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ABSTRACT. In this paper we investigate various subclasses of univalent analytic
functions. We find that many of the subclasses introduced in the recent years are
no more new and infact coincide with the class due to Jakubowski. We further
study the generalised Jakubowski class of univalent functions and obtain a
representational formula and use it in deriving the coefficient relations for

this class.

KEY WORDS AND PHRASES. Univalent Starkike, convex, Spiral Like, Bounded functions,
Functions with positive neal part.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 30A32, Secondary 30A34.

1. INTRODUCTION.
The C1 s* ¢
e Class m,M U,V).

Let M,m be arbitrary fixed real numbers satisfying the condition
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(m,M) ¢ D* = D,UD, and

D, = {(m,M) | -;‘-<m <1, l'm <M<m}
D, = {(m,M) |m>1, m-1<M<m}
and also U, V be real numbers such that O <yu< 1 ad |v| <T. In 1971,
Jakub:wski [7] introduced the class S;’M(u ,V) of regular functions f(z) =
z+ ) akzk defined in E = {z | |z] < 1} and satisfying the condition
- eivzf'(z)

Csos _ v
£(2) is1nv Ucos

(1-4) cos V

-mf <M, (1.1)

for all z € E.

Recently, Mogra and Juneja ([9]. [18], EJ]) introduced a new class of
starlike functions of order o and type 8 which they denoted by S*(G,B). Let
oo
*
S={f|f(z) =z + 2 akzk and f is amalytic in E}. They put £ € S in S (a,B)

k=2
if and only if

1> > (]-'2)

zf'(z) _ zf'(z) _ _ |zf'(z) _ ]}
[Ts"f z 1) / {ZB[—_f(z) “] (___f(z) !
for all q,f real, 0 < a<1,0 <B<1.

Mogra and Juneja proposed that this class enables simple definition, and that
thinking of this class helps in studying.other classes of starlike functions.

Lakshminarasimhan ES] introduced the class M(o,B), containing f ¢ S with

z£'(z) _ £'(z) l
ORI B"ﬁf-GT* 1{, (1.3)

for 0 <a<1,0<B<1l ad z¢E.

Mokowka @.9] generalized S*(a,B) into SM(q,B8) containing, for |A| < %,

those f € S with
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%ﬂ‘ 1] <B %?—- 1+ 2(1—a)cosxe_i)‘ .

91

(1.4)

Yet another class is investigated by Gopalakrishna and Shetiya [6]. They named

this class by Sx(a,p,n) and f € sx(a,p,n) if and only if f € S with

i

e "z2f'(z) _ . .

) isi
cos A

nA

-a-opf<p,

for |)\|<%,0_<_a<1 and otp > 1.

But we now show that these classes are not new and some of the results of the

gbove authors are also not new. In fact, we have

THEOREM 1.

(a)
(b)
(o)

(d)

s*(@,8) = 8% ,(@,00; ¥ = 1/2(1-8)

*

v = 282/ 1-a2
Sy (@5 M = 28%/(1-8%)

sM(,8) =

M(0,8) = Sp (0,005 m = (1+aB%)/(1-0%6%) and M = (1+0)8/(1-0"?)

§,(a,p,n) = S;’M(a,k); M= p/(l-a).

(1.5)

] *
PROOF. Suppose X = zf'(z)/f(z). Then £ € S (a,B) satisfies (1.2). Hence,

we have

| (x-1)/{28(X-0)-(X-1) }| < 1.

The inequality (1.6) is true if and only if

le-a|2 > Re{ X-0) (X~-1)}.

This last inequality is equivalent to

2 1+a-208 a(1l-0B)
IXI - {—-—I-_B——}RE{X} + —(1_8) < 0.

By simple manipulations, the last inequality holds if and only if

(1.6)
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(E%%é§l - 1 1
— = " IaH| < T (1.7)

* *
Hence, if M = -ZTIL-ET’ U =0awithv=0 then f ¢ S (a,8) implies f € SM,M(Q’O) and
conversely. This proves (a).

For proving (b), we let Y = {Xel)‘ - isginA - ocosA}/(1-a)cos) and

zf'(z)

T(z) - Then, & before f ¢ SA(G,B) if and only if

X =
ly - 1] < BlY + 1]. (1.8)

(In (1.8), if A = 0 = @, then this class is due to Caplinger and Causey [3]). But

simple calculations show that (1.8) is equivalent to

e 22 _ soinr-acosh 2 2

f(z 28 28
(1-a) cosA -1- 7| < 2° 1.9

1-8 18

Thus, a comparision of (1.9) to (1.1) implies (b) and conversely. The proof for
(c) is similar. For (d) we observe that f ¢ SA(a,p ,N) if and only if

i
= zf;(z) - isinA - acosA

- <

(1-0) cosh . 1-a TQ*'E' (1.10)

Again a comparision of (1.10) to (1.1) gives (d). Hence the proof of the theorem

is complete.

We note as a consequence of theorem 1, that the coefficients estimates
obtained in the series of papers ([1]-[6], [8-[11], [13]-[27]; [29], [30]) are
contained in [7]. But some of the coefficients estimates obtained in [18], [6],
[(12] are not contained in the theorem 1 of [7]. We also note that the class
introduced in [:28], is a very general one but appears unnatural in the
presentation. Therefore,next section,we shall consider the natural generalization

*
of the class Sm M(u,\)) by admitting m to be complex. This we do as follows.
1]
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*
2. The class Sm’M(u.v.a.t)o

*
We define the class Sp.m(HsVsast) to denote the class of f € S with
»

iv__,
|& zfz(z) - isinv - ucosVv
(DY -m-0-it| <M, (2.1)
where m,a,t and M are real numbers such that -Tﬂ < v < ;—, H<l1, -;- <m,

O0<M, ®w<qa<l, =<t <°°mdM2 = 1+2m+2a-2m0¢-m2-a2-t2 > 0.

The following lemma shows that when V = 0, the utmost class of Szynal et al

[28] and the class introduced by Libera and Livingston [21] are obtained.

*
IEMMA 1. f ¢ Sm M(u,\),(!..t:) if and only if there exists some w(z) regular in
»

E, w(0) = 0 and |w(z)| < 1 such that

z£'(z) _ 1+ (De-iv - B)w(z) (2.2)
t(z) 1 -8B w(z) ’ °

where D = (A+B)(1-M)cosv; A+B > 0

A= %Ez - m2 + m(l-2a)+a(1-a)+it°t2:l

and
B-%E1+m+ a-it—_l.
PROOF. Let us write
L(z) -%Eﬁ%{--m- a- it]
g(z) = e'Vzf'(2) - isinv £(z) - ucosv £(z)
md h(z) = (1-1) cosv £(z).

Then, we have |L(z)| < 1, L(0) = 1 1-m-a~-it |. Hence, there exists a w(z) which is
M

regular in E and which can be written in the fomm
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L(z) - L(0) .
1-L(0)L(z)

w(z) = (2.3)

Clearly, we have w(0) = 0 and |w(z)| < 1. Solving the equation (2.3), we have

1[E(z) .7 LO)+u(z)
u)--ﬁfum-lﬂ--—__—u
P THpE T T 1+L00) w(z)

and this in turn on solving gives the lemma.

Using this lemma, we prove the following theorem which generalizes the
results in [28], [12] and [6].
v Kk
THEOREM 2. For |z| < 1, let f(z) =z+ | &z andfe Sy u(Hovsast)

k=n+1

Also, let q, be a natural number such that q, € E(o-l, Ko) where

K, = D[Re(Be™V} + /A - [B|Z + (Re{Be’"D7]{a(1-[B|H} L. Then

(i) If, either Re{Be'V} >0 and M(l-p)cosv[D + 2n Re{Be]‘V}] < n? or,

Re{Belv} <0 and DM(1-u)cosv < n2 then we have
(p+1)n 2
)y (k-1)°|a,

k=np+1

2<p? p=1,2,3, ... 2.4

(ii) If Re{BeV} >0 end (1-p)Mcosy[D + 2n Re{Be]'v}] > nZ then we have

(q+1)n 2 2 a9l prpeiv 2
k-gn-rl(k-l) o |” < {(q-l)f mI.IO = }} , (2.5)

for q= 1,2,..., qo+1 and qn+l < k < (q+l)n.

2

(iii) If Re{Be'V} > 0 and (1-u)Mcosv[D + 2n Re{Be'”}] > n® then for

q= q°+2,..., we have

(q+1)n

q iv 2
wn?|a|? < {[—Er] T I‘—’—""‘—“’f—l} , (2.6)
k=qn+1 9°) p=

o

for qn+l < k < (q+1)n.



CRITICAL INVESTIGATION OF SUBCLASSES OF FUNCTIONS 95

The estimates (2.4) are sharp for all k and the estimates in (2.5) are sharp for

k = gn+l, q = 1,2,... because equality holds for the functions

( z
—Iv/ks for B#$ 0
(1-Bz )
f(z) = (A)
-iy k/k
z eDe z for B =0

PROOF. Under the conditions of theorem 2, we have
o

w(z) = ¥ bkzk
k=n

for which (2.2) is true. Then simple calculations lead to
iv ¢ k p i Ko k
etV ) g (k-1)z =[Dz+ § {D+B(k-1)e \’}akz][x b,z 7. (2.7)
k=n+1 k=n+1 k=n

Equating the coefficients of 2% from both sides of (2.7) for k = n+l,...,2n,

we have
eV(k-1)a = Db, _;. (2.8)
This immediately gives us,
2n ©
] GD?e P <p? T |y |? < 0P (2.9)
k=n+1 k=n+1

But, for p > n+l, (2.7) can be written in the form

G(z) = H(z) w(z), (2.10)
where . n+p ®
G(z) = etV Z (k-1) a.kzk + z dkzk
k=n+1 k=n+p+1

and

P .
H(z) =Dz + § {D+B(k-1)e1v}akzk.
k=n+1

Then (2.10) gives us
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n+p ©
U R N A S T
k=p+1 k=n+p+1
<%+ E {|n+(k-1)ne“’|2 - (k-1)2}|akl2. (2.11)
k=n+1
From the hypothesis of (i) of theorem 2, we have
D+ (k-1) Be'V|? < (k-1)2
and so +n ) ) )
] &-1) la |© < D% p > nsl. (2.12)
k=p+1
Replacing p by pn in (2.12) then we have
(ptDn
I e ? <0? for p=2,3,... (2.13)
k=pn+1
Combining (2.13) with (2.9), we get (i).
1f Re{Be'“} > 0 then the functiom
2 iv
P2 o+ Ge-1e | 2= k-1)%]
is always a decreasing function of k-1.
On using ﬁhis fact, we get,by (2.11) for p > n+l.
ptn ivi2_2
I t?[g [ <% § {l‘l*“—“TL—L}<k-1>zlakl2. (2.14)
k=p+1 k=n+1 n
Let p = 2n. Then (2.14) gives us
(2+1)n iv y2
3 (1<-1)Zlak|2 < {DID"—Bgf—l} by (2.9), (2.15)
2n+1
Under the conditions of (ii) of theorem 2, we intend to prove the following.
(q*1)n q-1 ivy2
I g |® < {( T DrmnBe } : (2.16)
k=qn+1 1 * m=0
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The relation (2.16) is true for q = 1 and 2, so let us assume (2.16) to be true

for 1,2,...,q-1 and let us prove it for q if q < q, + 1, By (2.14) we have

(q+1)n qn .
2 2 2 2 2 2
k=§n+llak| (k-1)% < D® + k§n+1{|D+(k-1)Be1v| - (k-1) }Iak[

2 q-1 (m+1l)n {lD*-(k-l)Beivlz-(k—l)z

D™ + 3
m=1 k=mn+1 (k-1)

b2, 12

A

D2 + qgl _]ngmneivlz—mznZ] n . mil |D+mBei\’
2 2 ] (m-1) | =0 | =n

mn
The last inequality also follows by induction. This proves (ii) of theorem 2.

;

m=1

2

- { a1 |D+mnBe1v
-1)7
(q-1)° =0 | n

Also, if k > (q°+2)n then

(q_*1)n
(q+1)n o qn .
1 e ® < nz+[1 7o+ 3 }{[D+Be1v(k-1)|2—(k°1)2}|ak|%]
k=qn+1 k=n+1 k= (q°+1)n+1
(gg*1m iv 2 2
% § {|D+Be (k—l%l - (k-1) }(k_l)zlaklz
k=n+1 (k-1)

A

9 (@+1)n iV, 1282
2§ S {|D+Be (k-1 |?-(x-1) }(k_l)zlaklz

m=1 k=mn+1 (k—l)f
q .
< { n Ho D+nte1v }2
- T n :
95°* m=0

This proves (iii) of theorem 2. Hence the proof of the theorem is complete.

COROLLARY. Fram (2.11) we obtain

§ {(k-l)z - o+ (k-l)Bei"lz}lakl2 < o2
k=n+1

Our theorem 2 generalizes the results of [6], |:28], [12], [7] and hence the results

obtained in ([1]- [27]) are contained in theorem 2 for the different choices of the
parameters, m,M,l,V,0 and t.
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