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The weighted sum and genetic algorithm-based hybrid method (WSGA-based HM), which has been applied to multiobjective
orbit optimizations, is negatively influenced by human factors through the artificial choice of the weight coefficients in weighted
sum method and the slow convergence of GA. To address these two problems, a cluster and principal component analysis-based
optimization method (CPC-based OM) is proposed, in which many candidate orbits are gradually randomly generated until
the optimal orbit is obtained using a data mining method, that is, cluster analysis based on principal components. Then, the
second cluster analysis of the orbital elements is introduced into CPC-based OM to improve the convergence, developing a novel
double cluster and principal component analysis-based optimization method (DCPC-based OM). In DCPC-based OM, the cluster
analysis based on principal components has the advantage of reducing the human influences, and the cluster analysis based on six
orbital elements can reduce the search space to effectively accelerate convergence. The test results from a multiobjective numerical
benchmark function and the orbit design results of an Earth observation satellite show that DCPC-based OM converges more
efficiently than WSGA-based HM. And DCPC-based OM, to some degree, reduces the influence of human factors presented in
WSGA-based HM.

1. Introduction

Earth observation satellites provide essential information on
ocean, land, and atmosphere, which are very important in the
environment protection and resourcesmanagement.The first
step of satellite mission design is usually the determination
of a suitable orbit. The objective of orbit design for Earth
observation satellites is to ensure that all target sites are
best visited, including observation sites and ground stations.
The quality of an orbit can be measured with key orbit
performance indices [1].The key orbit performance indices of
an Earth observation satellite include the total coverage time,
the frequency of coverage, the average time per coverage,
the maximum coverage gap, the minimum coverage gap,
and the average coverage gap [1, 2]. Thus, orbit design is
a typical multiobjective optimization problem. Numerical

methods for multiobjective orbit design optimization can
be classified into three primary groups: indirect methods,
direct methods, and evolutionary algorithms [3]. The last
group is currently receiving research attention because of the
capability of achieving global optima in very large search
spaces.

In the evolutionary optimization for multiobjective orbit
design, multiobjective functions are usually transformed into
a single-objective function using the weighted sum method,
and then a mature single-objective optimization method,
such as genetic algorithm (GA), is employed to optimize the
single-objective function to obtain the optimal orbit [4–9].
Abdelkhalik and Mortari [4, 5] employed GA to optimize
the weighted sum of squares of the distances between each
target site and the satellite at the nearest ground track point,
taking five orbital elements plus all visiting times as the

Hindawi
International Journal of Aerospace Engineering
Volume 2017, Article ID 6396032, 15 pages
https://doi.org/10.1155/2017/6396032

https://doi.org/10.1155/2017/6396032


2 International Journal of Aerospace Engineering

design variables. Abdelkhalik and Gad [6] applied a weighted
function of the total number of covered sites and the ground
track repetition period as fitness function and adopted GA to
optimize eccentricity, inclination, space-craft’s true anomaly
above the first ground site, and the ground track repetition
period, to design space orbits for Earth orbiting missions.
Vtipil and Newman [7] and Vtipil [8] employed the sum of all
time slot values of visiting as the cost function and adopted
GA to conduct optimizations. The effect of population sizes
was further researched. Zhang et al. [9] used a hybrid-
encodingGA to optimize the sumof absolute value of velocity
increment for long-duration rendezvous phasingmissions. In
weighted summethod [10–12], weight coefficients are utilized
to transform the multiobjective function into the single-
objective function. One disadvantage of the WSGA-based
HM is that the artificially set values of the weight coefficients
are unreasonable and subjective and depend significantly
on human factors. In addition, the other disadvantage of
the WSGA-based HM is the inefficient convergence of GA
[13, 14].

To address these two disadvantages, this study proposes
a population-based optimization method named CPC-based
OM, in which candidate orbits are gradually randomly gen-
erated until the optimal orbit is obtained using a clustering
via principal components based data mining method. A
sufficient number of candidate orbits could ensure that the
global optimal solution is obtained. In addition, the influence
of the human factors from the weighted sum method is
reduced in the optimization procedure because the candidate
orbits are clustered based on the principal components
rather than the weighted functions of the optimization
objectives. Many methods have been investigated to reduce
the influences of human factors of weighted sum method
in multiobjective optimization [15–17]. Among them, the
principal component analysis [18] is one of the most feasible
methods, which transforms the original variables into a
new set of variables, referred to as principal components,
by using the eigenvalue-eigenvector method. The principal
component analysis is thought to be the best way that explains
the internal structure of the data [19, 20] and wildly applied
by numerous researchers [21–26] to transformmultiobjective
functions for subsequent optimizations.

Methods must be introduced to accelerate convergence
because the search procedure to obtain the optimal solution
in CPC-based OM was a nearly exhaustive search with inef-
ficient convergence. The methods of reducing feasible region
are popular approaches [27–29]. In the methods of reducing
feasible region, parts of the feasible region that do not
include the optimum solution are deleted, and the subsequent
optimization is accelerated because the remaining search
space (feasible region) is smaller. Cluster analysis with the
capability of dividing the feasible region into different regions
has been used to reduce feasible regions [30–32]. Therefore,
the second cluster analysis is introduced to CPC-based OM
to accelerate convergence, and a novel population-based
optimization method named DCPC-based OM is presented.

In this study, an orbit optimization model with con-
straints, six design variables, and eight optimization objec-
tives is developed for Earth observation satellites.The process

to obtain the optimal orbit usingCPC-basedOM is presented.
To improve poor convergence of CPC-based OM, a more
advanced DCPC-based OM is proposed by introducing
cluster analysis based on six orbital elements. Finally, a
test with numerical benchmark functions is conducted and
the performances of DCPC-based OM, CPC-based OM,
and WSGA-based HM on the orbit optimization of Earth
observation satellites are compared.

2. Orbit Optimization Model for the Earth
Observation Satellites

Abdelkhalik and Mortari [4, 5] explored the concept of
developing an orbit based on target sites with no thrusters,
in which design variables include five orbital elements and all
the visiting times. The number of design variables increases
with the increasing number of target sites. To avoid the
increase of computational burden as the number of target
sites increases, an optimization model with six orbital ele-
ments as design variables is employed. In addition, to deal
with the increasing complexity of the observation mission,
more orbit performance indices were taken into account than
in prior studies [4–9].

2.1. Orbital Dynamics Model and Six Orbit Elements. For
the orbit design of an Earth observation satellite without
maneuvering, the relevant orbit dynamics equations in a
geocentric equatorial inertial system (GEI) are as follows:

d𝑟𝑥
d𝑡 = V𝑥,
d𝑟𝑦
d𝑡 = V𝑦,
d𝑟𝑧
d𝑡 = V𝑧,
dV𝑥
d𝑡 = 𝐹𝑥𝑚 ,
dV𝑦
d𝑡 = 𝐹𝑦𝑚 ,
dV𝑧
d𝑡 = 𝐹𝑧𝑚 ,

(1)

where 𝑟𝑥, 𝑟𝑦, and 𝑟𝑧 are the components of the satellite
position vector; V𝑥, V𝑦, and V𝑧 are the components of the
velocity vector; and 𝐹𝑥, 𝐹𝑦, and 𝐹𝑧 are the components of
external force, including Earth’s gravity (considering Earth
nonspherical shape perturbation forces), atmospheric drag
perturbation forces, and solar radiation pressure as well as
lunar and solar perturbations forces [1]. The positions of
the satellite at each moment can be calculated using (1) and
six orbital elements at the initial moment. The six orbital
elements include the semimajor axis 𝑎, the eccentricity 𝑒, the
inclination 𝑖, the argument of the perigee 𝜔, the longitude
of the ascending node Ω, and the true anomaly 𝑓. The key
orbit performance indices of an Earth observation satellite are
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calculated using the positions of the satellite at each moment,
the longitude and latitude data of the observation sites, the
longitude and latitude data of the ground stations, and the
right ascension of Greenwich at the initial moment [1].

2.2. Coverage and TT&C Performance Indices. Various key
performance indices have been employed in the orbit design
of the Earth observation satellites [4–9]. This paper adopts
the key orbit performance indices which are systematically
and comprehensively summarized by Wertz and Larson
[1] and are applied by Wei et al. [2]. The key orbit per-
formance indices of the Earth observation satellites can
be separated into the coverage performance indices and
the tracking telemetry and command (TT&C) performance
indices. Among them, the coverage performance indices
include the total coverage time (TCT), the frequency of
coverage (FC), the average time per coverage (ATC), the
maximum coverage gap (MCG), the minimum coverage gap
(ICG), and the average coverage gap (ACG). And the TT&C
performance indices include the average time interval of
TT&C (ATI-TT&C) and the average time of each TT&C (AT-
TT&C).Thedefinitions of the eight orbit performance indices
are as follows [1, 2].

TCT: 𝑇Cover = 𝑁Cover∑
𝑖=1

Δ𝑡𝑖
FC: 𝐹Cover = 𝑁Cover𝑇total

ATC: 𝑇Average = 𝑇Cover𝑁Cover

MCG: 𝑇Gap
max = max (Δ𝑡Gap𝑖 )

(𝑖 = 1, 2, . . . , 𝑁Gap)
ICG: 𝑇Gap

min = min (Δ𝑡Gap𝑖 )
(𝑖 = 1, 2, . . . , 𝑁Gap)

ACG: 𝑇Gap
Ave = ∑𝑁Gap𝑖=1 Δ𝑡Gap𝑖𝑁Gap

ATI-TT&C: 𝑇Tel
Ave = ∑𝑁Tel𝑖=1 Δ𝑡Tel𝑖𝑁Tel

AT-TT&C: 𝑇TT&C
Ave = ∑𝑁TT&C𝑖=1 Δ𝑡TT&C𝑖𝑁TT&C

,
(2)

where 𝑁Cover is the total number of times of coverage in the
simulation time𝑇total,Δ𝑡𝑖 is the time of the 𝑖th coverage,Δ𝑡Gap𝑖
is the time of the 𝑖th coverage gap, 𝑁Gap is the total number
of coverage gaps,Δ𝑡Tel𝑖 is the time of the 𝑖th interval of TT&C,𝑁Tel is the total number of the intervals of TT&C, Δ𝑡TT&C𝑖 is
the time of the 𝑖th TT&C, and 𝑁TT&C is the total number of
TT&C.

2.3. Orbit OptimizationModel. Theorbit optimizationmodel
of Earth observation satellites is shown in

Expected: 𝑇Cover, 𝐹Cover, 𝑇Average, 𝑇maxGap, 𝑇minGap, 𝑇AveGap, 𝑇AveTel, 𝑇AveTT&C
s.t.: 𝑎min < 𝑎 < 𝑎max

By find: 𝑎, 𝑒, 𝑖, 𝜔, Ω, 𝑓.
(3)

The optimization objective is to make TCT, FC, ATC, and
AT-TT&C be the maximum, theMCG, ICG, and ACG be the
minimum, and the ATI-TT&C be within an expected range.
The constraint is 𝑎min < 𝑎 < 𝑎max. The six orbital elements at
the initial moment are the independent variables. The orbit
optimization model in (3) is a typical multidimensional and
multiobjective optimization problem. The purpose of this
study is to provide an optimizationmethod for orbit decision-
making for an Earth observing satellitemission.The resulting
optimal orbit may need to be refined in the case of additional
system designs, including orbit stability, fuel consumption in
orbital maneuvering, or launch site restrictions.

3. CPC-Based OM for Orbit Optimizations

To reduce the influences of human factors in orbit optimiza-
tions [4–9], CPC-basedOM is presented, and the accelerating

convergence approach will be introduced in Section 4 to
develop DCPC-based OM. The process flow of orbit design
optimization with CPC-based OM is shown in Figure 1,
including five steps.

Step 1. Randomly generate 𝑛0 candidate orbits according to
the feasible regions of the six orbital elements, and then
calculate the coverage and TT&C performance indices.

Step 2. Nondimensionalize the coverage and TT&C perfor-
mance indices of candidate orbits.

Step 3. Calculate the principal components of nondimen-
sionalized orbit performance indices of candidate orbits,
divide candidate orbits into classes by performing cluster
analysis based on the principal components, and evaluate all
class centers using the weighted sum function of key orbit
performance indices to obtain the optimal class.
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Figure 1: Process flow of CPC-based OM for orbit design optimizations.

Step 4. If the number of orbits in the optimal class is more
than six, go to Step 3 and take orbits in the optimal class as
candidate orbits in Step 3.
Step 5. If the number of orbits in the optimal class is notmore
than six, determine the temporary optimal orbit from the
optimal class by using the weighted sum method. Randomly
generate 𝑛𝑎 additional candidate orbits and go to Step 2 with𝑛0 + (𝑖 − 1)𝑛𝑎 candidate orbits, until the relative improvement
of the temporary optimal orbit is less than a certain bound.
The applied stopping criterion refers to that used in the GA
[4–9].

Note that Steps 3 and 4 constitute “multilevel cluster
analysis,” in which the optimal class with not more than six
orbits is obtained. Steps 2∼5 constitute “random exhaustive”
process to obtain the optimal orbit. In addition, because
the cluster analysis is based on the principal components
of nondimensionalized key orbit performance indices rather
than based on weighted function of the nondimensional-
ized key orbit performance indices in Step 3, the influence
of human factors on the optimum result is reduced. The
principal components, which explain the internal structure
of the key orbit performance indices [19, 20], are suitable
for cluster analysis. However, they do not have physical
meaning and thus can not be used for evaluating the quality of

orbits. Therefore, the optimal class is selected from all classes
utilizing weighted sum method, rather than utilizing princi-
pal component analysis. Similarly, in Step 5, the temporary
optimal orbit is obtained from the optimal class by using the
weighted sum method, rather than by principal components
analysis. Therefore, CPC-based OM, to some degree, can
mitigate the influence of human factors and is advanced.
Some details of CPC-based OM are briefly introduced below.

3.1. Index Nondimensionalization Method. When various
candidate orbits are generated and orbit performance indices
with different units are calculated, the performance indices
are nondimensionalized using (4) [2]. If 𝑟 performance
indices are to be maximized, the dimensionless coefficient
is equal to the performance index value divided by the
maximum value in all candidate orbits. If 𝑠 performance
indices are to be minimized, the dimensionless coefficient
is equal to the reciprocal of the performance index value
divided by the minimum value in all candidate orbits. If𝑡 performance indices are to be within an expected range,
the dimensionless coefficient is equal to the performance
index value divided by the median of the range when the
performance index is less than the median of the range and
dimensionless coefficient is equal to the reciprocal of the
performance index value divided by the median of the range
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when the performance index is greater than themedian of the
range.

(𝑦𝑖)𝑗 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(𝑥𝑖)𝑗𝑥max
𝑖

𝑖 = 1, . . . , 𝑟
𝑥min
𝑖(𝑥𝑖)𝑗 𝑖 = 1, . . . , 𝑠

(𝑥𝑖)𝑗𝑥𝑖 (𝑥𝑖)𝑗 < 𝑥𝑖, 𝑖 = 1, . . . , 𝑡𝑥𝑖(𝑥𝑖)𝑗 (𝑥𝑖)𝑗 > 𝑥𝑖, 𝑖 = 1, . . . , 𝑡,
(4)

where (𝑥𝑖)𝑗 is the 𝑖th performance index of the jth orbit, (𝑦𝑖)𝑗
is the dimensionless coefficient of the performance index(𝑥𝑖)𝑗, 𝑥max

𝑖 is the maximum value of 𝑥𝑖 in all candidate orbits,𝑥min
𝑖 is the minimum value of 𝑥𝑖 in all candidate orbits, and 𝑥

is the median of the range.

3.2. Principal Component Analysis. Supposing the dimen-
sionless coefficients can be represented by vector Y =(𝑦1, 𝑦2, . . . , 𝑦𝑝), where 𝑝 is the number of performance
indices of each orbit, then Y1, . . . ,Y𝑗, . . . ,Y𝑛 are the dimen-
sionless coefficients of the performance indices of 𝑛 candidate
orbits. In principal component analysis [2, 21], the elements𝑢𝑖𝑗 of the covariance matrixU = (𝑢𝑖𝑗)𝑝×𝑝 are firstly calculated
as follows:

𝑢𝑖𝑗 = 1𝑛 − 1
𝑛∑
𝑘=1

((𝑦𝑖)𝑘 − (𝑦𝑖)) ((𝑦𝑗)𝑘 − (𝑦𝑗)) , (5)

where

(𝑦𝑖) = 1𝑛
𝑛∑
𝑘=1

(𝑦𝑖)𝑘 ,
(𝑦𝑗) = 1𝑛

𝑛∑
𝑘=1

(𝑦𝑗)𝑘 .
(6)

Next, the eigenvalues 𝜆𝑖 of the covariance matrix U are
calculated. The cumulative contribution ratio of the previous𝑚 (𝑚 ∈ [1, 𝑝]) eigenvalues 𝜂𝑚 is as follows:

𝜂𝑚 = ∑𝑚𝑖=1 𝜆𝑖∑𝑝𝑖=1 𝜆𝑖 . (7)

The number of principal components is the minimum𝑚, which makes 𝜂𝑚 greater than 88%. Then, by using the
orthogonal normalized eigenvector e𝑇𝑖 of the covariance
matrix U, the principal component vector Z𝑗 of the 𝑗th
candidate orbit is calculated as follows:

Z𝑗 = [e𝑇1Y𝑗, e𝑇2Y𝑗, . . . , e𝑇𝑚Y𝑗]𝑇 (𝑗 = 1, 2, . . . , 𝑛) . (8)

Because 𝑚 is generally smaller than 𝑝, the total number
of principal components to be clustered is less than the total
number of performance indices.

3.3.Multilevel Cluster Analysis. Thecandidate orbits could be
clustered according to the principal components to obtain the
optimal class [33, 34]. The max–min distance method [35] is
employed in this research. To avoid randomly selecting the
first cluster center, the orbit most close to the zero point of
principal components is selected as the first cluster center.
The Euclidean distance is employed in cluster analysis, and
the definition is as follows:

𝑑 (Z𝜁,Z𝜍) = √ 𝑚∑
𝑖=1

(𝑍𝑖
𝜁
− 𝑍𝑖𝜍)2, (9)

where Z𝜁 and Z𝜍 are two arbitrary principal component
vectors of candidate orbits, 𝜁 and 𝜍 are two arbitrary natural
numbers, and𝑍𝑖𝜁 is the 𝑖th principal component inZ𝜁. A total
class distance criterion is applied to determine the optimal
number of classes 𝑁𝑐 in each clustering and the candidate
values of𝑁𝑐 include 4, 5, and 6.

The procedures of cluster analysis are as follows.

Step 1. Assume𝑁𝑐 is set as one of the three candidate values.
Step 2. Select initial cluster centers. Calculate Euclidean dis-
tance 𝑑0𝑗 from allZ𝑗 to the zero point of principal components
using

𝑑0𝑗 = 𝑑 (𝑍𝑗, 0) = √ 𝑚∑
𝑖=1

(𝑍𝑖𝑗)2. (10)

Z𝑗 corresponding tominimum𝑑0𝑗 is taken as the first clus-
ter center Z1𝑐 . The second cluster center Z2𝑐 will be Z𝑗 which
has the maximum Euclidean distance to Z1𝑐 . The (𝑘 + 1)th
cluster center Z𝑘+1𝑐 will be Z𝑗 corresponding to the maximum𝑑min 𝑐
𝑗 , where 𝑑min 𝑐

𝑗 = min{𝑑𝑐1𝑗 , 𝑑𝑐2𝑗 , . . . , 𝑑𝑐𝑖𝑗 , . . . , 𝑑𝑐𝑘𝑗 }, and 𝑑𝑐𝑖𝑗 is
the Euclidean distance between Z𝑗 and Z𝑖𝑐.𝑁𝑐 cluster centers
are finally selected in this way.

Step 3. Calculate Euclidean distances from each of the
remaining Z𝑗 to all the 𝑁𝑐 cluster centers. Each Z𝑗 will be
assigned to the most close cluster center.

Step 4. Determine new cluster centers. Calculate the average
value of principal components of𝑁𝑐 classes using

𝑍𝑖𝑘 = ( 1𝑐𝑘)
𝑐𝑘∑
𝑗=1

𝑍𝑖𝑗 (𝑘 = 1, 2, . . . , 𝑁𝑐) , (11)

where 𝑍𝑖𝑘 is the average value of the 𝑖th principal component
in the kth class and 𝑐𝑘 is the total number of candidate orbits
in the kth class.The new cluster center of each class will be Z𝑗
most close to the average value of principal components. The
distance fromZ𝑗 to average value of principal componentsZ𝑘
is shown in

𝑑𝑘𝑗 = 𝑑 (Z𝑗,Z𝑘) = √ 𝑚∑
𝑖=1

(𝑍𝑖𝑗 − 𝑍𝑖𝑘)2, (12)
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where 𝑑𝑘𝑗 is the distance from Z𝑗 to the average value of
principal components of the 𝑘th class.

Step 5. If one or more than one new cluster center is
different from the corresponding last cluster center, reassign
all remaining Z𝑗 to the𝑁𝑐 cluster centers, then repeat Step 3;
otherwise stop the clustering analysis corresponding to this
candidate value of𝑁𝑐.
Step 6. Set 𝑁𝑐 to other candidate values, and relevant clus-
ter analyses are carried out according to aforementioned
Steps 2∼5. Then, the total class distances 𝛿 in three cluster
analyses corresponding to three candidates𝑁𝑐 are calculated
[2].

𝛿 = 𝑞∑
𝑘=1

𝛿𝑘,
𝛿𝑘 = √ 1𝑐𝑘

𝑐𝑘∑
𝑗=1

𝑑2𝑗 ,
(13)

where 𝑞 is the candidate value of 𝑁𝑐 in each cluster analysis
(𝑞 = 4, 5 or 6), 𝑐𝑘 is the number of orbits in class 𝑘, and 𝑑𝑗 is
the Euclidean distance between the class center and the other
orbits in this class. The final cluster result is the cluster result
corresponding to the smallest 𝛿.

The number of candidate orbits is very large, after one
cluster analysis, the number of orbits in the optimal class
is usually more than six. Therefore, cluster analyses are
repeatedly carried out until the number of orbits in the
optimal class is less than six. This is known as multilevel
cluster analysis.

3.4.Weighted SumMethod. Theweighted summethod [2, 10]
is adopted to determine the optimal class from all the classes
and the optimal orbit from the orbits in the last optimal class.
The evaluation index 𝜉 is defined as follows:

𝜉 = ( 𝑟∑
𝑖=1

(𝑦𝑖)𝑊𝑖 + 𝑠∑
𝑖=1

(𝑦𝑖)𝑊𝑟+𝑖) 𝑡∏
𝑖=1

𝑓 (𝑦𝑖) , (14)

where𝑊𝑖 (𝑖 = 1, 2, . . . , 𝑟 + 𝑠) is the weight coefficient of each
performance index, in the range [0, 1]. The representative
coefficient 𝑓(𝑦𝑖) is given by

𝑓 (𝑦𝑖) = {{{
1 𝑥min
𝑖 ≤ 𝑥𝑖 ≤ 𝑥max

𝑖0 𝑥𝑖 > 𝑥max
𝑖 or 𝑥𝑖 < 𝑥min

𝑖 , (15)

where [𝑥min
𝑖 , 𝑥max
𝑖 ] is the expected range of 𝑥𝑖 and 𝑦𝑖 is the

dimensionless coefficient of 𝑥𝑖.
4. Novel DCPC-Based OM for
Orbit Optimizations

4.1. The Advanced Characteristic of CPC-Based OM andMod-
ification for Convergence Efficiency. In CPC-based OM, prin-
cipal component analysis, rather than weighted summethod,

is adopted to cluster orbits, and therefore the negative
influence of the artificially set weight coefficients in weighted
sum method is reduced. The detailed analyses are illustrated
in contours resulting from principal component analysis and
weighted summethod in Figure 2(a), assuming that two orbit
elements are optimized and orbit performance indices are
transformed into one principle component. Because artificial
weight coefficients are usually different from the orthogonal
normalized eigenvector (refer to Section 3.2), significantly
different contours are shown in Figure 2(a). The artificial
weight coefficients are unreasonable and easily influenced
by human factors, while principal components are objective
and therefore more reasonable. A comparison analysis of the
advantage of principal component analysis is presented in
Section 6.3.

In CPC-based OM, when enough candidate orbits are
randomly generated, the global optimal orbit with high accu-
racy could be achieved. For a certain number of candidate
orbits, as indicated by black stars in Figure 2(a), star A is the
closest to the global optimal orbit indicated by a large red
star. Therefore, star A is the optimal solution among these
candidate orbits. Orbit A is not a local optimal solution but
a global optimal solution with low accuracy. If the number of
candidate orbits is smaller than that in Figure 2(a) and orbit
A is not included in the candidate orbits, the optimal orbit
obtained using CPC-based OM will be star B (as shown in
Figure 2(b)); orbit B is a local optimal solution. Therefore,
if there are a large number of candidate orbits, the global
optimal solution can be achieved by CPC-based OM. To
improve the accuracy of the optimal solution, generating
more candidate orbits, is a feasible approach, as shown in
Figure 2(c). When additional orbits (indicated with blue
stars) are generated as candidate orbits, a better orbit marked
with star C is the optimal solution. Star C is closer than star
A to the global optimal orbit. Therefore, the accuracy of the
global optimal solution is satisfied when sufficient candidate
orbits are prepared in CPC-based OM. Additional candidate
orbits are gradually generated in “randomexhaustive” process
in CPC-based OM as shown in Figure 1, which ensure global
optimumand high accuracy in CPC-basedOM. But “random
exhaustive” leads to low computational efficiency for CPC-
based OM.

The method of reducing the feasible region will be
employed to improve the convergence. It could be known
from Figure 2(c) that the additional orbits cover the entire
feasible region of orbit elements. Supposing that all orbits in
the green contour belong to the optimal class, the rectangular
box R2 (shown in Figure 2(d)), which is envelop of green
contour, is the feasible region of the optimal class, and it
is far smaller than the entire feasible region R1 (shown in
Figure 2(d)). If the same numbers of additional orbits as that
in Figure 2(c) are generated and they cover the feasible region
R2 of the optimal class, as shown in Figure 2(d), star D will be
the optimal solution (better than star C). Unfortunately, some
orbits (marked with a red dotted box in Figure 2(d)) in R2 do
not belong to the optimal class. To avoid orbits generated in
red dotted box, cluster analysis of orbits in optimal class based
on the orbital elements could be introduced to divide optimal
class to two parts, and the concentrated zones R3 and R4 will
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be the feasible regions of two parts of the optimal class, as
shown in Figure 2(e).The areas of the new feasible regions R3
andR4 are smaller than the area of R2. If the same numbers of
additional orbits in feasible regions R3 and R4 are generated,
star E is the new optimal solution (shown in Figure 2(e)) and
is better than star D (shown in Figure 2(d)).

4.2. Processing Flow. By introducing cluster analysis based on
the six orbital elements, a novel population-based optimiza-
tion method named DCPC-based OM is developed based on
CPC-based OM. The processing flow is shown in Figure 3,
where the gray zone indicates the cluster analysis based on
the six orbital elements, including totally five steps.

Step 1. Randomly generate 𝑛0 candidate orbits according to
the initial feasible regions of the six orbital elements, and then
calculate the coverage and TT&C performance indices.

Step 2. Nondimensionalize the coverage and TT&C perfor-
mance indices of candidate orbits.

Step 3. Calculate the principal components of nondimen-
sionalized orbit performance indices, divide candidate orbits
into classes by performing cluster analysis based on the
principal components, and evaluate class centers using the
weighted sum method to obtain the optimal class.

Step 4. When the total number of candidate orbits in the
optimal class is greater than six, the six orbital elements
are nondimensionalized by the upper limit value of the
relevant feasible region. Cluster analysis is conducted on

the orbits belonging to the optimal class, by using the
nondimensionalized values of the six orbital elements. The
candidate number of classes𝑁𝑐 here is not limited to 4, 5, or 6;
that is, it could change from 1 to the total number of orbits in
the optimal class. After orbits with similar six orbital elements
are clustered into a class, the concentrated feasible region of
a class is the envelope of six orbital elements of all orbits in
this class. Then 𝑛𝑎 additional candidate orbits are generated
randomly in the all concentrated feasible regions. The value
of 𝑛𝑎 is as follows: 𝑛𝑎 = 𝑛𝑖+1 − 𝑛𝑜𝑖 , (16)

where 𝑛𝑖+1 is the total number of candidate orbits in the
(𝑖+1)th cluster analysis and 𝑛𝑜𝑖 is the total number of orbits in
the optimal class of the 𝑖th cluster analysis. An evolutionary
rate 𝜂 (0 < 𝜂 < 1) is defined to ensure that the number of
candidate orbits is reduced in the subsequent optimization,
and the total number of candidate orbits in the 𝑖th cluster
analysis is 𝑛𝑖 = 𝑛0𝜂(𝑖−1).
Step 5. Choosing the orbits in the optimal class and 𝑛𝑎
additional orbits as candidate orbits (a total of 𝑛0𝜂𝑖 orbits),
repeat Step 2, until the number of orbits in the optimal class
is nomore than six and then determine the optimal orbit from
the optimal class by using the weighted sum method.

The characteristics of DCPC-basedOMcan be concluded
as follows.

(1) Cluster analysis based on principal components of
orbit performance indices and six orbital elements are per-
formed, respectively. Therefore, double cluster analyses are
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included in DCPC-based OM. By clustering of the orbits
belonging to the optimal class using six orbital elements,
the concentrated feasible regions of the optimal class are
obtained. Additional candidate orbits are generated only in
the concentrated feasible regions which is smaller than initial
feasible region. An evolutionary rate 𝜂 (0 < 𝜂 < 1) is
defined to ensure that the candidate orbits is reduced in the
subsequent optimization.

(2) According to the definition of evolutionary rate 𝜂 in
Step 4 and the flow chart in Figure 3, the total number of
iterationsN in DCPC-based OM is approximately as follows:

𝑁 ≈ log1/𝜂𝑛0 − log1/𝜂 (5 × 3.5) + 1, (17)

where 5 is the average value of the number of classes (4, 5,
and 6) and 3.5 is the average number of the orbits in the last
optimal class (1, 2, 3, 4, 5, and 6). Based on the hypothesis
that each class has the same number of orbits in cluster
analysis, the number of additional orbits in N iterations can
be calculated using

𝑛0 (𝜂 − 15) ,
𝑛0 (𝜂 − 15) 𝜂,
𝑛0 (𝜂 − 15) 𝜂2,...

𝑛0 (𝜂 − 15) 𝜂𝑁−1.

(18)

It can be seen from (18) that the numbers of additional
orbits in all iterations are in a form of geometrical sequences.
Therefore the total number of generated candidate orbits𝑛total equals the number of initial orbits 𝑛0 plus the sum of
geometrical sequences in (18), as shown in

𝑛total ≈ 𝑛0 [1 + (𝜂 − 15) 𝑛0 − (5 × 3.5) 𝜂𝑛0 (1 − 𝜂) ] . (19)

For orbit optimization, the calculation procedure of
orbit performance indices is more time-consuming than
optimization operation, because a large number of numerical
computations are needed to calculate orbit performance
indices. Therefore, the total optimization time approximately
equals the total number of generated candidate orbits multi-
plied by the computation time required for the performance
indices of one orbit, which means the time cost is nearly
predictable. The proposed orbit design optimization method
with predictable time cost is more convenient than other
population-based optimization methods with unpredictable
time cost for a scheduled project.

(3) In DCPC-based OM, the method of reducing the
feasible region improved the computational efficiency while
it might result in the reduction of capability of global opti-
mization, because the feasible regions including the global
optimum solution might be mistakenly deleted. The large

value of 𝑛0 and 𝜂 can improve the capability of global
optimization, and the small value of 𝑛0 and 𝜂 can improve
computational efficiency but increase the risk of missing the
global optimal solution.

5. Experiment and Analysis

A four-objective benchmark function (as shown in (20))
including two simplemultimodal problems (𝑓1(𝑥⃗) and𝑓2(𝑥⃗))
and two unrotated multimodal problems (𝑓3(𝑥⃗) and 𝑓4(𝑥⃗)) is
adopted to testify the proposedmethod [36].TheRosenbrock
function 𝑓2(𝑥⃗) is modified to 𝑓󸀠2(𝑥⃗) to ensure that global
optimal solution is [0, 0, . . . , 0] and the minimum value is 0.
The global optimal solution of the multiobjective benchmark
function is 𝑥⃗opt = [0, 0, . . . , 0] and 𝑓(𝑥⃗opt) = 0.

𝑓 (𝑥⃗) = 𝑓1 (𝑥⃗) + 𝑓󸀠2 (𝑥⃗) + 𝑓3 (𝑥⃗) + 𝑓4 (𝑥⃗)
𝑓1 (𝑥⃗) = 𝐷∑

𝑖=1

𝑥2𝑖
𝑓󸀠2 (𝑥⃗) = 𝐷−1∑

𝑖=1

[100 (𝑥𝑖+1 − 𝑥2𝑖 )2 + 𝑥2𝑖 ]
𝑓3 (𝑥⃗) = −20 exp(−0.2√ 1𝐷

𝐷∑
𝑖=1

𝑥2𝑖)
− exp( 1𝐷

𝐷∑
𝑖=1

cos (2𝜋𝑥𝑖)) + 20 + 𝑒
𝑓4 (𝑥⃗) = 𝐷∑

𝑖=1

[𝑥2𝑖 − 10 cos (2𝜋𝑥𝑖) + 10] .

(20)

The optimizations with dimensions 𝐷 of 5 and 10 are
conducted using DCPC-based OM, CPC-based OM, and
WSGA-based HM [4–6]. In DCPC-based OM and CPC-
based OM, the number of initial candidate elements 𝑛0
was set as 10,000,000. With respect to CPC-based OM, the
increasing number 𝑛𝑎 was 100,000. In DCPC-based OM,
the evolutionary rate 𝜂 was 0.6. In WSGA-based HM, the
individual number in a generation 𝑛𝐺 was 100,000, and the
fitness values were calculated using weighted sum method,
as shown in Section 3.4, with weight coefficients 𝑊𝑖 = 1
(𝑖 = 1, 2, . . . , 4). The initial range of 𝑥⃗ was [−5.12, 5.12]. At
each time the clustering in DCPC-based OM was finished,
the minimum values of function 𝑓 = 𝑓1(𝑥⃗) + 𝑓2(𝑥⃗) +𝑓3(𝑥⃗) + 𝑓4(𝑥⃗) calculated by the three methods are shown
in Figure 4. Three methods started optimization process at
the same time and terminated simultaneously when DCPC-
based OM completed optimization. Because 𝑛𝐺 in WSGA-
based HM was far less than 𝑛0 in DCPC-based OM and
CPC-based OM, many iterations in WSGA-based HM had
occurred when the first clustering in DCPC-based OM was
completed. In addition, with repeat clustering, the number of
candidate elements in the optimal class decreases in DCPC-
basedOMand the number of completed iterations ofWSGA-
based HM in one clustering decreases. Therefore, in each
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Figure 4: Convergence curve of test: (a) dimension is 5; (b) dimension is 10.

clustering of DCPC-based OM, the number of iterations in
WSGA-based HM varies. The number of times of completed
iterations in WSGA-based HM at each time when clustering
in DCPC-based OM was finished is shown in Figure 4.

Figure 4(a) shows that the function values in all three
methods decreased as the number of times of clustering
increased. A comparative analysis between the function
values of DCPC-based OM and CPC-based OM shows that,
in the first clustering, the function values of DCPC-based
OM were similar to that of CPC-based OM. However, in
the last clustering, the function values of DCPC-based OM
were far lower than that of CPC-based OM. It validated the
improved convergence by the method of reducing feasible
region in DCPC-based OM. When the first clustering in
DCPC-based OM was completed, iterations in WSGA-based
HM had been finished 64 times. Thus, the function values in
WSGA-based HM were less than that in DCPC-based OM.
By the 8th clustering in DCPC-based OM, 104 iterations of
WSGA-based HM had been finished. And the additional 2
iterations ofWSGA-BASEDHMwere completed by the 22nd
cluster. At the end of the last clustering, the function values of
DCPC-basedOMwere less than that inWSGA-basedHM. In
WSGA-basedHM, the feasible region is constant, the conver-
gence is driven by evolutionary capacity of genetic operation,
but genetic operation is actually random. In a large feasible
region, the global optimum is difficult to be completely
randomly generated. Hence, the convergence efficiency is
very low in WSGA-based HM. The candidate elements in
DCPC-basedOM are randomly generated. However, because
reducing the feasible region is an effectivemethod to improve
optimization efficiency [27–32], DCPC-based OM achieves
more efficient convergence than WSGA-based HM.

6. Orbit Design Results and Analysis

6.1. Orbit Optimization Conditions and Convergence Analysis.
For a certain Earth observation satellite, five observation
targets are with latitude and longitude coordinates of (25∘N,
120∘E), (10∘N, 110∘E), (40∘N, 130∘E), (15∘N, 90∘W), and (20∘S,
130∘E) and the same vision field angle of 25∘. The minimum
elevation angle, latitude, and longitude coordinates of TT&C
station are 5∘, 40∘N, and 120∘E, respectively. The expected
range of ATI-TT&C is 8000 s∼40000 s. The range of the
semimajor axis is 400 km∼600 km and 𝑊𝑖 = 1 (𝑖 =1, 2, . . . , 7). The simulation time for each candidate orbit is 3
days.

The orbit design optimization is conducted using DCPC-
based OM, CPC-based OM, and WSGA-based HM [4–6].
In DCPC-based OM and CPC-based OM, the number of
initial candidate orbits 𝑛0 is set as 100,000. In DCPC-based
OM, the evolutionary rate 𝜂 is 0.5. The number of additional
orbits 𝑛𝑎 is set as 10,000 for CPC-based OM. The number of
individuals in a generation 𝑛𝐺 is 10,000 forWSGA-basedHM.
The change of the evaluation indices for DCPC-based OM,
CPC-based OM, and WSGA-based HM with the number of
times of clustering in DCPC-based OM is shown in Figure 5.

The data in Figure 5 show that the evaluation indices for
all three methods increase as the number of times of cluster-
ing increases. After the first clustering, DCPC-based OM and
CPC-based OM have similar evaluation indices, which are
less than that forWSGA-basedHM.Theoptimization process
for CPC-based OM and WSGA-based HM is stopped when
DCPC-basedOMfinishes its optimization, andDCPC-based
OM has the highest evaluation index of all three methods in
the last clustering.The evaluation index of the orbit of DCPC-
based OM is higher than that of CPC-based OM by 22.9%
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and higher than that of WSGA-based HM by 8.0%. In other
words, DCPC-basedOMhasmore efficient convergence than
both CPC-based OM andWSGA-based HM.

6.2. Optimization Results with DCPC-Based OM. Details
of orbit optimization results with DCPC-based OM are
presented in this section. In the first clustering, principal
component analysis was conducted after the performance
indices of all candidate orbits are calculated and nondi-
mensionalized. The contribution ratios of the first three
principal components in the principal component analysis
were 74.10%, 11.69%, and 8.38%, respectively, as shown in
Figure 6.

The data in Figure 6 shows that the first three principal
components contributemore than the others.The cumulative
contribution ratio of the first three principal components is

Table 1: Principal components in the cluster centers for the first
clusters.

Principal component Classification
1 2 3 4 5

Principal component 1 (CP1) −4.72 3.34 −1.46 3.58 −2.48
Principal component 2 (CP2) 0.46 7.38 −3.37 −2.19 −0.87
Principal component 3 (CP3) −5.18 0.18 5.80 −0.83 4.14

94.17%. The number of principal components is three in all
the clusters in this study, although the contribution ratios of
the first three principal components vary slightly in various
principal component analyses. Consistently, the multilevel
cluster analysis is conducted.

According to total class distance criterion, the optimal
number of classes in the first cluster was five. The principal
components of the cluster centers in the five classes are shown
in Table 1.The data in Table 1 illustrates the differences among
the cluster centers of the five classes. Classes 4, 2, and 3 had
the largest principal components 1, 2, and 3, respectively.

The data in Figure 7(a) show the distribution character-
istics of the principal components in the five cluster centers.
Because the principal components have no physicalmeaning,
it is difficult to determine the optimal class according to
the principal components. Therefore, the data in Figure 7(b)
show the differences among the performance indices of the
five cluster centers, and the weighted sum method is used to
select the optimal class by evaluating the performance indices
of the cluster centers. The eight dimensionless performance
indices of the five cluster centers are listed in Table 2.

The data in Figure 7(b) indicate that the dimensionless
orbit performance indices of Class 4 are relatively large, and
the optimal class obtained by using the weighted summethod
was also Class 4.

The orbits in Class 4 from the first clustering and 𝑛𝑎
additional candidate orbits are then selected to continue
with the clustering process. The principal components and
dimensionless performance indices in the cluster center after
clustering fifteen times using DCPC-based OM are shown in
Figures 8(a) and 8(b). The analysis results using the weighted
sum method indicate that Class 3 is the optimal class.

The eight dimensionless performance indices for all orbits
of Class 3 are shown in Figure 9. The optimal orbit obtained
by the weighted sum method is Orbit 1.

6.3. Global Optimality and Principal Component Estimation
in DCPC-Based OM. The evolution process of the maximum
and minimum evaluation indices of the orbits in the optimal
class is shown in Figure 10. The uptrend of the two types
of indices indicates that the orbits are being optimized. The
phenomenon of the two sets of indices approaching each
other indicates that the differences among all orbits in the
optimal class are decreasing.When the two sets of indices are
close enough, the optimal orbit is achieved.

A decrease in the maximum evaluation index from O1
to O2 indicates that, in the 8th clustering, the maximum
evaluation index is not contained in the optimal class and
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Figure 7: Results of the first clustering: (a) principal components of the five clustering centers and (b) dimensionless performance indices of
the five clustering centers.

Table 2: Eight dimensionless performance indices of the five clustering centers after the first clustering.

Performance indices Classification
1 2 3 4 5

Frequency of coverage (FC) 0.12 0.34 0.42 0.93 0.32
Total coverage time (TCT) 0.31 0.27 0.34 0.83 0.23
Average time per coverage (ATC) 0.01 0.43 0.86 0.89 0.77
Maximum coverage gap (MCG) 0.04 0.26 0.72 0.63 0.33
Average coverage gap (ACG) 0.94 0.92 0.54 0.96 0.48
Minimum coverage gap (ICG) 0.02 0.05 0.5 0.9 0.11
Average time interval of TT&C (ATI-TT&C) 0.30 0.15 0.79 0.65 0.84
Average time of each TT&C (AT-TT&C) 0.59 0.04 0.62 0.57 0.61

is filtered out. The coverage and TT&C performance indices
of orbits O1 and O2 are listed in Table 3. Compared to
orbit O2, orbit O1 exhibits better TCT and ATC, worse
MCG, ICG, and AT-TT&C, and similar FC, ACG, and ATI-
TT&C. Considering an obviously oversized MCG and ICG
in orbit O1, orbit O2 is better than orbit O1, even though the
evaluation index of orbit O2 determined by weighted sum
method is less than that of orbit O1.The reason for the higher
evaluation index of orbit O1 is that ATC is linearly correlated
with TCT, and in the weighted sum method, both TCT and
ATC are considered, that is, the coverage time is counted
twice. It leads to the fact that effects of the oversized MCG
and ICG are masked in weighted sum method. However, the
effect of the linear correlation is eliminated in the principal
component analysis, which leads to the fact that the coverage

time is counted only once and the negative effects of the
oversized MCG and ICG are reflected. Thus, the principal
component analysis provides a more accurate estimation.

7. Conclusions

This paper proposes a population-based optimization
method named DCPC-based OM, which consists of the
index nondimensionalization method, principal component
analysis, double cluster analysis, and the weighted sum
method. Tests using numerical benchmark functions were
conducted, and an example of orbit optimization for Earth
observation satellites was analyzed. Both optimization results
show that the proposed method, with characteristics of a
predictable time cost, has the advantages of reducing the
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Figure 8: Results of the fifteenth clustering: (a) principal components of the five clustering centers and (b) dimensionless performance indices
of the five clustering centers.

Table 3: Coverage and TT&C indices of orbits O1 and O2.

Index Orbit O1 Orbit O2
Frequency of coverage (FC) 100 100
Total coverage time
(TCT)/s 8445 5970

Average time per coverage
(ATC)/s 86 60

Maximum coverage gap
(MCG)/s 4213.5 2842.5

Average coverage gap
(ACG)/s 1117.75 1162.5

Minimum coverage gap
(ICG)/s 486.25 270.75

Average time interval of
TT&C (ATI-TT&C)/s 3886 3930

Average time of each
TT&C (AT-TT&C)/s 31 38

influence of human factors that commonly exist in the
weighted sum method and bring more efficient convergence
than genetic algorithm.

This paper describes the results of a preliminary research
study of the developed optimization method. Further study
will be performed, such as determining the quantity of
initial orbits to ensure the capability of global optimization,
understanding how evolutionary rate influences the accuracy
of the optimal solution, and determining whether a dynamic
evolutionary rate is necessary. In addition, the optimal
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Figure 9: Dimensionless performance indices for all orbits in Class
3 after the fifteenth clustering.

capability when the optimal solution is on the boundary of
the feasible region will be further investigated.
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