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A complete renin-angiotensin system (RAS) is locally expressed in the brain and ful�lls important functions. Angiotensin II,
the major biologically active peptide of the RAS, acts via binding to two main receptor subtypes designated AT1 and AT2. e
present paper focuses on AT2 receptors, which have been reported to have neuroprotective effects on stroke, degenerative diseases,
and cognitive functions. Our group has identi�ed a family of AT2 receptor interacting proteins (ATIPs) comprising three major
members (ATIP1, ATIP3, and ATIP4) with different intracellular localization. Of interest, all ATIPmembers are expressed in brain
tissues and carry a conserved domain able to interact with the AT2 receptor intracellular tail, suggesting a role in AT2-mediated
brain functions.We summarize here current knowledge on the ATIP family of proteins, and we present new experimental evidence
showing interaction defects between ATIP1 and two mutant forms of the AT2 receptor identi�ed in cases of mental retardation.
ese studies point to a functional role of the AT2/ATIP1 axis in cognition.

1. Introduction

e renin-angiotensin system (RAS), a major regulator of
blood pressure and cardiovascular functions, is now fully
recognized as playing important roles in the brain [1–6].
Among the active peptides generated by the RAS, angiotensin
II (AngII) stands as the best characterized. is octapeptide
binds to two receptor subtypes, namely, AT1 and AT2, that
belong to the superfamily of seven transmembrane domains
receptors. Inmost tissues and cell lines, AT1 appears as a driv-
ing receptor that mediates most effects of AngII by activating
classical heterotrimeric G proteins and intracellular signaling
cascades [6, 7]. In contrast, AT2 is generally considered
as an AT1-counteracting receptor that involves nonclassical
signaling pathways and does not necessarily require exposure
to AngII [6, 8]. Over the past few years, several AT2 receptor
interacting partners have been identi�ed [8–12], among

which SHP-1 [8, 9], PLZF [13], and ATIP1/ATBP50 [12,
14, 15] that regulate AT2 receptor trafficking, internalization
and/or activation. In this paper, we will focus on the family
of ATIP proteins and their potential roles in AT2-mediated
brain functions.

2. AT2 Receptor in the Brain

In contrast to the ubiquitous AT1 receptor, the AT2 subtype
is predominantly expressed during embryonic development
and is restricted to few sites in the adult [8, 17, 18]. In the
central nervous system, AT2 expression is high during fetal
life and remains elevated in the adult in speci�c areas involved
in cognition, behavior, and locomotion [1, 18–20]. AT2 is
mainly expressed in neurons and mediates neuronal differ-
entiation [21–27], survival [28–30] and regeneration [31–33]
through the regulation of protein kinases and phosphatases
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F 1: Distribution pro�les of ATIP transcripts in normal human tissues. (a) Real-time PCR using probes common to all ATIP transcripts
(3′ exons). (b) Real-time PCR using probes speci�c for each ATIP transcript (5′ exons). Results presented are from Di Benedetto et al., 2006
[16], and are normalized relative to the levels of human acidic ribosomal phosphoprotein P0 (RPLP0). Sk. muscle: skeletal muscle.

[8, 34–38], and the reorganization of the cytoskeleton [39,
40]. Functional in vivo studies tend to indicate protective
effects of the AT2 receptor against stroke, Alzheimer disease,
and cognitive impairment [26, 33, 41–45]. Involvement of
AT2 receptors in cognition has also been suggested by the
identi�cation of mutations in the corresponding AGTR2
gene in several cases of mental retardation [46–48]. However
these results remain a matter of debate [49–52], and func-
tional alterations of AT2 receptors in mental retardation have
still to be demonstrated. Further analyses of AT2 signaling
pathways and AT2 interacting partners in the brain [53]
following or not receptor activation with compound 21
(M024), a new selective AT2 ligand [54–56], should bring
further insights on the effects of AT2 receptors in normal and
pathological situations.

3. A Family of AT2 Receptor-Interacting
Proteins (ATIP)

A family of AT2 receptor-interacting proteins (ATIPs) has
been identi�ed by a two-hybrid system cloning strategy
using as a bait the 52 carboxy-terminal residues of the
AT2 receptor [14, 15]. ree major human ATIP members
(ATIP1, ATIP3, and ATIP4) are encoded by alternative exon
splicing [16] and from alternative promoters [57] present on a
single gene designatedMTUS1. is gene contains 17 coding
exons encompassing more than 112 kilobases and localizes at
chromosomal position 8p22 [16]. All three ATIP transcripts
use the same 3′ exons of the gene, and therefore encoded
proteins are identical in their carboxy-terminal (395 amino

acids) portion, which carries the AT2 receptor-interacting
domain [12, 14, 16]. us, each ATIP member is in principle
able to interact with AT2, although to date, only ATIP1
has been formally demonstrated to bind AT2 in living cells
[14, 15, 34]. Expression of all three mRNA species has been
detected in nonpathological human tissues by real-time PCR
analysis using probes speci�c for each splice isoform [16]
(Figure 1). ATIP1 and ATIP3 are ubiquitous whereas ATIP4
expression is restricted to the central nervous system. All
ATIP transcripts were found expressed in every brain area
examined [16], ATIP1 being predominant in all brain regions
except cerebellum and fetal brain in which ATIP4 represents
the major ATIP species.

4. The ATIP1/AT2 Axis in
Neuronal Differentiation

ATIP1 (also designated MTSG1 and ATBP50 in the mouse)
is the �rst characterized member of the ATIP protein family
[14, 15, 58]. ATIP1 is a cytosolic protein that inhibits cell
proliferation, receptor tyrosine kinase signaling, and ERK
phosphorylation and contributes to the trafficking of the AT2
receptor from the Golgi to the cell membrane.

Real-time PCR analysis of ATIP transcripts in human
tissues has revealed that ATIP1 is ubiquitous and the most
abundant ATIP mRNA species expressed in the brain [16]
(Figure 1). However, only few studies have investigated the
effects of ATIP1 in brain functions. In rat fetal neurons,
ATIP1 is constitutively associated with the AT2 receptor
at the cell membrane and is part of a multimeric complex
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F 2: Interaction between ATIP1 and wild-type or mutated AT2 receptors. e C-terminus domain of ATIP1 (ATIP) interacts with the
C-terminal region of human AT2 receptor, either wild-type (WT) or mutated (R324Q, I337V). e yeast reporter strain HF7 expressing the
pairs of indicated hybrid proteinswas analyzed for histidine auxotrophy and𝛽𝛽-galactosidase expression as described [14]. Transformantswere
plated on medium with histidine (le�), without histidine (His, middle), or replica-plated on Whatman �lters and tested for 𝛽𝛽-galactosidase
activity (𝛽𝛽Gal, right). Growth in the absence of histidine and blue color in the 𝛽𝛽-galactosidase assay indicate interaction between hybrid
proteins (WT: wild-type sequence; Ctrl; empty vector).

comprising the AT2 receptor and the SHP-1 tyrosine phos-
phatase [34]. Upon AT2 receptor activation by AngII, ATIP1
and SHP-1 remain associated but detach from the AT2
receptor and translocate from the cell membrane to the
nucleus. In the nucleus, the ATIP1/SHP-1 complex activates
the transcription of the methyl methanesulfonate sensitive 2
(MMS2) gene, thereby contributing to AT2-mediated neu-
ronal differentiation [34].ese data suggest that detachment
of ATIP1 from the AT2 receptor, rather than its association,
may trigger activation of AT2 signaling pathways. Accord-
ingly, dissociation of ATIP1/AT2 complexes following AngII
stimulation has also been reported in transfected Chinese
Hamster Ovary (CHO) cells [14].

5. ATIP1/AT2 Alterations inMental Retardation

ATIP1 interacts with the C-terminal intracellular portion of
the AT2 receptor [14, 15]. Interestingly, two nonconservative
amino acid substitutions (R324Q and I337V) in the carboxy-
terminal sequence of the human AT2 receptor have been
identi�ed in cases of mental retardation [46], prompting us
to investigate whether these alterations may impact on the
ability of the AT2 receptor to recruit ATIP1. We addressed
this question using the two-hybrid system in yeast. e last
52 amino acids of the human AT2 receptor, either wild-
type or mutated (R324Q or I337V), were PCR-ampli�ed
and subcloned into the pGBT9 vector in frame with the
Gal4-DNA binding domain. e AT2-interacting domain
of ATIP1 was subcloned into the VP16 vector. Interactions
were assayed as previously described in the HF7 yeast strain
which contains Histidine and beta-galactosidase reporter
genes [14]. Interaction between the C-terminal domain of
ATIP1 and the C-terminal region of the human AT2 receptor
was con�rmed (Figure 2). To our surprise, the interaction
of ATIP1 with each of the mutated forms of the AT2
receptor was stronger compared to the interaction with wild-
type AT2, suggesting that AT2 mutants may exhibit higher
affinity for ATIP1. ese data raise the interesting possibility
that mutated AT2 receptors may retain ATIP1 at the cell
membrane upon AngII stimulation. Further experiments are
required to explore this hypothesis. We speculate that AT2
mutations (R324Q and I337V) identi�ed in mental retarda-
tion may impair the intracellular activity of the receptor by

preventing the release of ATIP1. ese results suggest for the
�rst time that dysfunctions in the AT2/ATIP1 axis may be
involved inmental retardation.ey point to a role for ATIP1
in brain functions and relaunch the debate on the functional
involvement of AT2 receptors in mental retardation.

6. Microtubule-Associated ATIP3

As mentioned before, ATIP3 is identical to ATIP1 in
the carboxy-terminal region carrying the AT2-interacting
domain; however whether this isoform indeed interacts with
the AT2 receptor in living cells remains to be determined.
QPCR analyses revealed that ATIP3 transcripts are expressed
in all human tissues including in the central nervous system
[16]. However, ATIP3 functions in the brain have not yet
been investigated. Of interest, ATIP3 closely associates with
microtubules (Figure 3) [12, 59, 60], suggesting possible
roles of this protein in diverse biological functions associated
with cytoskeleton remodeling. Indeed, ATIP3 localizes to
the mitotic spindle during cell division and acts as a potent
antimitotic protein that inhibits cancer cell proliferation in
vitro and tumor growth in vivo, in line with tumor suppressor
effects of ATIP3 reported in breast cancer [59].

In the brain, microtubules play essential roles by regu-
lating neuronal differentiation, neurite outgrowth, and cell
migration [61, 62]. Alterations of microtubule-associated
proteins such as tau are strongly associated with the occur-
rence of neurodegenerative pathologies, including Alzheimer
disease [63, 64], in which AT2 receptors have also been
implicated [43, 44, 65]. Whether microtubule-associated
effects of ATIP3may also contribute to the regulation of brain
functions, in response or not to AT2 receptor stimulation, is
a question that deserves further studies.

�. �rain-��eci�c ���ression o� ATIP�

e cDNA cloning and functional characterization of the
ATIP4 isoform have not been undertaken to date. ATIP4
presents two interesting features that make it a good can-
didate for mediating AT2 functions in the brain. First,
expression of the ATIP4 mRNA is restricted to the brain and
remains undetectable in peripheral tissues [16] (Figure 1). Of
note, ATIP4 mRNA levels are highest in the fetal brain and
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F 3: Schematic representation of ATIPs localization and interaction with AT2 receptors. ATIP1 is constitutively associated with the AT2
receptor at the cell membrane in rat fetal neurons and dissociates from the receptor upon AngII stimulation [34]. Putative interactions of
ATIP3 and ATIP4 with AT2 receptors through their respective carboxy-terminal regions are represented.

in the cerebellum, which are two regions of abundant AT2
receptor expression in human brain [20]. Second, the amino
acid sequence of ATIP4 contains a stretch of 24 hydrophobic
residues �anked by charged residues, which is the hallmark of
intrinsic membrane-spanning domains. Based on these in sil-
ico observations, it is tempting to speculate that ATIP4 might
be structurally organized as a transmembrane protein with a
short (36 residues) N-terminal extracellular domain and an
intracellular region (456 residues) able to interact with the
AT2 receptor (Figure 3). Future studies should be designed
to investigate whether ATIP4 and AT2 are indeed colocalized
at the plasma membrane in neuronal cells, and whether they
functionally interact to regulate important brain functions.
Prominent ATIP4 expression in the cerebellum compared to
other regions of the brain (Figure 1)may suggest involvement
of this ATIP isoform in functions related to locomotion,
behavior, and/or cognition.

8. Concluding Remarks

Since the discovery of a new family of AT2 receptor interact-
ing proteins in 2004, the question of whether these polypep-
tides may play a role in normal and/or pathological brain
functions has not been addressed. Notably, all ATIPmembers
are abundantly expressed in the brain and share the same
C-terminal domain able to interact with the AT2 receptor,
suggesting that each ATIP member may contribute to brain
AT2 receptor functions. A functional AT2/ATIP1 axis has
been previously reported to be involved in rat fetal neuron
differentiation. We present here evidence that AT2/ATIP1
interactions are altered by AGTR2 mutations identi�ed in
cases of mental retardation. ese data relaunch the debate
on the implication of AT2 receptors inmental retardation and

point to MTUS1 as an attractive target gene in human brain
pathologies.
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