between small bowel obstruction on
the basis of paralytic ileus and mechanical obstruction.
Computed tomography scanning is both sensitive and spe-
cific in making this distinction compared with the much
lower sensitivity (19%) of combined clinical and plain film
findings (78).

The reliability of the lactulose breath hydrogen test for
diagnosing small intestinal bacterial overgrowth is contro-
versial. Both the low sensitivity (16.7%) and specificity
(70%) raise the possibility that other diagnostic methods
are necessary. Combining the breath hydrogen test with
scintigraphy increases the sensitivity of diagnosing bacte-
rial overgrowth to 100% and specificity to 38.9% (79).

Clinical learning point: The lactulose breath hydrogen
test has an unsatisfactorily low sensitivity and specific-
ity for the diagnosis of bacterial overgrowth in the small
bowel.

For detection of inflammatory disease of the small
bowel, ultrasonography has a sensitivity of 95% and a
specificity of 93%. Ultrasonography may be a reliable
method for the investigation of patients suspected of hav-
ing inflammatory small bowel disease (80).

After careful investigation of the patient with obscure
gastrointestinal bleeding, using upper and lower endo-
scopy, investigation of possible small bowel diseases may
be appropriate. Push enteroscopy may demonstrate angio-
dysplastic lesions in the small intestine in about half of
such patients. These lesions may be treated by endoscopic
cautery, thereby reducing future rebleeding (81,82).

Magnetic resonance endoscopy (MRE) provides prom-
ising results, particularly in the staging of gastrointestinal
tumours. In vitro imaging with the MRE shows three- to
five-wall layers of the porcine gastrointestinal tract de-
pending on the segment scanned (83).

The two bioactive forms of somatostatin
(somatotropin-release inhibiting factors 14 and 28) are
processed by differential splicing from a preprosomatosta-
tin precursor. Somatostatin is synthesized in endocrine
cells of the stomach and of the pancreatic islets, and is a
paracrine and/or autocrine modulator. Somatostatin syn-
thesized in enteric nerves acts as a neurotransmitter. So-
matostatin depresses the secretion of a number of
gastrointestinal hormones, inhibits gastric and intestinal
motility, gastric acid secretion, mesenteric blood flow, and
intestinal absorption of glucose and amino acids. Five dis-
tinct somatostatin receptors have been cloned, all coupled
to G proteins. mRNAs of all five somatostatin receptors
are widely expressed in the rat gastrointestinal tract (84).
The radiolabelled somatostatin analogue indium-111-
pentetreotide is a sensitive imaging agent for the detection

of gastroenteropancreatic neuroendocrine tumours, in-
cluding carcinoid tumours (85).

Clinical learning point: The radiolabelled somatostatin
analogue indium-111-pentetreotide is a sensitive imag-
ing agent for the detection of gastroenteropancreatic
neuroendocrine tumours.

The long acting somatostatin analogue lanreotide is an
effective and convenient treatment in patients with carci-
noid syndrome (86).

CARBOHYDRATES
The topic of the digestion and absorption of fruit juice car-
bohydrates has been reviewed (87). The enzyme sucrase-
isomaltase (SI) is an integral BBM glycoprotein compris-
ing two subunits that are highly homologous and are
thought to be derived from the same ancestral gene. SI is
synthesized in the rough endoplasmic reticulum (ER) and
is then transported through the Golgi apparatus.

BBM SI is an anchored hydrolase synthesized as a sin-
gle polypeptide and is split into two subunits by a pancre-
atic protease. Precocious induction of SI activity is
primarily regulated at the level of mRNA, and is independ-
ent of increases in cellular proliferation or in circulating
glucocorticoids (88). Changes in SI activity are parallelled
by alterations in SI mRNA abundance and SI gene tran-
scription, with regulation of SI at the transcriptional level.
This form of regulation is similar to that of lactase phlor-
izin hydrolase (LPH).

In a patient with congenital SI deficiency, the SI is syn-
thesized but is not transported to the BBM, accumulating
as a mannose-rich precursor in the ER. This abnormal ac-
cumulation is due to a point mutation that leads to substi-
tution of a glutamine residue by a proline (89).

Several regulatory elements upstream of the coding se-
quences of the LPH and SI genes have been identified. An
intestinal nuclear factor may be important in transcrip-
tional regulation. SIF1 is upstream to the transcription
start site of the SI gene, and this may regulate SI expres-
sion during postnatal development (90). L-arabinose in-
hibits intestinal alpha-glucosidase activity as well as that of
SI in an uncompetitive manner (91).

Toxin A produced by Clostridium difficile produces
mild cytotoxic activity, and inactivates the intracellular
GTP-binding proteins Rho A and B. Toxin A binds spe-
cifically to carbohydrate domains on rabbit ileal SI (92).
The cytochrome P-450 gene superfamily is involved in the
metabolism of xenobiotics. Glucose-dependent regulation
of SI and hexose transporters occurs in Caco-2 cells. Acti-
vation of cytochrome P-4501A1 is involved in the varia-
tions of glucose utilization, and in the associated
modifications of expression of SI and hexose transporters
(93).

Lactase enzyme deficiency is the most common genetic
enzyme disorder of humans. The adult form of lactase defi-
ciency occurs independent of morphological or other BBM
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enzyme abnormalities. However, it is associated with a va-
riety of defects at the level of lactase gene transcription,
translation and post-translational maturation to the enzy-
matically active form. In humans, both transcriptional and
post-transcriptional factors cause the decline of intestinal
lactase activity seen after weaning (94). Changes in LPH
biosynthesis and slow processing of the protein have been
reported, and heterogeneity has been shown in the level of
mRNA. Hypolactasia of malnourished infants results
from transcriptional suppression of lactase expression or
from suppression of mRNA stability (95).

Carbohydrate intake increases LPH mRNA levels in
the rat jejunum, and long chain triacylglycerol accelerates
inactivation and/or degradation of LPH (96). A marked
increase in the number of LPH mRNA molecules per ab-
sorptive enterocyte is found throughout the intestine of
ethanol-exposed neonatal rats (97). Progesterone therapy
has been associated in animals with increased intestinal
LPH activity, but gestational hormones (at least at the
doses tested) do not influence the intestinal cell number or
disaccharidase activity in Caco-2 cells (98). This suggests
that the improved lactose handling observed during preg-
nancy is probably related to another mechanism, such as
prolonged small intestinal transit.

Lactose malabsorption causes gastrointestinal symp-
toms in subjects receiving chemotherapy. Dietary supple-
mentation with yogurt (a lactose-containing food) is well
tolerated in children receiving chemotherapy (99). Bone
mineral density and calcium intake are lower in women
with lactose malabsorption and symptoms of lactose intol-
erance (100). The differential urinary excretion test of in-
gested disaccharides provides a reliable, quantitative and
noninvasive technique for assessing profiles of intestinal
disaccharidase activity (101).

Interestingly, diarrhea, bloating and cramps are no
more common in lactase-deficient than in lactase-
persistent Afro-Caribbeans, Indians or Caucasians living
in the United Kingdom (102). In the United States, there
is no significant difference in the prevalence of abdominal
pain, altered bowel habits, bloating/distention, or passage
of mucus per rectum between individuals with the irritable
bowel syndrome (IBS) and those with IBS who also have
lactose maldigestion (103). This challenges the concept of
the contribution or causation of lactose maldigestion to the
symptoms of IBS.

Clinical learning point: The mechanism of the symp-
toms of lactase deficiency in the causation of and/or con-
tribution to gastrointestinal symptoms in patients with
IBS may need to be reconsidered.

The sodium/glucose cotransporter (SGLT1) is present
in both differentiated and undifferentiated HT-29-D4
cells in culture. Post-translational events control the effi-
cient targeting of SGLT1 to the BBM. Targeting of
SGLT1 to the BBM in H2-29-D4 cells in culture is influ-
enced by intracellular pathways regulated by the activity

of protein kinase C (PKC) (104). Kinetic and substrate
specificities of SGLT1 differ among rats, humans and rab-
bits (105). Human, rat and rabbit SGLT1 amino acid se-
quences are 87% identical. A single amino change in
membrane proteins may have profound functional effects,
as occurs in children with glucose-galactose malabsorp-
tion: the cysteine 355 to serine and leucine 147 to ar-
ginine mutations in SGLT1 eliminate the BBM
cotransport of sodium and glucose by blocking the transfer
of SGLT1 protein from the ER to the BBM (106).

Clinical learning point: The absorption of glucose and
galactose in children with glucose-galactose malabsorp-
tion has been traced to a single amino acid substitution in
the BBM sugar transporter protein SGLT1.

Insulin in the portal blood increases intestinal glucose
absorption by a signal that is transmitted in a retrograde di-
rection against the blood stream in the portal vein to the
small intestine via hepatoenteral muscarinic nerves (107).
In acutely diabetic rats, there is increased expression of
SGLT1 protein but not mRNA in the BBM, and the in-
creased SGLT1 protein is restored to normal by subcuta-
neous treatment with insulin (108). This suggests that rat
intestinal SGLT1 activity is under translational or post-
translational control by insulin.

The response to luminal and vascular hexoses occurs
rapidly, and may operate within the time course of a meal.
Luminal glucose promotes glucose transport by the BBM
within 30 mins, but an intact mucosa is necessary for this
up-regulation (109). The presence of hexoses in the intes-
tinal lumen may be signalled by GIP and by GLP-2, but
not by GLP-1 (110).

EGF acutely up-regulates small intestinal glucose trans-
port, possibly by a mechanism that involves recruitment of
additional BBM transporters. Tyrosine kinase activity is
involved in mediating EGF-induced alterations in trans-
port function and in maintaining basal BBM function
(111). Dextran feeding stimulates SGLT1-mediated glu-
cose uptake (112). Dextran absorption is low from the in-
testine but may be mediated by a specific
receptor-mediated mechanism (113). Cholecystokinin
(CCK) decreases intestinal absorption of hexoses in the
small intestine, acting via CCK-A-type receptors (114).
Peppermint oil in the intestinal lumen inhibits enterocyte
glucose uptake via a direct action at the BBM, possibly by
reducing the availability of calcium (115).

Cystic fibrosis (CF) is characterized by defects in
epithelial chloride ion secretion attributable to abnormali-
ties in the CF transmembrane conductance regulator
(CFTR), which normally acts as a chloride ion channel.
The rate of sodium and sodium-linked nutrient absorption
is increased in CF, and chloride ion conductance resem-
bling the CFTR is colocalized with sodium/glucose co-
transport in rat and human small intestine (116). This
supports the possibility that abnormalities in glucose ab-
sorption observed in CF patients may be due to a secon-
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dary effect of the defective chloride ion channel function.
It is unknown how SGLT1 activity is influenced by the
chloride ion channel.

The polyamines spermidine and spermine, and their
precursor putrescine are polycationic compounds that play
a role in cell proliferation and differentiation. Their intra-
cellular levels are dependent on the activity of ornithine
decarboxylase (ODC), one of the initial rate-limiting en-
zymes in polyamine synthesis, and on an equilibrium be-
tween uptake, excretion and catabolism. The maximum
velocity for putrescine uptake is higher in fasted animals
(117). Dietary polyamines exert a direct and specific
maturational effect on the rat small intestine (118). Polya-
mines are transported into the enterocyte by means of a
diffusion mechanism related to their binding to the acidic
lipids of the biomembrane, such as phosphatidylserine.

The polyamine spermine increases the maximal trans-
port rate (Vmax) for glucose uptake in rabbit BBM vesi-
cles. In contrast, Vmax decreases with the other
polyamines, spermidine and putrescine. These alterations
in Vmax are unrelated to changes in BBM lipid composi-
tion or fluidity (119). ODC, the rate-limiting enzyme in
polyamine synthesis, catalyzes the decarboxylation of or-
nithine to form putrescine. Subsequent spermidine and
spermine production from putrescine occurs via
S-adenosylme-thionine decarboxylase activity. Polyamines
have a protective action on mitochondria function. In the
small intestine, the highest level of ODC activity is seen in
villus cells, and ODC levels in these cells increase in re-
sponse to feeding. As enterocytes migrate from the crypt
up the villus, mitochondrial function increases to handle
the increased metabolic demands placed on the cell by nu-
trient absorption (18).

The developmental regulation in early life of the
sodium-independent fructose transporter in the BBM
(GLUT5) has a circadian rhythm, and depends on the fat
and carbohydrate content in the diet at weaning, and its
expression is enhanced in patients with streptozotocin-
induced diabetes (120). GLUT5 protein levels vary in a
diurnal manner but are out of phase with the observed
changes in GLUT5 mRNA levels. Isolated fructose
malabsorption is an autosomal recessive disorder resulting
in pain and diarrhea after the ingestion of fructose. Iso-
lated fructose malabsorption does not result from the ex-
pression of mutant GLUT5 protein (121).

Levels of the fructose and glucose transporter in the ba-
solateral membrane (GLUT2) remain relatively constant
during the day (122). Feeding a fructose-enriched diet ele-
vates the levels of GLUT5 protein and mRNA, and
down-regulates GLUT2 protein, indicating that the level
of hexose transporter expression can be modulated by diet.

PEPTIDES, AMINO ACIDS
AND FOOD ALLERGIES

Intracellular accumulation of lysine across both the BBM
and the basolateral membranes of the enterocyte consists
of a sodium-independent, membrane potential-sensitive

uptake. Both a saturable and a nonsaturable component
are present (123). The sodium-dependent component of
alanine influx is inhibited by capsaicin, acting on afferent
fibres that contain and release peptides, and neural trans-
mitters such as somatostatin, VIP, substance P and CGRP
(124). GH stimulates the intestinal uptake of amino acids
but not glucose as a result of an up-regulation of the carrier
Vmax (125).

The transport system for the amino acids L-glutamate
and L-aspartate is sodium-dependent. The relationship
between the L-glutamate transport rate and the luminal so-
dium concentration is sigmoidal in shape, and the stoichio-
metry of the transport is two sodium to one glutamate to
one carrier molecule. The mechanism is sequentially or-
dered, with the L-glutamate binding occurring after both of
the sodium cations bind to the carrier (126).

Glutamine is one of the two major metabolic fuels of en-
terocytes. Pretreatment of piglets with glutamine increases
intestinal glutamine uptake, as does GH, and a combina-
tion of GH plus glutamine is additive (127). The active ab-
sorption of L-threonine across the rabbit jejunum is
decreased by zinc by an unknown mechanism. The rat in-
testinal sodium/dicarboxylate cotransporter has been
cloned (128). The transport of arginine via system y+ may
be down-regulated by post-transitional modifications in
confluent Caco-2 cells (129). Ethanol selectively inhibits
sodium-dependent methionine transport and reduces the
levels of sodium/potassium-ATPase (130).

The oligopeptide transporter belongs to a superfamily
of protein-dependent transporters (131). The human hy-
drogen/peptide cotransporter exhibits a high degree of ho-
mology (81% identity and 92% similarity) to the rabbit
transporter (132). The gene encoding the cloned human
cotransporter is located on chromosome 13 q33 to q34.

The clinical development of orally active peptide drugs
has been restricted by their unfavourable physical chemi-
cal characteristics, which limit their membrane permea-
tion, and by their lack of stability against enzymatic
degradation (133). The intestinal peptide carrier is a po-
tential transport system for small peptide-derived drugs
(134). One way to solve this permeability problem is to
formulate the compound with membrane permeation-
enhancing excipients (135). Coupling of antigen-
containing particles to the pentameric binding subunit of
cholera toxin (CTB) is a means for increasing antigen up-
take by the CTB receptor, ganglioside G (M1). Ganglio-
side G is a glycolipid present in the BBM of intestinal
epithelial cells. The barrier function of the intestinal
epithelial cell glycocalyx may be important in limiting mi-
crobial adherence to membrane glycolipids, and in CTB-
mediated targeting of vaccines to M cells and the mucosal
immune system (136).

The peptide transport system mediates electrogenic up-
take into intestinal epithelial cells of the neutral form of
beta-lactam antibiotics (137). Luminal degradation of in-
sulin by pancreatic enzymes and by microbial enzymes in
the ileum and colon, respectively, can be minimized by
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nonabsorbable carbopol. Absorption of insulin in the in-
testine is usually by receptor-mediated endocytosis. When
insulin is acylated with dimethylmaleic anhydride and is
conjugated to transferrin via a disulphide linkage, the up-
take of insulin-transferrin in Caco-2 cells is mediated by
the transferrin receptor but not by the insulin receptor.
Brefeldin A, an agent that causes an increase in transferrin
receptor transcytosis, further enhances the transport of
the transferrin-conjugated insulin (138). This raises the
possibility of the use of insulin-transferrin conjugate in
combination with brefeldin A to increase the oral absorp-
tion of insulin in vivo. However, the insulin-degrading en-
zyme in the cytosol of the intestinal mucosa may limit the
transfer to the portal circulation of any insulin that has
been taken up across the BBM (139). Slowing intestinal
transit increases protein absorption in a load-dependent
fashion (140).

Nucleotides are important molecules for protein syn-
thesis. Nucleotides restore the structure and function of
the intestine recovering from starvation, ischemia or in-
jury. Depravation of dietary nucleotides decreases the con-
centration of soluble nucleotides in the small intestine and
modulates protein synthesis as a result of tissue-specific
nucleic acid changes (141).

Cow’s milk allergy is common in children. In adults,
cow’s milk protein allergy can be suspected on the basis of
a patient’s symptoms and skin tests, as well as elimina-
tion/rechallenge with the suspected food allergen. The di-
agnosis can be confirmed by a double-blind, placebo
controlled food challenge. Immunohistochemistry of the
small intestine in these patients shows a marked increase
of immunoglobulin (Ig)E-positive mast cells (142).

In patients with chronic urticaria following a duodenal
histamine challenge, edema is noted in the basointercellu-
lar spaces, with no change in the epithelium or in the tight
junctions (143).

VITAMINS AND MINERALS
Calcium and vitamin D: Interindividual variation in cal-
cium absorption is due in part to variations in the concen-
tration of serum 25-hydroxy vitamin D, in the
mouth-to-cecal transit time and in fasting urinary calcium
to creatinine ratios (144). Calcium uptake is by both a
saturable and a nonsaturable process. The saturable route
is energy-dependent, and the calcium/magnesium-ATPase
activity is responsible for extrusion of calcium from the en-
terocyte, which may be the rate-limiting step (145).

The classical calciotropic hormones are parathyroid
hormone (PTH), 1,25-dihydroxyvitamin D3 and calci-
tonin. Human calcitonin is a polypeptide hormone that
lowers blood calcium levels by increasing urinary calcium
excretion and by inhibiting bone resorption. Calcitonin
may be administered parenterally by the nasal route or by
the intracolonic route of administration (146). Estrogen
receptor-like proteins and genes are present in the intesti-
nal mucosal cells of rats (147). Nuclear estrogen
receptor-mediated calcium transport may stimulate en-

terocyte calcium influx via the cyclic AMP/protein kinase
A pathway (148). Calcitriol, the hormonal form of vita-
min D, has specific receptors in human fetal jejunum. De-
pending on the stage of gestation, calcitriol either en-
hances or decreases the levels of mRNA coding for its
receptor (149). However, calcitriol always up-regulates
mRNA coding for the vitamin D-dependent calcium-
binding protein 9 kDa. 24,25-(hydroxy)2D3 increases in-
testinal calbindin (calcium-binding protein) (150).

Infants with cholestatic cirrhosis due to extrahepatic
biliary atresia develop severe bone demineralization and
rickets, with the transport capacity of calcium being re-
duced in association with vitamin D deficiency (151). In-
organic phosphate is absorbed by a sodium-dependent
process (152). Milk proteins and casein phosphopeptides
improve calcium and zinc absorption from aqueous
phytate-containing solutions and from oat diet (153).
Iron: The topic of the regulation of nonheme iron absorp-
tion has been reviewed (154). Dietary iron is mostly ferric
(III), whereas ferrous (II) iron is the form in which most
iron is absorbed. The electron donors and/or reducing en-
zyme for iron (III) reduction are derived from dietary
sources, such as ascorbate, as well as from BBM ferric re-
ductase (155). In Caco-2 cells, BBM iron uptake, ferritin
synthesis and transepithelial iron transport are regulated
within a narrow margin of intracellular iron concentra-
tions (156). The intracellular level of iron is regulated at
the transcriptional level of ferritin and by the transferrin
receptor. Low levels of intracellular iron activate the iron
regulatory protein, a 90 kDa cytoplasmic protein that sta-
bilizes the transferrin receptor mRNA and diminishes
translation of the ferritin mRNA.

The basolateral endocytosis of transferrin forms part of
the system by which intestinal epithelial cells ‘sense’ the
plasma iron concentrations (157). It is likely that all of the
steps of iron absorption (including BBM uptake, intracel-
lular transport and basolateral transfer) are influenced by
the systemic iron status. Iron homeostasis is achieved by
the regulation of intestinal iron absorption, and the intra-
cellular iron content of the enterocyte is a major factor in
this controlling process. Transferrin receptor is absent
from the BBM of the duodenal epithelium, and transferrin
mRNA is absent from duodenal tissue. Iron absorption
can be altered independently of effects of transcripts of
genes for iron-related proteins, and it is not essential for
iron absorption to be coordinated with the regulation of
mucosal iron metabolism (158).

H- and L-ferritin subunits form a protein shell that can
store iron atoms. The level of H-ferritin mRNA is higher
than the L-ferritin level, and expression of the H-ferritin
mRNA is higher in the apex of the villus than in the crypt,
and in the proximal versus the distal small intestine. In
contrast, the expression of the L-ferritin mRNA does not
change along these axes (159).
Folate and vitamin B12: Folic acid is an essential nutrient
required for the synthesis of purine and pyrimidine precur-
sors of nucleic acids, and used for the metabolism of certain
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amino acids and the initiation of protein synthesis in the
mitochondria. The sole source of folate for humans and
mammals is intestinal absorption of dietary folate. In the
diet, folates are mostly in polyglutamate forms, which are
hydrolyzed in the intestine by folate conjugate into folate
monoglutamates before their carrier-mediated absorption
in the proximal intestine. The intestinal folate carrier has
been cloned from mouse and from human intestine (160).
It is unknown whether the abundance of the carrier or its
mRNA is modified by dietary folate levels.

The plasma transport of cobalamin (vitamin B12) oc-
curs bound to a plasma transporter, transcobalamin II, as
well as by receptor-mediated endocytosis via the transco-
balamin II receptor. Transcobalamin II-cobalamin is proc-
essed by a nonlysosomal pathway in which both
transcobalamin II and cobalamin are transcytosed. When
presented to the basolateral side of the enterocyte, transco-
balamin II-cobalamin is processed by the lysosomal path-
way in which transcobalamin II is degraded and cobalamin
is used (161).

PERMEABILITY
The intestine has important functions for the digestion
and absorption of nutrients, and acts as a barrier against
antigens, microorganisms and toxins. The permeability of
substances across the intestinal epithelium is reduced by
the mucus gel layer (162), presumably acting to increase
the effective resistance of the intestinal unstirred water
layer. Increases in the flow rate in the intestinal lumen
within the normal physiological range decrease the esti-
mated pore size of normal healthy jejunal mucosa (163).
This occurs possibly by exposing enterocytes in the inter-
villus space, where cells may have a lower permeability
than those lining the villus tips.

Intestinal permeability is commonly studied as a uri-
nary excretion of probe molecules after an oral load. Dif-
ferent sized polyethylene glycols (PEG) are often used for
studies of intestinal permeability. Using different sized
PEG suggests that there is a dual pore system for absorp-
tion of hydrophilic molecules in the human jejunum
(164).

During intestinal inflammation or injury, both the lu-
men to blood and blood to lumen passage of selected probes
increase. Acute exposure of the small intestine to acid in-
creases the passage of probes from the lumen to blood as
well as from the blood to lumen (165). Intestinal perme-
ability is increased in patients with Crohn’s disease (166)
or multiple sclerosis (167). The importance of this perme-
ability change to the pathogenesis of these diseases is un-
known.

PEG is a poorly absorbed marker, even when glucose-
sodium cotransport occurs. Therefore, PEG represents a
useful marker for intestinal perfusion studies (168). The
apparent permeabilities of mixtures of PEG are inversely
proportional to their molecular weight squared. The major
difference between permeability in the proximal and distal
intestine is the number (rather than the size distribution)

of the aqueous filled channels, possibly due to a difference
in effective surface area for absorption (169).

Nonsteroidal anti-inflammatory drugs (NSAIDs) in-
crease small intestinal permeability. The inhibitory effect
of chiral NSAIDs on the synthesis of prostaglandins en-
hances their efficacy. Toxicity is due to the S enantiomer,
but a stereochemically pure enantiomer does not necessar-
ily offer a safer alternative than its racemic form (170).
The variability in the demonstration of the effect of
NSAIDs on intestinal permeability may be reduced for all
permeability markers by using a standardized liquid meal
(171).

NSAIDs produce small intestinal damage in approxi-
mately 70% of patients chronically treated with these
drugs. The damage includes villus smooth muscle contrac-
tion, microvascular injury, changes in permeability, intra-
vascular thrombi and mucosal ulceration. NSAIDs inhibit
cyclo-oxygenase activity, and a subsequent mucosal pros-
taglandin deficiency may develop; changes in blood flow
do not represent ‘trigger factors’ for these changes (172).

The intestinal epithelial permeability through the
paracellular pathway is mediated by the tight junctions.
The tight junctions are regulated at the cellular level by
the cytoskeleton and are physiologically modulated by nu-
trients. Cytokines such as IFN-� or TNF-� increase the
paracellular permeability, likely as a result of their action
on the tight junctions. Malnutrition is associated with in-
creased intestinal paracellular permeability, and pharma-
cological doses of zinc prevent these permeability changes
(173).

Biliary obstruction, in conjunction with surgical
trauma and endotoxin, increases bacterial translocation
across the intestine (174). Bacterial enterotoxins open the
tight junctions and increase intestinal permeability (175).
Endotoxin also delays gastric emptying, but transit time
through the small intestine is not affected (176). Portal
hypertension and common bile duct ligation increase bac-
terial translocation as a result of mucosal lipid peroxida-
tion and increase polymorphonuclear neutrophil-derived
myeloperoxidase activity (177). These changes can be im-
proved by the administration of allopurinol.

The increased intestinal permeability seen in patients
with CF is probably the consequence of exocrine pancre-
atic insufficiency (178). Ingestion of acetylsalicylic acid
during running also increases intestinal permeability
(179). Graft-versus-host disease (GVHD) occurring after
bone marrow transplantation or in small bowel transplant
recipients is associated with an increase in urinary
lactulose-to-rhamnose clearance ratios, reflecting an in-
crease in bowel permeability (180). Ileal pouch-anal anas-
tomosis may result in the development of pouchitis, with
increased intestinal permeability (181). IgA nephropathy
is associated with increased intestinal permeability, and re-
nal function deterioration is greatest in patients with in-
creased intestinal permeability (182).

Autism is a developmental disorder with onset in in-
fancy or childhood, with serious social, communicative
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and imaginative development. Intestinal permeability to
lactulose is increased in approximately half of autistic pa-
tients (183). The mechanism of this defect is unknown.

Clinical learning point: Intestinal permeability is altered
in a number of nonintestinal diseases such as autism, af-
ter bone marrow failure or with IgA nephropathy. The
clinical significance of these permeability changes is un-
known.

The use of glutamine-supplemented TPN solutions or
enteral diets may prevent bacterial translocation (184).
For example, mice fed glutamine-enriched diets have a
lower degree of bacterial translocation and greater survival
(11). Endotoxin-induced permeability changes can be pre-
vented or delayed by supplying luminal glutamine at the
time of endotoxin-induced insult (185).

TPN and elemental diets produce intestinal atrophy
and increase bacterial translocation. Enteral nutrition de-
creases bacterial translocation compared with parenteral
nutrition, and fibre decreases translocation when adminis-
tered to rats receiving TPN or enteral diets (186). How-
ever, there is no direct evidence that enteral nutrition
prevents or modifies bacterial translocation in humans
(187).

Branched-chain amino acid-enriched parenteral nutri-
tion solutions reduce intestinal atrophy but not the en-
hanced permeability associated with parenteral nutrition
(188). Short chain fatty acids reduce intestinal permeabil-
ity in Caco-2 cells in culture (189). In many digestive dis-
eases, the intestinal barrier is weakened by the release of
pro-inflammatory cytokines such as TNF-�. These cyto-
kines disrupt the intestinal barrier through the tight junc-
tions (190). Substance P stimulates extravasation in the
gastrointestinal tract by interacting with natural killer1 re-
ceptors. Capsaicin and bradykinin induce plasma extra-
vasation by stimulating tachykinin release from sensory
nerves (191).

Intestinal ischemia increases intestinal permeability;
induction of ischemia in the rat hindlimb also enhances in-
testinal permeability (192). This distance effect may be
important in the understanding of the development of mul-
tiorgan dysfunction in patients who sustain lower extrem-
ity ischemia-reperfusion injury.

Clinical learning point: Ischemia in a part of the body re-
mote from the intestine may lead to mucosal intestinal
permeability by an unknown mechanism.

MOTILITY
Methods: The basic electrical rhythm of the gastrointesti-
nal tract creates minute magnetic fields that can be meas-
ured in humans by using a superconducting Quantum
Interference Device gradiometer (193). Implanted bipolar
electrode methodology has been used in rats to measure
myoelectrical activity of the bowel (194). Computerized

technology enables the evaluation of myoelectric patterns
and intensity (195).

The lactulose breath hydrogen test has been used to as-
sess orocecal transit time (OCTT). However, lactulose ac-
celerates OCTT compared with gastroenterocolonic
scintigraphy (196) and, thus, may give false negative re-
sults of a delay in intestinal transit. Continuous ambula-
tory manometric recordings of the human small bowel
provide a useful tool for the investigation of motility ab-
normalities in patients. Computer-based analysis, com-
pared with conventional manual analysis, correctly
identifies the number of individual contractions with a
98% CI (197).

Clinical learning point: Continuous ambulatory ma-
nometric readings of the human small bowel provide a
useful tool for the investigation of motility abnormali-
ties. This method may be superior to the lactulose breath
hydrogen test to detect abnormalities in intestinal tran-
sit.

Regional laser Doppler flowmetry methodology has
shown a relationship between fasting motility and blood
flow in the human gut (198). Intestinal contractions pro-
duce Doppler signals of different amplitudes and duration,
thereby allowing differentiation between peristaltic and
nonperistaltic movements (199). Gut relaxation is also an
important component of gastrointestinal motor activity,
and both contractile and relaxant activity can be assessed
in vivo (200).
Hormonal effects: In lactating rats, food intake increases,
and there is hypertrophy of the gastrointestinal mucosa.
The lactation-associated increases in gastric emptying and
intestinal length are correlated with lactation and plasma
prolactin levels, but not with plasma progesterone or estra-
diol concentrations (201). Luteinizing hormone and hu-
man chorionic gonadotropin fragment lengthen the phase
III of the migrating myoelectric complex (MMC) (202).
NT enhances the voltage-dependent inward calcium cur-
rent in ileal smooth muscle cells, and exerts both excitatory
and inhibitory actions via its receptors (203).

VIP is present in enteric neurons and has been pro-
posed as a NANC inhibitory transmitter in the myenteric
plexus. VIP is also a stimulatory transmitter of secretory
processes in the submucosal plexus and in the mucosa.
VIP is tonically released in vivo. This release is under cho-
linergic control, and is suppressed by enkaphalinergic and
alpha-adrenergic mechanisms. Inhibition of the tonic re-
lease of VIP contributes to the excitatory effect of hor-
mones and transmitters such as opioids and motilin. Nitric
oxide is an important inhibitory NANC mediator that is
colocalized in neurons with VIP. VIP can be released from
enriched synaptosomes by calcium-dependent mechanisms
by nitric oxide agonists or nitric oxide-dependent mecha-
nisms (204). This VIP release may be induced by a pre-
synaptic stimulatory mechanism of nitric oxide; this effect
enhances the action of nitric oxide.
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Motilin stimulates gastrointestinal motility and is a
physiological mediator for the initiation of the MMC. Mo-
tilin is an important mediator of motility in humans, but
the pig gastrointestinal smooth muscle lacks functional
motilin receptors (205). In rabbits, motilin binds to a baso-
lateral but not to a BBM receptor with one class of binding
sites (206). Thus, the choice of the experimental model is
important.

5-HT is present in interneurons within the myenteric
plexus and is also present in mucosal enterochromaffin
cells. 5-HT is a mediator of chloride ion secretion, and the
5-HT-induced change in short circuit current is mediated
by a 5-HT4 receptor via a non-neural pathway (207).
5-HT released from these cells activates sensory neurons
that mediate both motor and secretory refluxes.

5-HT release by mucosal stimulation initiates a peri-
staltic reflux by activating 5-HT4/5-HT1P receptors on
sensory CGRP-containing neurons in human intestine
(208). The 5-HT4 receptor belongs to the seven trans-
membrane domain G protein-coupled receptor superfam-
ily. Activation of the 5-HT4 receptor results in the
stimulation of adenylyl cyclase and in an elevation of cy-
clic AMP (3�:5a�-cyclic monophosphate). 5-HT4 receptor
stimulation increases peristaltic reflux sensitivity, and the
relaxant response to 5-HT in the terminal ileum is medi-
ated directly on the smooth muscle (209). There is specific
binding of 5-HT to the 5-HT4 receptors in longitudinal
muscle and myenteric plexus of the guinea pig, with a
larger number of binding sites in the proximal than in the
distal intestine (210). In rat jejunum, 5-HT produces a
biphasic concentration-effect curve, which is mediated by
a putative 5-HT7 (first phase) and 5-HT3 (second phase)
receptor mechanism (211).

Clinical learning point: 5-HT4 receptor stimulation in-
creases peristaltic reflux sensitivity, and antagonists to
5-HT4 may play a role in some abnormalities of intesti-
nal motility.

ACh is a major neurotransmitter in the enteric nervous
system. Choline acetyltransferase, an enzyme involved in
the biosyntheses of ACh, is a marker of cholinergic neu-
rons, and the majority of neurons in the human small and
large intestines are cholinergic (212). The muscarinic re-
ceptors in the gut are localized at presynaptic, postsynap-
tic, prejunctional and postjunctional sites. The receptors
on smooth muscle cells mediate contractions by G
protein-coupled mechanisms, whereas those at presynaptic
and prejunctional sites may modulate the release of ACh
by negative feedback. Five muscarinic receptor genes have
been cloned in humans. Inflammation suppresses the pha-
sic contractile response to muscarinic receptor activation
in circular smooth muscle cells acting through M3 recep-
tors (213). Stimulation of alpha2-adrenoceptors inhibits
intestinal motility. Stimulation of beta-adrenoceptors re-
duces the number of activity fronts of MMCs and induces
a postprandial-like motility pattern (214). Both nutritive

and non-nutritive factors alter interdigestive motor pat-
terns. Extrinsic innervation of the jejunum and ileum, and
enteric neural continuity within the duodenum do not
regulate single pressure waves or clustered contractions
(215).

IL-1� is a pro-inflammatory protein that modulates the
release of neuromediators located in the rat myenteric
plexus, such as ACh, noradrenaline and substance P.
IL-1� inhibits ACh-induced intestinal contraction. This
inhibitory effect involves protein synthesis but is inde-
pendent of nitric oxide synthesis (216).

The interstitial cells of Cajal (ICC) are excitable, spon-
taneously active and generate slow wave-like membrane
depolarization. The basic contractile activity of the intes-
tine is initiated by ICC through spontaneous pulse genera-
tion. Thus, ICC play an important role in the development
of the pacemaking system and in the functional develop-
ment of the contractile properties of the intestinal smooth
muscle (217). ICC or pacemaker cells facilitate active
propagation of electrical events and mediate neurotrans-
mission (218).

Localized distention of the wall of the intestine evokes a
contraction proximal to the point of stimulation (the as-
cending excitatory reflex) and a relaxation distally (the de-
scending inhibitory reflex). The ascending excitatory
reflex may be part of the mechanism underlying the initia-
tion of peristalsis (219).
Nitric oxide and nitric oxide synthase: Nitric oxide is the
product of a five-electron reduction of L-arginine, which is
catalyzed by the enzyme nitric oxide synthase (NOS).
Neuronal NOS (NOS1) functions as a NANC neuro-
transmitter and is found in the myenteric plexus of the gut.
The relaxing effects of nitric oxide involve activation of
soluble guanylate cyclase and the production of cGMP. In
isolated rat small intestine, cGMP is not involved in the ni-
tric oxide-induced contraction but is related instead to ex-
tracellular calcium influx through the L-type calcium
channels (220). Endothelial NOS plays a role in the regu-
lation of gastrointestinal blood flow. The third NOS iso-
form is inducible (iNOS or NOS2). iNOS mRNA is
present in the ileum but not in the jejunum or colon of nor-
mal mice, and iNOS protein is detected in the ileum but,
again, not in the jejunum (221).

Inhibition of NOS in the brain generates a stimulus
that selectively inhibits gastric and duodenal phase III mo-
tor activities (222). An inhibition of NOS is involved in
the induction of the fasting motor pattern, whereas an in-
crease of nitric oxide mediates the occurrence of the fed
pattern (223). Inhibition of endogenous nitric oxide syn-
thesis by N

v-nitro-L-arginine methyl ester (a NOS inhibi-
tor) causes a secretory response in the intestine that can be
reversed by the administration of L-arginine, a substrate
for NOS (224). Nitric oxide reduces ATP levels and re-
versibly increases the permeability of tight junctions in
Caco-2 cells (225).

NANC but not cholinergic contractions are inhibited
by endogenous nitric oxide, and prejunctional and post-
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junctional modulation of NANC contractions are mecha-
nisms for the inhibition of gastrointestinal motility by
endogenous nitric oxide (226). Nitric oxide is involved in
neurally mediated relaxations induced by GABA in rat
isolated duodenum (227). There may be an inhibitory pre-
junctional enkephalinergic mechanism modulating the
nitrergically mediated relaxant events in the longitudinal
muscle layer (228). Endogenous nitric oxide also is impor-
tant in the modulation of spontaneous tone and motility in
the rat duodenum. Induction of NOS results in a reduc-
tion in spontaneous motility, and inhibition of constitutive
nitric oxide biosynthesis unmasks a contractile response
(229). Increased nitric oxide formation via the expression
of endotoxin-inducible iNOS may be responsible for the
pathophysiology of septic shock. iNOS mRNA is present
throughout the digestive tract (230). NOS activity is in-
duced by lipopolysaccharide due to an increase in NOS2
mRNA and protein abundance (231). Primary afferent
neurons and interneurons as well as motor neurons are
present in the enteric nervous system. Primary afferent
neurons responsible for mucosal pressure- or glucose-
induced enteric and enteropancreatic reflexes are submu-
cosal, whereas myenteric afferent neurons become acti-
vated only when the wall of the bowel is distended (232).

Agonists such as histamine evoke a contraction of
guinea pig intestinal smooth muscle, both by releasing cal-
cium from the intracellular stores and by stimulating cal-
cium influx from the extracellular space. Refilling of
intracellular calcium stores depleted by histamine in
guinea pig intestine occurs through the L-type calcium
channels (233). There are two types of calcium entry
pathways to refill calcium stores, one sensitive and the
other insensitive to calcium channel blockers (234).
GTPase RhoA or related proteins are involved in car-
bachol- and high potassium-induced contractions in intact
intestinal smooth muscle; these proteins may play a role in
agonist-induced increase in calcium sensitivity of force
production in intestinal smooth muscle (235). Calcium in-
flux, not acting through either the L- or N-type calcium
channels, helps initiate ileal slow waves (236). IL-� sup-
presses neurotransmitter release from rat myenteric
plexus via the induction of leukemia inhibitory factor as a
downstream intermediate (237).
Clinical considerations: Transection and reanastomosis of
the intestinal wall change the temporal and spacial organi-
zation of contractions distal to the transection site, with
fewer distally propagating contractions and slower intesti-
nal transit (238). After intestinal resection, digestive mo-
tility is shortened, and the frequency of MMC cycling
increases (239).

Acute hyperglycemia decreases duodenal and jejunal
motor activity, and retards small intestinal transit (240).
The rate of gastric emptying is a determinant of postpran-
dial blood glucose concentrations, which may contribute at
least in part to the gastrointestinal symptoms that may oc-
cur in patients with diabetes. Hyperinsulinemia increases
sympathetic activity, abolishes antral phase III and makes

duodenal phase III shorter (241). The duration of the
postprandial period without duodenal MMC is prolonged
in the acute postresection phase, but the magnitude of
these compensatory changes decreases over time (242).

The c-kit
+ receptor is expressed by ICCs and is a recep-

tor tyrosine kinase. Chronic idiopathic intestinal pseudo-
obstruction (CIIP) is a syndrome characterized by a fail-
ure of intestinal movement, which may be related to a defi-
ciency of c-kit

+ cells in the ICCs (243). Small intestinal
manometry is useful in diagnosing CIIP in infancy and
may also be useful for predicting clinical outcome (244).
In patients with dysfunctional dyspepsia, small intestinal
motor abnormalities may occur, especially during fasting
(245). The whole gut transit time is shorter in patients
with anxiety, as is the orocecal transit time (246). This
finding is consistent with the clinical impression that anxi-
ety may be associated with increased bowel frequency. An-
tidepressants are sometimes used in patients with IBS, and
the tricyclic imipramine slows jejunal phase III propaga-
tion velocity. This suggests that tricyclic antidepressants
may be useful in symptom relief by way of mechanisms un-
related to mood improvement (247). Ambulatory ma-
nometry is a useful tool to demonstrate these changes,
and alterations in small intestinal motility are also preva-
lent in patients with diarrhea-prominent IBS (248).

Ondansetron, a highly selective 5-HT3 antagonist, has
been shown to be useful in the treatment of symptoms in
patients suffering from IBS or from functional dyspepsia
(249). Activation of the sympathetic nervous system se-
lectively increases visceral but not somatic sensitivity, and
enhances both vagally and sympathetically driven reflexes
in the gut (250). Gut hypersensitivity may be present in
some patients with IBS, with selective hypersensitivity of
intestinal mechanosensitive pathways associated with a
nonspecific, probably central dysfunction of visceral so-
matic referral (251).

Ileus is common during sepsis; a single, sublethal dose
of Escherichia coli lipopolysaccharide endotoxin tempo-
rarily disrupts fasting, and postprandial canine gastrointes-
tinal motility and transit (252). Motility and secretory IgA
are linked by motility-activated chloride secretion from
the intestinal crypts (253).

The secretory and motor functions of upper gastroin-
testinal organs are inter-related, both under fasting and fed
conditions. For example, pancreatic enzyme secretion par-
allels changes of small intestinal motility. Neither the du-
ration of digestive secretory nor motor activity correlate
with prandial duodenal nutrient concentrations, but the
durations of pancreatic secretory and motor responses are
associated with changes in ileal nutrient delivery postpran-
dially, correlating with the determination of digestive pan-
creatic and motor responses (254). Intestinal transit is
inhibited more by oleate in the distal than in the proximal
half of the gut (255).

DRUG ABSORPTION AND METABOLISM
The literature dealing with drug absorption sites in the
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gastrointestinal tract has been reviewed (256). The princi-
pal goal of oral controlled release delivery systems is to
provide the drug within a time-frame that will increase its
efficacy and minimize adverse effects. Some drugs are ab-
sorbed in specific areas of the intestine due to their low
permeability or solubility, their chemical instability and
the binding of the drug to the intestinal contents, as well to
the degradation of the drug by normal colonic microorgan-
isms. Thus, the delivery site may need to be controlled to
influence absorption of the medication. Several possible
approaches can be used to increase the oral absorption of
drugs, and the use of carrier-mediated transport for bile ac-
ids is one such mechanism (257).

Gene products of the P-450 gene superfamily are repre-
sented in the small intestinal epithelial cells of numerous
species, including humans, as well as in cultured Caco-2
cells (258). When procarcinogens are metabolized by cyto-
chrome P-450, they may undergo bioactivativation to pu-
tative carcinogens. This represents the metabolic
machinery for orally ingested xenobiotics, and the cyto-
chrome P-450 system is the site for xenobiotic first-pass
metabolism in the small intestine. Some of the P-450s are
inducible. The main cytochrome P-450 in rat small intes-
tine is CYP1A1, which can be induced in both villus and
crypt cells (259).

A second major determinant of oral drug bioavailability
is the multidrug efflux pump, P glycoprotein. P glycopro-
tein is present in high levels in the villus enterocytes of the
small intestine and may be induced. There is a broad over-
lap in substrate and in inhibitor specificity for cytochrome
P-450 and P glycoprotein, suggesting that they act as a
concerted barrier to drug absorption (260).

From a drug discovery perspective, cell culture models
can be used to expedite the identification of compounds
with desired pharmacokinetic properties (261-263). Esti-
mates of passively absorbed solutes correlate highly be-
tween rats and humans, but carrier-mediated absorption
may deviate between these two species (264). Thus, ac-
tively transported drug uptake is underestimated in cell
cultures compared with in vivo data, although a good cor-
relation with fractional absorption is seen for passively
transported drugs (265).
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