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Recently an efficient method for the solution of the partial symmetric eigenproblem 
(DACe, deflated-accelerated conjugate gradient) was developed, based on the conju­
gate gradient (CG) minimization of successive Rayleigh quotients over deflated sub­
spaces of decreasing size. In this article four different choices of the coefficient 13k 
required at each DAce iteration for the computation of the new search direction Pb 
are discussed. The "optimal" choice is the one that yields the same asymptotic 
convergence rate as the CG scheme applied to the solution of linear systems. Numeri­
cal results point out that the optimal 13k leads to a very cost effective algorithm in 
terms of CPU time in all the sample problems presented. Various preconditioners are 
also analyzed. It is found that DACe using the optimal 13k and (LLT)-I as a precondi­
tioner, L being the incomplete Cholesky factor of A, proves a very promising method 
for the partial eigensolution. It appears to be superior to the Lanczos method in the 
evaluation of the 40 leftmost eigenpairs of five finite element problems, and particu­
larly for the largest problem, with size equal to 4560, for which the speed gain turns 
out to fall between 2.5 and 6.0, depending on the eigenpair level. © 1994 John Wiley & 
Sons, Inc. 

INTRODUCTION 

The numerical computation of the p leftmost 
eigenpairs of the generalized eigenvalue problem 
Ax = ABx, where A and B are large, sparse, sym­
metric positive definite matrices, is a problem of 
major importance in many scientific and engi­
neering applications making use of finite differ­
ence (FD) or finite element (FE) models. 

(Bathe and Wilson, 1973; Parlett, 1980), the 
Lanczos method (Lanczos, 1950; Paige, 1972), 
and optimization methods by gradient and conju­
gate gradient (CG) schemes. 

Typical applications are in vibrational analysis 
of mechanical structures (Bathe 1982), lightwave 
technology (Zoboli and Bassi, 1992), and the 
spectral superposition approach for the solution 
oflarge sets of differential equations (Gambolati, 
1993a). There are several techniques for solving 
the generalized eigenproblem: subspace iteration 
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Recently a new optimization method was de­
veloped, the deflation-accelerated conjugate gra­
dient (DACG), that performs a preconditioned 
CG minimization of the Rayleigh quotient over 
subspaces of decreasing size (Gambolati, Sar­
toretto, and Florian, 1992). A vector and parallel 
version of this algorithm can be found in Pini and 
Sartoretto (1992). 

The theoretical asymptotic convergence rate 
of DACG was studied by Bergamaschi Gambo­
lati, and Pini (1994) who showed it to be related 
to the spectral condition number of the Hessian 

CCC 1070-9622/94/060529-12 

529 



530 Bergamaschi, Gambolati, and Pini 

of the Rayleigh quotient: xT Ax/xTBx, restricted 
over the subspace B-orthogonal to the eigenvec­
tors already computed and evaluated at the de­
sired eigenvector. 

Here we first analyze the particular choice of 
coefficient 13k in the recurrence equation defining 
the new search direction Pk: 

where K-I is the CG preconditioning matrix and 
gk is the gradient of the Rayleigh quotient at the 
iteration k. Using the following general definition 
for 13k 

(1) 

where M is an appropriate matrix, a sequence of 
mutually M-conjugate directions Pk is con­
structed. It is shown that several selections for M 
are possible. However, they are not all equiva­
lent in terms of computational cost. In particular, 
the choice of M that yields the same asymptotic 
convergence as the CG method in solving linear 
systems, appears to be the most convenient one. 
The numerical performance ofDACG with M de­
fined as in Perdon and Gambolati (1986) and 
Gambolati and Bergamaschi (1992) is discussed 
using three well known preconditioners: K-I = 
A-I, K-I = (LLT)-I, L being the incomplete Cho­
lesky factor of A, and K-I = D-I, where D is the 
diagonal matrix whose entries are the diagonal 
coefficients of A. The numerical asymptotic con­
vergence rate of the Cholesky-preconditioned al­
gorithm is compared to that of DACG, which 
makes use of the inverse of A as a preconditioner 
(Bergamaschi et al., 1994). 

DACG, preconditioned with (LLT)-l, and us­
ing four different choices for 13k is applied to cal­
culate the 40 leftmost eigenpairs of five finite ele­
ment eigenproblems of large size (Gambolati and 
Putti, 1994). The DACG convergence profiles 
and total CPU times are analyzed and discussed. 
Finally the behavior of the Cholesky-precondi­
tioned algorithm, with the best 13k value, is com­
pared to the pointwise Lanczos method (Gambo­
lati and Putti, 1994) for evaluating 5, 10, 20, and 
40 eigenpairs of the five test problems. 

GRADIENT METHODS FOR EVALUATION 
OF THE P LEFTMOST EIGENPAIRS 

We analyze the DACG method in the form devel­
oped in Gambolati et ai. (1992), Gambolati and 

Bergamaschi (1992), and Bergamaschi et ai. 
(1994), to compute the p smallest eigenpairs of 
the eigenproblem: 

Ax = ABx (2) 

A, B being two sparse, symmetric, positive defi­
nite, N x N matrices. The real positive eigen­
values and corresponding eigenvectors are de­
noted by 

The eigenpairs are found sequentially, starting 
from the leftmost one AN, UN, by means of a CG 
optimization of the restricted Rayleigh quotient 

(3) 

onto subspaces of decreasing size, which are B­
orthogonal to the previously computed eigenvec­
tors. 

DACG Procedure 

Assume that the j leftmost eigenpairs of (2) are 
known. Then the N - j eigenpair is obtained by 
the following procedure. 

1. Start with an initial eigenvector guess Xo 

such that UJBxo = 0; that is, take Xo to be 
B-orthogonal to the subset Uj = [UN,. . ., 

UN - j+ Il of the j leftmost eigenvectors previ­
ously computed. Set k = ° (iteration index) 
and P_I as an arbitrary vector; 

2. Let mk = xIBxk and 

be the gradient of the Rayleigh quotient (3) 
assessed at the current iterate Xk. 

3. If k = ° set 13k = 0, otherwise calculate 13k 
by (Perdon and Gambolati, 1986; Gambo­
lati and Bergamaschi, 1992): 

T AK-I 
13 .- 13(I) - - Pk-l ~ 
k·- k - T 

Pk-IApk-1 
(5) 

or by (Bergamaschi et aI., 1994) (MDACG 
procedure): 



'Yj = )W-j+I (6) 

or by (Ruhe, 1977): 

(7) 

or by (Polak, 1971; Gambolati et aI., 1992): 

(3 .- (3(4) - glK-I(gk - gk-I) (8) 
k·- k - d-1K-Igk- I 

where K-I = (LLT)-I and L is the pointwise 
incomplete Cholesky factor of A (Meijerink 
and van der Vorst, 1977; Kershaw, 1978). 
Equation (7) is different from Eq. (1) but 
Eq. (8) can be written under the form (1) as 
will be shown later. ' 

4. Calculate: 

(9) 

and evaluate Pk by B-orthogonalizing ih 
against the eigenvectors previously com­
puted using a Gram-Schmidt process: 

j-i 

Pk = Pk - 2: (plBuN-JUN-i' (10) 
i~O 

5. Set: 

where CXk is chosen in order to minimize 
q(Xk + CXkPk) (see Papadrakakis, 1984; Per­
don and Gambolati, 1986). 

6. Increase the iteration counter and go back 
to step 2. The iteration is completed when­
ever k is larger than the allowed maximum 
number of iterations IMAX or 

or 

rr. . = IIAxk+I - q(Xk+I)Bxk+lllz < TOL2' 
j, k·rI IIA II ' Xk+l 2 

(13) 

if erj,k+I < TOLl or ITj,k+I < TOL2, we set 
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AN-j = q(Xk+l) 

UN-j = Xk+ltVmk+1 

which are the N - j eigenvalue and corre­
sponding B-normalized eigenvector, re­
spectively, of Eq. (2). 

Note that the leftmost eigenpair AN, UN can also 
be computed by this general procedure by taking 
Va as the null space and 'Yo = 0 in (6). 

Selecting the Coefficient 13k 
A different coefficient 13k may produce a different 
asymptotic rate of convergence. Let us now ana­
lyze the asymptotic behavior of the precondi­
tioned CG algorithm with 13k as defined by Eqs. 
(5)-(8). 

Set ILk = q(Xk), IL = AN-jo We assume that the 
following approximations hold for k ;::: sand s 
"sufficiently" large. 

(14) 

and use the following equation for CXk (see Ruhe, 
1977): 

REMARK: This choice of CXk is asymptotically 
equivalent to that indicated at step 5. of the pre­
vious section. Actually, the coefficient CXk is cho­
sen such that q(Xk+I) is minimized. This leads to 
the following equation (see Papadrakakis, 1984; 
Perdon and Gambolati, 1986; Gambolati, 1993b): 

where 

acx k + bCXk + C = 0 

a = plApkPlBxk - plAxkPlBpk 

b = xlBxkPlApk - xlAxkPlBpk 

C = xlBxkPlAxk - xlAxkPlBxk' 

(16) 

The first order approximation of the larger root 
of the equation is (Ruhe, 1977): 



532 Bergamaschi, Gambolati, and Pini 

Dividing numerator and denominator by X[BXk 
and recalling that 

yields Eq. (15). 
Let k > s, then from (14), (11), and (15) we 

have 

(17) 

Then, for every k > s + 1, using (9), (11), and 
(15) we obtain the following expression for f3k3): 

f3?) 
_ g[K-Igk _ g[K-I(2Im)(A - f.LB)Xk 
- T - T -gk-IK-Igk- I gk-IK-I(Kpk-1 - f3k- IKpk-2) 

g[K- I(2Im)(A - f.LB)(Xk-1 + ak-IPk-l) 
= gf-,(ih-, - f3k-IPk-2) 

g[K-lgk- 1 + (2Im)ak-lg[K-I(A - f.LB)Pk-1 
= T - T gk-IPk-1 - f3k-lgk-IPk-2 

(18) 

First observe that g[-IPk-2 = 0 by (17). Then we 
note that 

because every iterate Xk is B-orthogonal to Uj and 
consequently, for every i :5 j - 1, 

gf-IUN-i = (2Im)x[-I(A - f.LB)UN-i 

= (AN-i - f.L)(2Im)x[-IBuN-i = O. 

We now rewrite f3?) using the above results and 
Eq. (15): 

f3?) 

_ g[K-Igk- 1 + (2Im)ak-lg[K-I(A - f.LB)Pk-1 
- T 

-(2Im)ak-IPk-I(A - f.LB)Pk-1 
(19) 

Taking now f3k4) as in (8), and observing that Eq. 
(8) differs from Eq. (7), and consequently from 
(19), only by the term g[K-Igk- 1 at the numera­
tor, we can write: 

13 (4) - (2Im)ak-lg[K-I(A - f.LB)Pk-1 
k - T 

-(2Im)ak-IPk-1(A - f.LB)Pk-1 

g[K-I(A - f.LB)Pk-1 
p[-I(A - f.LB)Pk-1 

p[-I(A - f.LB)K-I gk 
p[-I(A - f.LB)Pk-1 . 

(20) 

If we look at f3k4 ) given by Eq. (20) and f3kl ) we 
may recognize that f3k2) is somewhat intermediate 
between f3kl) and f3k4) because 0 < Yj < f.L. 

Convergence of DACG Method 

The selection of 13k = f3k4), Eq. (20), implies that 
the P directions are mutually (A - f.LB)-orthogo­
nal. Therefore solving the eigenvalue problem is 
in this case asymptotically equivalent to solving 
the linear system: 

(A - f.LB)x = o. 

It was proved by Axelsson (1976) that the asymp­
totic convergence rate of the CO method in the 
solution of linear systems can be approximated 
by: 

2 
cf> = v1 (21) 

~ being the condition number of the precondi­
tioned iteration matrix. Hence the DACO con­
vergence rate Pj, defined as: 

1· l' 1 (erj k+1 ) Pj = 1m Pj, k = - 1m n -'-
k-->x k-->x erj, k 

(22) 

with 13k = f3k41, is expected to be inversely pro­
portional to v1, with a proportionality factor of 
4 instead of 2 (because the convergence toward 
the eigenvalue is two times as fast as the conver­
gence toward the eigenvector, see Ruhe (1977», 
where ~ is here equal to the condition number of 
K-I(A - f.LB). 

In Bergamaschi et al. (1994) a theoretical anal­
ysis of convergence with 13k = 13 kl) was performed 
with K-I = A -I, and it was shown that Pj is in­
versely (linearly) proportional to the spectral 
condition number ~j of the Hessian of the re-



stricted Rayleigh quotient, calculated at the cur­
rent eigenvector UN-j: 

_ _ 1 + 1/~j _ 4 
Pj - 1>j - 2 In 1 - 1/ ~j - ~ (23) 

where 

(24) 

Furthermore, Bergamaschi et al. (1994) give an 
estimate of the number kj of iterations required to 
reduce the relative error by a factor h: 

- In h k= k + c._ 
1 ':,J 4 (25) 

where k is the number of "initial" iterations per­
formed before the asymptotic convergence is 
achieved. By distinction, and in view ofEq. (21), 
we might expect that the DACG asymptotic con­
vergence rate with 13k = (3 k4) is dependent on the 
square root of ~j. In this case the approximate 
number kj of iterations required to reduce the 

IN = 2221 
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error by the factor his: 

(26) 

Note that if K-I ¥- A -I no analytic expression can 
be given for ~j because the eigenvalues distribu­
tion of K-I is, in general, unknown. 

NUMERICAL RESUl IS 

The DACG procedure (with different choices of 
the coefficient 13k) has been applied to five sample 
problems arising from the FE integration of 2-D 
and 3-D equations of elliptic type with size N = 
222, 441, 812, 1952, and 4560 (Gambolati and 
Putti, 1994). The distribution of the 40 leftmost 
eigenvalues is shown in Fig. 1. Computations 
were performed on an IBM 9370 computer in 
double precision arithmetic. 

Table 1 provides the experimental asymptotic 
convergence rates Pj of DACG with 13k = (3 kl) and 
K-I = (LLT)-I, and makes a comparison between 
Pj and the theoretical rate 1>j, computed by Eq. 

1 1 
i i 11'1 iii i i Ii I I 

i I I i I ill II , , 1 11,1" Jill II , I, 1,1, II I 
10 100 1000 

IN = 4411 
*10.7 

Iii iii I i , iii Ii I , I I I 
iii i I Ii' I II 11111,111111111111,111111111 i i 

10 100 1000 

IN = 8121 
*10.7 

I I I I I I I I I I I I 111111,111, 11,11, II~IIII j : 1 
iii i'l , , iii i i Ii I , iii" "I , , I iii i Ii I 

10 100 1000 

IN = 19521 
*10.7 

, I i iii iii' i til 
I 

iii 1 i "I 
I , .II, ,I ,I .I,lll,IIIII,III, 

I I 

10 100 1000 

IN = 45601 
*10.7 

iii iii ' I, 1,1 , ,) ,IJ,IIIIIII,~ ~!JIII!IJIII.!, "" 1 ' , " "I I I 

10 100 1000 
*10.7 

FIGURE 1 Distribution of the 40 leftmost eigenvalues for the five sample problems. 
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Table 1. Experimental Convergence Rates and Comparison between Pj and c/Jj for Preconditioners A-I 
and (LLT)-1 

N = 222 N = 441 N = 812 N = 1952 N = 4560 

j CPj Pj CPj Pj CPj Pj CPj Pj CPj Pj 

0 3.047 1.458 4.540 1.269 1.952 0.532 2.834 0.448 1.136 0.672 
1 2.247 1.279 1.937 0.910 2.744 0.584 1.959 0.392 0.270 0.308 
2 2.247 1.942 1.308 0.883 1.351 0.518 1.959 0.380 1.254 0.656 
3 0.502 0.487 0.970 0.968 2.163 0.742 0.502 0.141 0.707 0.504 
4 0.502 0.379 1.373 1.152 2.124 0.792 0.502 0.123 0.507 0.388 
5 1.408 1.182 0.023 0.023 1.985 0.748 1.112 0.321 0.691 0.537 
6 0.821 0.747 0.563 0.536 2.304 0.807 0.630 0.345 0.078 0.078 
7 0.821 0.740 0.899 0.847 2.168 0.749 0.630 0.257 0.572 0.405 
8 0.852 0.817 0.433 0.445 2.235 0.890 0.744 0.306 0.232 0.327 
9 0.852 0.870 0.366 0.374 2.215 1.034 0.744 0.307 0.386 0.488 

10 1.149 0.957 0.312 0.319 2.308 1.086 0.051 0.053 0.131 0.151 
11 1.149 0.889 0.330 0.339 2.272 0.912 0.641 0.308 0.645 0.566 
12 0.044 0.044 0.583 0.595 0.300 0.307 0.165 0.206 0.054 0.054 
13 0.044 0.044 0.221 0.224 0.088 0.051 0.165 0.195 0.159 0.171 
14 0.156 0.172 0.052 0.053 0.147 0.126 0.400 0.328 0.358 0.397 
15 0.156 0.172 0.446 0.454 0.225 0.206 0.677 0.305 0.134 0.218 
16 0.577 0.543 0.390 0.399 0.291 0.294 0.677 0.388 0.503 0.573 
17 1.018 0.922 0.218 0.222 0.354 0.325 0.230 0.230 0.076 0.076 
18 1.018 1.058 0.Q38 0.041 0.414 0.399 0.230 0.246 0.132 0.134 
19 0.535 0.549 0.228 0.237 0.454 0.462 0.196 0.206 0.096 0.103 
29 0.621 0.558 0.189 0.199 0.101 0.074 0.783 0.554 0.078 0.078 
39 0.105 0.112 0.122 0.146 0.125 0.104 0.215 0.221 0.021 0.021 

Comparison between theoretical asymptotic convergence rate CPj, Eq. (23), and the numerical convergence rate Pj of DACG 
with 13k = f3~l), and with K-I = A-I and K-I = (LLT)-I, respectively, for some of the leftmost eigenpairs of the five sample 
problems. 

(23) for the ideal preconditioner A-I. The results 
of Table 1 are quite interesting and show that the 
DACG asymptotic behavior with the precondi­
tioners A -I and (LLT)-I are very close, except 
for the first few eigenpairs. Note that K-I = 

(LLT)-I yields a higher convergence rate than 
K-I = A -I for a significant number of eigenpairs, 
particularly for the N = 441 and the N = 4560 
problems. 

As pointed out in Bergamaschi et al. (1994), 
A -I is not the absolute "best" theoretical pre-

Table 2. Average Time/DACG Iteration 

K-I = A-I 

Problem TORT Trl Tit 

N = 222 0.097 0.876 0.973 
N = 441 0.225 1.427 1.652 
N = 812 0.474 3.375 3.849 
N = 1952 1.042 12.093 13.135 
N = 4560 3.200 41.134 44.334 

(-)DACG does not converge within IMAX = 500. 

conditioner as it is in the CG solution of linear 
systems (in which case the spectral condition 
number of the iteration matrix is equal to 1 and 
one iteration suffices to converge to the exact 
solution) and thus it may happen that the pre con­
ditioner (LLT)- 1 may occasionally lead to a faster 
asymptotic convergence than A-I. Table 2 pro­
vides the average time per DACG iteration with 
13k = 13P) using the two (previous) precondi­
tioners and the new one K-I = D-I where D = 

diag{aII' a22,' .. ,aNN}, in the evaluation of the 

K-I = (LU)-l K-I = D-I 

T(LLT)-I Tit TD-I Tit 

0.057 0.154 0.020 0.117 
0.080 0.305 0.030 0.255 
0.118 0.592 
0.370 1.412 0.122 1.164 
1.476 4.676 0.334 3.554 

Comparison of the average time (s) per iteration Tit (Tit = TORT + TK-I) for DACG with 13k = f3~l) and three different 
preconditioners in the calculation of the 40 leftmost eigenpairs (TOL2 = 10-3). 
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Table 3. Overall CPU Time for the three different preconditioners 

N = 222 N = 441 N = 812 N = 1952 N = 4560 

K-I Time # Iter. Time # Iter. Time # Iter. Time # Iter. Time # Iter. 

A-I 1059 1088 4989 3020 7233 1789 24156 1839 162130 3657 
(LF)-I 294 1901 877 2873 2137 2720 4562 3232 13584 2905 
D-I 398 3409 1098 4303 5524 4745 57632 16216 

(-)DACG does not converge within IMAX = 500. 
Comparison ofthe overall CPU time (s) for DACG with 13k = f3kll and three different preconditioners in the calculation of the 40 

leftmost eigenpairs (TOL2 = 10-3). 

40 leftmost eigenpairs. Using D-I or (LLT)-I 
yields a significant reduction of time per itera­
tion. Note that the calculation of K-I gk [Eq. 9], 
when K-I = A-I, is performed by iteratively 
solving the linear system 

(27) 

by the CG method preconditioned with (LLT)-I, 
and this accounts for the relatively large time per 
iteration required by DACG preconditioned with 
A -I. The computation of the product between 
A -I and gk is by any method much more expen­
sive than the computation of (LLT)-Igk . In the 
N = 441 and N = 4560 problems, we observe 
(Table 3) a reduction of the total number of 
iterations with the preconditioner (LLT)-I consis­
tent with the asymptotic convergence rates of 
Table 1. 

From a careful inspection of Table 2 we can 
see that the time per iteration of the incomplete 
pre conditioner is very close to that of the diago­
nal one although the computation of D-I gk [Eq. 
(9)] is from three to four times less expensive 
than the computation of (LLT)-I gk . This can be 
understood by observing that most of the time 1j 
in a single iteration at level j is used for the B­
orthogonalization: 

where Tort is the time needed to perform a B­
orthogonalization against a single eigenvector, 
and TK-l the time needed for computing K-I gk in 
Eq. (9). Therefore the average time per iteration 
is: 

where TORT is the average B-orthogonalization 

time in a single iteration. These average times are 
also given in Table 2. 

Table 4 gives the overall number of iterations 
and CPU times of DACG implemented with K-I 
= (LLT)-I as the preconditioner and (3r), i = 1,2, 
3,4, and the ratio of DACG CPU times when f3~!) 
and f3~4) are used. Figures 2 and 3 show the differ­
ent convergence profiles for the relative residual 
of a few selected eigenpairs AN-j, UN-j, for j = 0, 
10, 20, 30 for the test problem with N = 441. 
Careful inspection of Fig. 2, Fig. 3 and Table 4 
reveals the following. 

1. The slowest algorithm is DACG with (3k = 

13k!) (Table 4 and Fig. 2). 
2. The choice (3k = (3 k2) (MDACG) provides a 

good asymptotic convergence but it may be 
more time consuming than the other 
choices because each iteration needs an ex­
tra cost due to the computation of A - 'YjB. 
In the N = 1952 problem, MDACG re­
quires the minimal number of iterations. 
Furthermore, in the N = 812 problem, the 
other three algorithms perform a complete 
B-orthogonalization of the current Xk-veC­
tor against the previously computed eigen­
vectors, thus increasing the time per itera­
tion (by distinction, MDACG requires only 
a selective B-orthogonalization). Therefore 
MDACG, in the N = 812 problem, is supe­
rior to the other DACG algorithms in terms 
of computing time. 

3. The choice (3k = f3?) appears to be the best 
in most of the eigenvalue levels from the 
point of view of asymptotic rate of conver­
gence (Le., the slope of the profiles in Figs. 
2 and 3). However, in a few cases (such as, 
for instance, j = 10 for the N = 441 prob­
lem) f3?) provides initial convergence that 
leads to a high number of iterations as is 
also shown by the horizontal rr profile of 
Fig. 3. 
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Table 4. Overall Iterations and CPU Times for different choices of p,. 
N = 222 N = 441 N = 812 N = 1952 N = 4560 

# Iter. Time # Iter. Time 

1) 1901 294 2873 877 
2) 820 144 1119 365 
3) 1185 171 1344 366 
4) 701 111 1039 303 
1)/4) 2.71 2.65 2.76 2.89 

# Iter. Time # Iter. 

2720 2137 3232 
1058 693 1656 
1022 739 1903 
1078 792 1834 
2.52 2.70 1.76 

Time 

4562 
2440 
2423 
2431 
1.88 

# Iter. 

2905 
1328 
1290 
1303 
2.23 

Time 

13584 
6806 
5746 
5827 

2.33 

DACG petformance vs. parameter 13k in terms of total number of iterations and CPU time (s) in the calculation of the 40 
leftmost eigenpairs (TOL2 = 10-3). 

4. DACG with 13k = (314) is the fastest scheme 
in terms of the total CPU time in the N = 

222 and N = 441 problems although the 
asymptotic convergence rate appears to be 
almost the same as that of DACG with (3 P)· 
DACG with 13k4) implements an automatic 
"restart" (see Polak, 1971) that is useful 
when a slow initial convergence occurs be­
cause it prevents the residual from remain­
ing constant for a large number of initial 
iterations. 

On balance Table 4 emphasizes the poor perfor­
mance ofDACG with 13k = 13k!) and indicates that 
the remaining DACG are to some extent equiva­
lent in terms of overall computer cost, the 13k = 

(3k4) procedure being perhaps slightly superior. 
The convergence properties of DACG with 

13k = 13k4) have been numerically studied to check 
the validity offormula (26). The tolerance for the 
relative error is set to a very low value (TOLl = 
10- 13). Experience suggests that the average 
number k of initial iterations is 25. Our "initial" 
error is therefore er25 , that we want to reduce by 
a factor h = er25/TOLl to achieve the final accu­
racy TOLL This needs according to Eq. (26) a 
number of iterations kj given by: 

In h ~ AN-j-l In h 
kj = 25+~-4 = 25+ \ , - \ '-4' "-N-j-l "-N-j 

(28) 

Table 5 compares the theoretical number of itera­
tions kj provided by (28) and the actual one for 
the N = 441 problem, and also gives the theoreti­
cal convergence rate 

(29) 

and the convergence rate Pj, numerically com­
puted by Eq. (22). Table 5 shows that the actual 
and the expected number of iterations differ by at 
most 10, with the exception of the six leftmost 
eigenpairs, thus providing experimental evidence 
that Eq. (26) is a reliable approximation of the 
DACG iteration number as a function of the rela­
tive separation of the eigenvalue AN-j currently 
sought and the next higher one. Also note in Ta­
ble 5 that the numerical Pj is a quite good approx­
imation to the theoretical <!>j. 

Comparison of DACG and lanczos Methods 

In Gambolati and Putti (1994) DACG with 13k = 

13k!) is compared with two variants ofthe Lanczos 
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FIGURE 2 Convergence profile of relative residual of DACG with 13k = 13(1) and 13k = 13(2), 
for the evaluation of AN-j, VN-j,j = 0, 10,20,30 for the eigenproblem with N = 441. The 
initial guess vector is Xo = [1, ... , 1] and K-I = (LLT)-I. 

method. For a description of the pointwise Lanc­
zos algorithm also see Cullum and Willoughby 
(1978), Simon (1984), and Paige (1972). Consis­
tent with the numerical results of the previous 
section we compare DACG with K-I = (LLT)-I 
and 13k = 13~4) with the LANCZOS2 procedure 

developed in Gambolati and Putti (1994). LANC­
ZOS2 is a variant of the classical Lanczos algo­
rithm, especially designed to solve eigen­
problems with a pronounced fill in of the 
triangular factors of matrix A. LANCZOS2 per­
forms the Lanczos recursive product 
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FIGURE 3 Convergence profile of relative residual ofDACG with 13k = 13(3) and 13k = 13(4), 
for the evaluation of AN-j, VN-j,j = 0, 10,20,30 for the eigenproblem with N = 441. The 
initial guess vector is Xo = [1, ... , 1] and K-I = (LLT)-I. 

by iteratively solving the linear system: 

(30) 

The iterative method used to solve system (30) is 
the CG scheme, accelerated by (LLT)-I. This 
technique enables in-core treatment of very large 
eigenproblems without any restriction on the 
bandwidth and nonzero pattern of the matrix 



Table 5. Theoretical No. of Iterations and 
Convergence Rate 

j kj NIT CPj Pj 

0 27 32 3.579 1.253 
I 33 57 2.669 0.705 
2 27 29 2.231 0.742 
3 34 48 1.941 0.849 
4 31 38 2.270 1.065 
5 81 42 0.299 0.686 
6 39 45 1.485 1.068 
7 30 35 1.865 1.064 
8 38 46 1.305 0.818 
9 44 54 1.198 0.811 

10 42 44 1.l05 0.986 
II 29 28 1.137 1.115 
12 32 36 1.505 0.997 
13 45 53 0.924 0.627 
14 80 70 0.451 0.497 
15 34 38 1.316 1.020 
16 40 48 1.231 0.822 
17 42 43 0.918 0.837 
18 80 88 0.386 0.347 
19 39 40 0.941 1.043 
29 48 48 0.849 0.808 
39 47 45 0.696 0.775 

Comparison between the expected number of iterations 
kj , Eq. (28), and the actual number of iterations NIT required 
by DACG with 13k = 13i4) to achieve the prescribed tolerance 
TOLl = 10-13 , and between the theoretical [ep}, Eq. (29)] and 
the numerical (P) convergence rate for the N = 441 problem. 
K-I = (LLT)-I 

pencil A, B. Table 6 shows the performance of 
DACG and LANCZOS2 in terms of overall CPU 
time for the first 5, 10, 20, and 40 eigenpairs to 
meet the exit test (TOL2 = 6 * 10-3) for the rela­
tive residual. Inspection of Table 6 reveals that 
DACG is faster than LANCZOS2, and particu­
larly so when only a few eigenpairs are sought or 
the problem is large (N > 1000). It may also be 
noted that DACG for large eigenproblems proves 

Table 6. DACG and LANCZOS2 in Overall CPU Time 
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less demanding than LANCZOS2 in terms of 
computer storage. 

CONCLUSIONS 

The DACG performance with three precondi­
tioners [(LLT)-I, L being the incomplete Cho­
lesky factor of A, A -I, and D-I, where D is a 
diagonal matrix whose entries are the diagonal 
coefficients of A], has been compared. The 
DACG convergence properties have also been 
analyzed, using (LLT)-I as a pre conditioner and 
four different choices of parameter 13k in the eval­
uation of the 40 leftmost eigenpairs of general­
ized sparse eigenproblems. 

The asymptotic convergence rate of the Cho­
Ie sky-preconditioned DACG with 13k =·13 kl) has 
been found to be close to that of DACG precon­
ditioned with A -I, with the exception of the first 
few eigenpairs. Computational efficiency is, 
however, remarkably higher because the cost per 
iteration turns out to be smaller by a factor rang­
ing between 5 and 10. 

The asymptotic behavior ofDACG is sensitive 
to 13k' DACG with the optimal 13k = 13k4) has an 
asymptotic convergence rate that is practically 
equal to that of the CG method used to solve 
linear systems. The choice 13k = f3k4) and K-I = 
(LV)-I leads to the lowest CPU time in most of 
the eigenproblems. 

The cost of a single DACG iteration with the 
incomplete Cholesky preconditioner is compara­
ble to that of the diagonal one because most of 
the CPU time is spent to perform the B-orthog­
onalization. Iterations are, however, much less. 

Finally, DACG with K-I = (LLT)-I and the 
optimal choice of 13k = 13 ~4) has been compared 
with the well known Lanczos algorithm. DACG 
appears to be superior in the evaluation of the 40 
leftmost eigenpairs of five sample problems and 

N= 222 N = 441 N = 812 N = 1952 N = 4560 

j a b c a b c a b c a b c a b c 

5 8 24 3.0 19 50 2.6 44 90 2.1 315 762 2.5 319 1976 6.2 
10 15 45 3.0 44 86 2.0 78 158 2.0 460 1036 2.3 747 2998 4.0 
20 36 60 1.7 128 168 1.3 184 342 1.9 809 1741 2.2 1676 5093 3.0 
40 96 100 1.0 258 334 1.3 568 657 1.2 1644 3732 2.3 4208 10968 2.5 

Comparison of CPU times (s) for (a) DACG with 13k = 13i41 and (b) LANCZOS2 in the calculation of the j (j :5 40) leftmost 
eigenpairs (TOL2 = 6 * 10-3). Column (c) provides the ratio of LANCZOS2 and DACG CPU times. 
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results in a saving of CPU time ranging from 4% 
(N = 222 problem) to 60% (problem with N = 

4560 equations). These values, however, are 
found to grow significantly if a smaller number of 
eigenpairs are required. On balance DACG is 
recommended for large problems (N > 1000) and 
for the computation of few eigenpairs (:::::5, on the 
condition that a not too strict tolerance is pre­
scribed). Alternatively, the Lanczos method 
should be used for eigenproblems of small size 
and whenever a high accuracy is required 
(TOL2 ::::: 10-5). 
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