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The first- and second-order bistatic high frequency radar cross sections of the ocean surface with an antenna on a floating platform
are derived for a frequency-modulated continuous wave (FMCW) source. Based on previous work, the derivation begins with the
general bistatic electric field in the frequency domain for the case of a floating antenna. Demodulation and range transformation
are used to obtain the range information, distinguishing the process from that used for a pulsed radar. After Fourier-transforming
the autocorrelation and comparing the result with the radar range equation, the radar cross sections are derived.The new first- and
second-order antenna-motion-incorporated bistatic radar cross section models for an FMCW source are simulated and compared
with those for a pulsed source. Results show that, for the same radar operating parameters, the first-order radar cross section for
the FMCWwaveform is a little lower than that for a pulsed source. The second-order radar cross section for the FMCWwaveform
reduces to that for the pulsed waveform when the scattering patch limit approaches infinity. The effect of platform motion on the
radar cross sections for an FMCW waveform is investigated for a variety of sea states and operating frequencies and, in general, is
found to be similar to that for a pulsed waveform.

1. Introduction

The derivation of high frequency radar ocean surface cross
sections has been studied for over four decades. The first-
order high frequency radar scatter cross section was devel-
oped and analysed in [1]. Later, Walsh and Gill [2] analysed
the scattering of high frequency electromagnetic radiation of
the ocean surface for a pulse radar. Then, Gill and Walsh [3]
developed the bistatic radar cross section of the ocean surface.
Following these analyses, the work was extended to the high
frequency monostatic radar cross sections for an antenna on
a floating platform [4, 5].

All of the models mentioned above were developed
specifically for pulsed radar. However, there are inherent
disadvantages to using pulsed radar systems. For example,
the detectable range capability is determined by the average
transmitted power. In a pulsed radar system, both the range
resolution and the average transmitted power are dependent
on the pulse width. Narrower pulses, bringing better range
resolution, require large peak powers to be useful at long

range. Compared to this, FMCW radar systems are able to
achieve satisfactory range resolution and long range with
moderate peak power due to a 100% duty cycle. Thus, in
recent years, FMCW radars have been widely used in ocean
remote sensing applications.

A good summary of the digital processing of an FMCW
signal for radar systems has been reported by Barrick [6]. Two
processing techniqueswere analysed and compared. Based on
that work, the design of a frequency-modulated interrupted
continuous wave radar was described and implemented in
[7]. Then, techniques for range and unambiguous velocity
measurement for an FMCW radar were outlined in [8]. More
recently, Walsh et al. [9] developed the first- and second-
order monostatic radar ocean surface cross sections for an
FMCW waveform. Also, the first-order FMCW radar cross
sectionmodel formixed-path ionosphere-ocean propagation
has been established and simulated in [10].

In this paper, the first- and second-order bistatic radar
ocean surface cross sections for an antenna on a floating
platform and incorporating an FMCW source are presented.
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Figure 1: General (a) first-order and (b) second-order bistatic scatter geometry with antenna motion.

In Section 2, the derivation process of the first- and second-
order received electric field is reviewed. Then, a method
similar to that in [3] is used to obtain the first- and second-
order radar cross section in Section 3. Section 4 contains
model simulations and comparisons with the pulsed wave-
form. Section 5 provides conclusions.

2. Radar Received Field Equations

2.1. General First- and Second-Order Electric Field Equation.
By using a small displacement vector, 𝛿�⃗�

0
= (𝛿𝜌

0
, 𝜃
0
), to

represent the sway motion of the platform (see Figure 1)
and adding this small displacement in the source term, the
first-order bistatic scattered field for the case of a floating
transmitter and a fixed receiver appearing in [11] may be
written for a vertical dipole source as
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Here, 𝐶
0
= 𝐼Δ𝑙𝑘

2
/𝑗𝜔𝜀

0
is the dipole constant, with 𝐼 being

the current on the dipole of length Δ𝑙. 𝜔 and 𝑘 are the
radian frequency and wavenumber of the dipole current,
respectively, in a space with permittivity of 𝜀

0
. 𝑃

�⃗�
represents

the Fourier coefficient of a surface component whose wave
vector has magnitude 𝐾 and direction 𝜃

𝐾
(i.e., �⃗� = (𝐾, 𝜃

𝐾
)).

With reference to Figure 1(a), �⃗� = (𝜌, 𝜃) is a distance
vector, pointing from the transmitter to the receiver without
incorporating the platform motion. 𝜌

𝑠
= (𝜌

1
+ 𝜌

2
)/2 and 𝜙

is the bistatic angle. 𝐹 represents the Sommerfeld attenuation
function.

The second-order bistatic received electric field corre-
sponding to the first-order found in (1) appears in [12] as
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This expression accounts for the electric field arising due to
the transmitted signal being scattered twice by the rough
surface. �⃗�

1
and �⃗�

2
are the first and the second scattering

wave vectors of the rough surface. The rough surface may be
represented by a Fourier series with 𝑃

�⃗�1
and 𝑃
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being the

Fourier coefficients associated with �⃗�
1
and �⃗�

2
, respectively.

Here, �⃗� = �⃗�
1
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2
. Again, with reference to Figure 1, defining
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with Δ being the intrinsic impedance of the surface. At this
stage, the current waveformon the dipole source has not been
specified.
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2.2. Applications to an FMCW Radar. Following a similar
analysis as in [3, 11], (1) may be inversely Fourier-transformed
to give the received electric field in the time domain as
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The current waveform of an FMCW radar may be written
as [6, 9]

𝑖 (𝑡) = 𝐼
0
𝑒
𝑗(𝜔0𝑡+𝛼𝜋𝑡

2
)
{ℎ [𝑡 +

𝑇
𝑟

2
] − ℎ [𝑡 −

𝑇
𝑟

2
]} , (6)

where 𝐼
0
is the peak current and𝜔

0
= 2𝜋𝑓

0
is the center radian

frequency of the sweep waveform. 𝑇
𝑟
represents the sweep

interval and the sweep rate may be expressed as 𝛼 = 𝐵/𝑇
𝑟

where 𝐵 is the sweep bandwidth. ℎ is the Heaviside function.
It is known from [9] that, for an FMCW waveform,
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By direct comparison with the corresponding first-order case
for a pulsed dipole [11], the first-order time domain electric
field for an FMCW source may be written as
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where 𝛿𝜌
𝑠0
= 𝛿𝜌
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[cos𝜙 cos(𝜃
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is renamed as 𝑡
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the transmitted waveform and the received waveformmay be
Fourier-transformed within this interval to obtain the range
information.This is the so-called “range transform.” Because
the received signals in the given time interval reflect the
information for an extremely large range of ocean surface,
here range transformation is taken to accurately acquire a
patch of ocean surface to analyse. The frequency difference
may be obtained by the demodulation process, in which the
transmitted signals and the received signals are mixed and
then low-pass-filtered.

After the demodulation preprocess, the exponential fac-
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where 𝜔
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is the transform variable in the frequency domain.

Here, it is helpful to define

𝜌


𝑠
= 𝜌

𝑠
−
𝛿𝜌

𝑠0

2
. (10)

Changing the integration variable from 𝜌
𝑠
to 𝜌

𝑠
and ignoring

the 𝛿𝜌
𝑠0
/2 factor in the magnitude terms give

(𝐸
𝑛
)
1
(𝜔

𝑟
)

=
−𝑗𝐼

0
𝜂
0
Δ𝑙𝑘

2

0
𝑇
𝑟

(2𝜋)
3/2

∑

�⃗�

𝑃
�⃗�
√𝐾𝑒

𝑗(𝜌𝐾/2) cos(𝜃𝐾−𝜃)

⋅ ∫

∞

𝜌/2

𝐹 (𝜌
1
, 𝜔

0
) 𝐹 (𝜌

2
, 𝜔

0
)

√𝜌
𝑠
[𝜌2
𝑠
− (𝜌/2)

2
]

𝑒
−𝑗(𝜋/4)

√cos𝜙

⋅ 𝑒
𝑗(𝐾 cos𝜙−2𝑘0+2𝜔𝑟/𝑐)𝜌𝑠 𝑒−𝑗(4𝜋𝛼(𝜌



𝑠
)
2
/𝑐
2
)
𝑒
𝑗𝛿𝜌𝑠0𝐾 cos𝜙/2

⋅ Sa [
𝑇
𝑟

2
(𝜔

𝑟
−
4𝜋𝛼

𝑐
𝜌


𝑠
)] 𝑑𝜌



𝑠
.

(11)

Since the maximum of the sampling function Sa(𝑥) occurs at
𝑥 = 0, a representative range 𝜌

𝑟
may be defined as

𝜌
𝑟
=
𝑐𝜔

𝑟

4𝜋𝛼
. (12)



4 International Journal of Antennas and Propagation

Based on the representative range, defining the correspond-
ing range variable
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Figure 1), respectively. By directly comparing (15) with (24)
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FMCWwaveformwith an antenna on a floating platformmay
be expressed as
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(16)

±Δ𝑟 are the symmetrical limits of the integral in (15), where a
sampling function dominates this integral. If only the values
of 𝜌

𝑠
within the main lobe of the sampling function are

considered in the integral, that is, −𝜋/2 < 𝑘
𝐵
𝜌


𝑠
< 𝜋/2, it

can be deduced as in [9] that Δ𝑟 = Δ𝜌/2 = 𝑐/4𝐵. Consider
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(17)

where Si(𝑥) = ∫𝑥
0
(sin(𝑡)/𝑡) 𝑑𝑡.

Following a similar procedure to the first-order case, the
second-order bistatic received electric field with a transmitter
on a floating platform for an FMCW waveform may be
written as
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(18)

where 𝜌
02

and 𝜌
020

are the representative values of 𝜌
2
and

𝜌
20
, respectively. The symmetrical electromagnetic coupling

coefficient, SEΓ𝑃, may be expressed as [12]
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with �⃗�
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3. Radar Cross Sections

3.1. First-Order Radar Cross Section. In developing the ocean
radar cross section, a time-varying ocean surface, represented
as 𝜉(�⃗�, 𝑡) = ∑

�⃗�,𝑡
𝑃
�⃗�,𝜔
𝑒
𝑗�⃗�⋅�⃗�
𝑒
𝑗𝜔𝑡, is used to replace the time-

invariant case 𝜉(�⃗�) = ∑
�⃗�
𝑃
�⃗�
𝑒
𝑗�⃗�⋅�⃗�. This gives the time-varying

received electric field corresponding to (16) as
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(21)

A technique similar to that in [9, 11] is used to obtain the
radar cross section from the received electric field equation.
The initial step of the approach is to write the autocorrelation,
𝑅(𝜏), as

𝑅 (𝜏) =
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where 𝐴
𝑟
= (𝜆

2

0
/4𝜋)𝐺

𝑟
, with 𝐺

𝑟
being the gain of the

receiving array. Here, 𝜔
𝑟
represents the fixed patch over two

sweep intervals, whose time interval is 𝜏.
After Fourier-transforming the autocorrelation and com-

paring directly with the radar range equation, the radar cross
section, 𝜎

1
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), may be written as
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(23)

where 𝐽
𝑛
represents the 𝑛th-order Bessel functions. For

simulation purposes (see Section 4) and in keeping with [4,
11], it will be assumed that the antenna motion is caused
by the dominant ocean waves. 𝑎, 𝜔

𝑝
, and 𝜃

𝐾𝑝
represent the

antenna platform sway amplitude, frequency, and direction,
respectively.

3.2. Second-Order Radar Cross Section. It is known that the
second-order radar cross section contains two portions: an
hydrodynamic contribution and an electromagnetic contri-
bution. Using the Fourier coefficient for the second-order
ocean waves ∑
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to replace the first-order
case ∑
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in (16), the hydrodynamic second-order electric

field may be written as
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(24)

where
𝐻
Γ is the hydrodynamic coupling coefficient [13],

accounting for the coupling of two first-order ocean waves,
whose wavenumbers are 𝐾

1
and 𝐾

2
, respectively. Adding

the electromagnetic contribution (18) and the hydrodynamic
contribution (24) together and using the time-varying ocean
wave surface to replace the time-invariant case, the total
second-order bistatic electric field for an FMCW source with
an antenna on a floating platform may be expressed as
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where
𝑆
Γ
𝑃
= SEΓ𝑃 +𝐻Γ.

Following the same procedure as for the first-order
case, based on the total second-order time-varying received
electric field (25), the corresponding second-order radar
cross section, 𝜎

2
(𝜔

𝑑
), may be obtained as
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(26)

4. Simulation and Discussion

Based on a Pierson-Moskowitz (PM) ocean spectral model
[14], the newly derived radar cross sections, accounting for
antenna sway, can be simulated to illustrate the differences
in the FMCW and pulsed waveform cases. The sweep
bandwidth of the FMCW waveform is chosen as 50 kHz.
The operating frequency, defined as the central frequency of
the FMCW waveform, is taken to be 25MHz. The bistatic
angle is 30∘ and the wind speed is 20 knots. The scattering
ellipse normal and the wind direction are 90∘ and 180∘,
respectively, as measured from the positive 𝑥-axis (the line
connecting the transmitter with the receiver). The sway
amplitude and frequency depend on the wind velocity, and
in keeping with an example used earlier [4], for the purpose
of illustration, here these values are taken as 1.228m and
0.127Hz, respectively. The sway direction is chosen to be the
same as the wind direction.

4.1. First-Order Radar Cross Section. Figure 2 shows a com-
parison of the first-order radar cross section for a pulsed
source and that for an FMCW source. For the FMCW
waveform, Δ𝑟 = 1500m, which equals half the width of the
scattering patch (Δ𝜌 = 3000m) for the pulsed waveform,
in order to keep the same bandwidth for both waveforms.
A hamming window is used to smooth the curve and
reduce the oscillations. From this figure, it can be observed
that additional peaks caused by the antenna motion appear
symmetrically in the Doppler spectrum with respect to the
Bragg peaks. A detailed description and properties of these
motion-induced peaks were discussed in [11]. It can also
be seen that the magnitude of the radar cross sections for
the FMCW waveform is a little lower than that for the
corresponding pulsed waveform, which may be caused by
the value of Δ𝑟. Δ𝑟 is the limit value of the integral, where a
sampling function dominates this integral.Δ𝑟 is usually taken
to be Δ𝑟 = Δ𝜌/2, which means only the contributions in
the main lobe of the sampling function are considered and
no interaction between the range bins is assumed in the ideal
case.

It is clear that the first-order radar cross section has a
certain relationship with the integral limit Δ𝑟. In Section 2,
it may be observed that there is no mathematical limit for
the parameter Δ𝑟. By varying Δ𝑟, the effect on the radar cross
section can be examined. Keeping the value of Δ𝜌 = 3000m,

Δ𝑟 = 0.5Δ𝜌 and Δ𝑟 = 10Δ𝜌 are simulated in Figures 3(a) and
3(b), respectively. It should be mentioned that the hamming
window smoothing process is not used in Figure 3 in order
to clearly show the side lobe levels of the first-order radar
cross sections. The side lobe structure appears in the radar
Doppler spectra due to the side lobes of the Sm function
for the FMCW waveform. By comparing Figures 3(a) and
3(b), the magnitude of the side lobes for FMCW source is
found to decrease with increasing Δ𝑟 and the main lobe level
is a little raised with increasing Δ𝑟 due to the properties
of the Sm function. This seems to indicate an advantage of
an FMCW system. When the value of Δ𝑟 is taken to be
larger thanΔ𝜌/2, the interactions between the range bins (the
contributions in the side lobe of the sampling function) are
considered and appear in the received electric field at a fixed
distance. Increasing Δ𝑟means the received signal is scattered
from a larger ocean surface region. When Δ𝑟 approaches
infinity, the radar cross section for the FMCW waveform
becomes a rectangular function, whose width is determined
by𝐵/(2𝑓

0
𝜔
𝐵
). However, when the patchwidthΔ𝜌 approaches

infinity, the sampling functions in the first-order pulse radar
ocean cross section reduce to delta functions.

By varying the radar bandwidth and keeping the relation-
ships Δ𝜌 = 𝑐/2𝐵 and Δ𝑟 = Δ𝜌/2, the effect of the bandwidth
on the radar cross sections is illustrated in Figure 4. From
this figure, it can be seen that, with increased bandwidth,
the magnitudes of the Bragg peaks and the motion-induced
peaks are found to be reduced, while the rest of the radar cross
section increases. In addition, the width of the Bragg peaks
and the motion-induced peaks is also broadened. Therefore,
if a large radar bandwidth is used for ocean remote sensing,
the Bragg peaks may be significantly contaminated by the
motion-induced peaks.

4.2. Second-Order Radar Cross Section. A similar technique is
used to simplify and simulate the second-order radar ocean
cross section for the FMCW waveform as that for the pulsed
waveform in [12, 15]. For the case of large Δ𝑟, it can be shown
that
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)]} .

(27)
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Figure 2: Comparison of the first-order radar cross sections for the FMCW waveform with that for the pulsed waveform.
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Figure 3: Comparison of the side lobe levels of the first-order radar cross sections for the pulsed and FMCWwaveform. (a) Δ𝑟 = 0.5Δ𝜌 and
(b) Δ𝑟 = 10Δ𝜌.

Assuming that the other terms in (26) are slowly varying
within the interval
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and carrying out the 𝐾 integration, (26) reduces to
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Figure 4: The effect of the bandwidth on the first-order radar cross
sections.
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Figure 5: Second-order bistatic radar cross section with a transmit-
ter on a floating platform.

Equation (29) is exactly the same as the corresponding
model for the pulsed waveform when the scattering patch Δ𝜌
approaches infinity.Therefore, the second-order cross section
model for the FMCW waveform shows the same features in
the Doppler spectra as the model for the pulsed waveform
in [12], for a given sea state, radar operating parameters, and
platform motion. An example of the second-order bistatic
radar cross section with a transmitter on a floating platform
and a fixed receiver is shown in Figure 5, for the case of the
scattering patch being assumed to be infinite in extent.

5. Conclusion

Thefirst- and second-order bistatic radar ocean cross sections
for an antenna on a floating platform have been presented
for the case of an FMCW waveform. In the derivation
process, the first- and second-order models begin with

the bistatically received electric field equations derived in
[11, 12]. Subsequently, the derivation is carried out for an
FMCW radar, which is different from [11, 12] where a pulsed
radar is considered. In particular, the distinguishing feature
between the current work and that presented earlier is that
demodulation and range transformation must be used to
obtain the range information. Based on the new models,
simulations are made to compare the radar cross sections
for the FMCW waveform with that for the pulsed waveform.
It is found that the first-order radar cross section for the
FMCWwaveform is a little lower than that for a pulsed source
with the same simulation parameters. With increased radar
operating bandwidth, the magnitude and width of Bragg
peaks and motion-induced peaks are found to be reduced
and broadened, respectively. For an FMCW waveform, there
is no definite mathematical limit for a patch width, which
is different from that for a pulsed waveform. Therefore, the
magnitude of the range bin is varied to examine the effect
on the radar cross section. The side lobe level is found to be
reduced with increasing magnitude of the range bin. When
the range bin approaches infinity, the first-order radar cross
section for an FMCW waveform approaches a rectangular
function and the second-order radar cross section model
for the FMCW waveform is reduced to that of the pulsed
waveform.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

The work was supported in part by Natural Sciences and
Engineering Research Council of Canada (NSERC) under
Discovery Grants to Weimin Huang (NSERC 402313-2012)
and Eric W. Gill (NSERC 238263-2010 and RGPIN-2015-
05289) and by an Atlantic Innovation Fund Award (Eric W.
Gill, principal investigator).

References

[1] D. E. Barrick, “First-order theory and analysis of MF/HF/VHF
scatter from the sea,” IEEE Transactions on Antennas and
Propagation, vol. 20, no. 1, pp. 2–10, 1972.

[2] J. Walsh and E. W. Gill, “An analysis of the scattering of high-
frequency electromagnetic radiation from rough surfaces with
application to pulse radar operating in backscattermode,”Radio
Science, vol. 35, no. 6, pp. 1337–1359, 2000.

[3] E. W. Gill and J. Walsh, “High-frequency bistatic cross sections
of the ocean surface,”Radio Science, vol. 36, no. 6, pp. 1459–1475,
2001.

[4] J. Walsh,W. Huang, and E. Gill, “The first-order high frequency
radar ocean surface cross section for an antenna on a floating
platform,” IEEE Transactions on Antennas and Propagation, vol.
58, no. 9, pp. 2994–3003, 2010.

[5] J. Walsh, W. Huang, and E. Gill, “The second-order high
frequency radar ocean surface cross section for an antenna



International Journal of Antennas and Propagation 9

on a floating platform,” IEEE Transactions on Antennas and
Propagation, vol. 60, no. 10, pp. 4804–4813, 2012.

[6] D. E. Barrick, “FM/CW radar signals and digital processing,”
Tech. Rep. ERL 283-WPL 26, NOAA, 1973.

[7] R. Khan, B. Gamberg, D. Power et al., “Target detection and
tracking with a high frequency ground wave radar,” IEEE
Journal of Oceanic Engineering, vol. 19, no. 4, pp. 540–548, 1994.

[8] A. Wojthiewicz, J. Misiurewicz, M. Nalecz, K. Jedrzejewski,
and K. Kulpa, “Two dimensional signal processing in FMCW
radars,” in Proceedings of the Conference on Circuit Theory and
Electronics Circuits, pp. 474–480, Kolobrzeg, Poland, October
1997.

[9] J. Walsh, J. Zhang, and E. W. Gill, “High-frequency radar cross
section of the ocean surface for an FMCW waveform,” IEEE
Journal of Oceanic Engineering, vol. 36, no. 4, pp. 615–626, 2011.

[10] S. Chen, E.W.Gill, andW.Huang, “A first-orderHF radar cross-
section model for mixed-path ionosphere-ocean propagation
with an FMCW source,” IEEE Journal of Oceanic Engineering,
2016.

[11] Y. Ma, E. Gill, and W. Huang, “The first-order bistatic high
frequency radar ocean surface cross section for an antenna on
a floating platform,” IET Radar, Sonar & Navigation, vol. 10, no.
6, pp. 1136–1144, 2016.

[12] Y. Ma, W. Huang, and E. Gill, “The second-order bistatic high
frequency radar ocean surface cross section for an antenna on a
floating platform,” Canadian Journal of Remote Sensing, vol. 42,
no. 4, pp. 332–343, 2016.

[13] K. Hasselmann, “On the non-linear energy transfer in a gravity-
wave spectrum part 1. General theory,” Journal of FluidMechan-
ics, vol. 12, pp. 481–500, 1962.

[14] W. J. Pierson and L. Moskowitz, “A proposed spectral form for
fully developed wind seas based on the similarity theory of S. A.
Kitaigorodskii,” Journal of Geophysical Research, vol. 69, no. 24,
pp. 5181–5190, 1964.

[15] B. J. Lipa and D. E. Barrick, “Extraction of sea state from
HF radar sea echo: mathematical theory and modeling,” Radio
Science, vol. 21, no. 1, pp. 81–100, 1986.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


