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Forecasting annual wind power production is useful for the energy industry. Until recently, attention has only been paid to the
mean annual wind power energy and statistical uncertainties on this forecasting. Recently, Bensoussan et al. (2012) have pointed
that the annual wind power produced by one wind turbine is a Gaussian random variable under a reasonable set of assumptions.
Moreover, they can derive both mean and quantiles of annual wind power produced by one wind turbine. The novelty of this work
is the obtainment of similar results for estimating the annual wind farm power production. Eventually, we study the relationship
between the power production for each turbine of the farm in order to avoid interaction between them.

1. Introduction

The energy industry is one of the most important types of
modern industries. In recent years, wind power has become
increasingly popular as a renewable energy source that can
both develop the economy and protect the environment.
Thereby, the development of suitable mathematical models
becomes necessary. A detailed review on the existing tools
used in wind power prediction is provided by [1], which pro-
poses a perspective of future developments. A more recent
update can be found in [2] where they used two alternative
numerical prediction models: an empirical one and a com-
putational one, in order to forecast the power output of two
Greek wind farms before their installation. Different models
formonitoring and forecasting the turbine output are consid-
ered such as those in the studies by the authors of [3–7] or [8]
and recently in [9]. But, to our knowledge, the performance
of a wind power farm has not been adequately studied. In this
work, we suggest a statistical analysis based on central limit
theorem as in [9]. Firstly, by using the wind speed, as input
variables, we can forecast the annual energy production and
its quantiles. Secondly, we study the relationship between the
power outputs for each turbine in the farm to avoid the effect
of interaction between them.

The rest of this paper is organized as follows. In Section 2,
we present the dataset. In Section 3, we first recall the state on

the art on the wind farm power forecasting, then we give
the theoretical results for the forecasting of the annual wind
power production, and we apply these results to real datasets.
Moreover, we study the relationship between the power out-
puts for each turbine in the farm. Finally, discussions are
available in Section 4.

2. Data Presentation

In this case study, we have processed ten-minute wind speed
and ten-minute wind power production corresponding to a
wind farm with four turbines. The duration of observation is
29 months leading to large series.The wind farm is located in
a flat area close to the sea.

Thewind farmpower production depends onwind speed.
Thus we begin with data representation. The wind speed
series is intermittent; that is, it presents very irregular vari-
ations, as shown in Figure 1. This intermittency induces fore-
casting difficulties. A different approach has been considered,
but also with a different horizon of time; see, for example,
[10, 11] or [12]. Let us point out that the previousmethods take
only into account the absolute value of wind speed, leading to
1D time series. Other modern methods include the 2D or 3D
behavior of wind; see, for example, [13] or [14].

By a simple calculation, the average wind speed over the
period is equal to 7.25m/s, which is enough to guarantee a
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Figure 1: Mean wind speed in the farm.

good profitability of the project but does not allow a detailed
forecast.

Regarding the energy output, we can note the large
amount generated by this wind farm which reaches 2870 kW
on average every ten minutes. This perfectly fits the building
of a wind farm on a flat area close to a windy sea. We can
also plot the ten-minute wind speed versus the ten-minute
power; see Figure 3. We then get a cloud of points around the
nominal power law. Let us recall that the nominal power law
is provided by the manufacturer and indicates the power 𝑃
produced for a given wind speed V, which corresponds to the
map V 󳨃→ 𝑃(V) (see Figure 2).

Moreover, the turbine is cut for wind speed outside
the interval (𝑉cut.in, 𝑉cut.off). The large dispersion in Figure 3
around the nominal power law is due to outliers and error of
measurement. We see that the power

(i) is null if the wind speed is less than the starting
speed (𝑉cut.in=3.5m/s) and beyond the cut out speed
𝑉cut.off = 25m/s,

(ii) is proportional to the wind speed rise between 𝑉cut.in
and the rated speed (about 13m/s),

(iii) is constant between the rated speed and the cut out
speed.

Let us remark that the energy output is not the same for each
of the four turbines. Indeed, there is a turbine that produces
on average less than the others although the four turbines
have the same power law, being of the same type. A possible
explanation is the wake effect. In this frame, modeling by
2D wind series could enhance wind power forecasting (see
Table 1).

3. Wind Farm Power Forecasting

3.1. State of the Art. The traditional method is based onmod-
eling ten-minute wind speed probability density function
(pdf) and then calculating the average ten-minute wind
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Figure 2: Average wind farm power every ten minutes.
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Figure 3: Wind power versus wind speed for turbine 1.

Table 1: Mean wind power for ten-minute by each turbine.

Turbine 𝑇
1

𝑇
2

𝑇
3

𝑇
4

Mean wind power (kW) 756 712 684 717

power production asP = (1 − 𝑝
0
) ∫
𝑉cut. off

𝑉cut.in
𝑃(V)𝑓(V)𝑑V, where

𝑝
0
denotes the probability of zero wind;𝑉cut.in,𝑉cut. off denote

the wind speed for cutting in and cutting off the turbine;
V 󳨃→ 𝑃(V) denotes the nominal power law; 𝑓(V) denotes the
wind speed probability density function (pdf). Most often
the ten-minute wind speed is assumed to follow a Weibull
distribution, or a hybridWeibull law; see, for example, [15, 16],
or [7]. This model gives a good estimation of both mean
ten-minute wind speed and mean ten-minute wind power
production and after that provides us with a good forecasting
of the mean annual wind power production. However, this
traditional method discards the time structure of wind speed
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and wind power and thus it does not allow to forecast the
variance, nor the quantiles of annual wind power production.

Recently, the authors of [9] have proposed a new method
which takes into account the dynamical structure of the
annual wind power production. This method provides fore-
casting not only of the mean annual wind power production,
but also of its variance and the quantiles of annualwindpower
production. The techniques rely on the central limit theorem
(CLT) which asserts that the pdf of annual wind power pro-
duction is almost Gaussian under natural assumptions. In the
next section, we slightly adapt this method to the case of a
wind farm.

3.2. Forecasting Wind Farm Power. The annual wind power
production of the farm is defined by

P
𝐹

annual =
𝑇

∑

𝑡=1

𝑃
𝐹

𝑡
, (1)

where𝑇 = 52, 560 denotes the number of ten-minute periods
during one year. The farm production is the sum of the indi-
vidual production of the 𝐽 turbines, that is, 𝑃𝐹

𝑡
= ∑
𝐽

𝑗=1
𝑃
(𝑗)

𝑡
.

The most simple but quite large model is to assume that each
series 𝑃

𝑡
is wide sense stationary. Wide sense stationary

means that on the one hand both mean P(𝑗) and variance
V(𝑗) are not depending on time and that on the other hand the
dynamical structure read on the covariance does not depend
on the time 𝑡. As a corollary, the farm production series 𝑃𝐹

𝑡

is also wide sense stationary with mean P𝐹 = E(𝑃𝐹
𝑡
) =

∑
𝐽

𝑗=1
P(𝑗) and variance as follows:

V
𝐹
= Var (𝑃𝐹

𝑡
) =

𝐽

∑

𝑖,𝑗=1

cov (𝑃(𝑖)
𝑡
, 𝑃
(𝑗)

𝑡
) (2)

and correlation coefficient 𝜌𝐹
𝑃
(𝑘) = cov(𝑃𝐹

𝑡
, 𝑃
𝐹

𝑡+𝑘
)/Var(𝑃𝐹

𝑡
)

which does not depend on the time 𝑡. Moreover, the family
of random variables 𝑃𝐹

𝑡
is weakly dependent, and it admits

a finite second-order moment (i.e., E(P𝐹
𝑡
) < ∞ for each

𝑡 ≥ 1). In addition, the annual wind productionP𝐹annual is also
random with mean E(P𝐹annual) = 𝑇 × P𝐹 and variance as
follows:

var (P𝐹annual) = var(
𝑇

∑

𝑡=1

𝑃
𝐹

𝑡
) = 𝑇 ×V

𝐹
× (Γ
𝐹

𝑇
)
2

, (3)

where Γ𝐹
𝑇
= {1 + 2∑

𝑇

𝑘=1
[𝜌
𝐹

𝑝
(𝑘) × (1 − 𝑘/𝑇)]}

1/2

with 𝜌𝐹
𝑃
(𝑘) =

cov(𝑃𝐹
𝑡
, 𝑃
𝐹

𝑡+𝑘
)/Var(𝑃𝐹

𝑡
) which was introduced to variance

analysis for characterizing wind energy conversion as in [17].
Let us stress that the variance of annual production of the

farmdepends both on the variance of ten-minute wind power
V𝐹and its correlogram 𝜌𝐹

𝑝
(𝑘), which corresponds to the time

structure of the series. We will also need the two following
assumptions.

(A1) The second-order moment of 𝑃
𝑡
is finite, that is, size

V = E((𝑃
𝑡
)
2
) < ∞;

(A2) The family of random variables 𝑃
𝑡
is weakly depen-

dent.

After having made precise assumptions and notation, by us-
ing the same tricks as in Proposition 3.1 in [9], we can deduce
the following CLT.

Theorem 1 (CLT for wind farm annual production).

(i) If the family of r.v. 𝑃
𝑡
is wide sense stationary, and

assumptions (A1) and (A2) are fulfilled, then one has

P
𝐹

annual = 𝑇 ×P
𝐹
+ 𝑇
1/2
× (V
𝐹
)
1/2

⋅ Γ
𝐹

𝑇
× 𝜀
𝑇
, (4)

where

P
𝐹
=

𝐽

∑

𝑗=1

P
(𝑗)
,

V
𝐹
= Var (𝑃𝐹

𝑡
) =

𝐽

∑

𝑖,𝑗=1

cov (𝑃(𝑖)
𝑡
, 𝑃
(𝑗)

𝑡
) ,

Γ
𝐹

𝑇
= {1 + 2

𝑇

∑

𝑘=1

[𝜌
𝐹

𝑝
(𝑘) × (1 −

𝑘

𝑇
)]}

1/2

(5)

and 𝜀
𝑇
is a zero mean r.v. with variance 1 which con-

verges towards a standard Gaussian law; that is, 𝜀
𝑇
→

N(0, 1) when 𝑇 → ∞.
(ii) Moreover, one can deduce the quantiles of annual pro-

duction as follows:

𝑄
0.05

= 𝑇 ×P
𝐹
− 1.65 × 𝑇

1/2
× (V
𝐹
)
1/2

× Γ
𝐹

𝑇
,

𝑄
0.95

= 𝑇 ×P
𝐹
+ 1.65 × 𝑇

1/2
× (V
𝐹
)
1/2

× Γ
𝐹

𝑇
.

(6)

Remark 2. Theorem 1 is warrant under the assumptions (A1)
and (A2), which correspond to the stationarity of wind series
and consequently of power series 𝑃

𝑡
. However, this result

can be enhanced by taking into account the wind direction
as in [13, 14] or by replacing the stationarity assumption by
seasonality.

To sum up, the quantiles and the mean annual wind
power production depend on three parameters, that isP𝐹 the
mean of ten-minute wind power of the farm,V𝐹 the variance
of ten-minute wind power, and Γ𝐹

𝑇
which depends on the

correlation structure of the wind power time series. Before
starting the estimation procedures, we check the correlation
coefficient 𝜌

𝑋
(𝑘) as described previously, which proves that

wind speed and the average wind farm power of four turbines
are strongly correlated at a time scale smaller than ten hours
and become uncorrelated at scale 48 hours (confirmed by
Ljung-Box test; see e.g., [18]) as shown in the following
Figure 4.

3.3. Results. In order to carry out the overestimation of
the mean wind farm power production, first, we take again



4 Mathematical Problems in Engineering

12 24 36 48 60 72 84 96
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time lag in hours

C
oe

ffi
ci

en
t o

f c
or

re
lat

io
n

Wind speed correlogram
Wind power correlogram

Figure 4: Correlogram of mean wind speed and mean wind farm
power, duration 19 months.

the nominal power law proposed in [9] based on the use of
a numerical sample of the ten-minute wind power derived
from the sample of wind speed. Secondly, we use the tradi-
tionalmethodwhich ismodeled by aWeibull distribution law
described in Section 3.1. We compare the overestimation rate
for each turbine and for all the farm as illustrated in Table 2.

We should note that the overestimation of the mean
power farm production based on a Weibull model is 10.43%
and with the numerical wind power series it becomes 1.8%.
The sources of this overestimation are out of the scope of
this article. However, starting from the estimation of the
autocorrelation coefficient, defined in Section 3.2, we proceed
to calculate the mean and the quantiles of the annual power
production for the whole farm. It is based on a sample of
ten-minute wind power as a postproduction approach.Then,
we use the new method, that is, the preproduction approach
which has already been used in the computed precedents.

3.3.1. The Postproduction Approach. For the measurements
𝑃
𝐹

𝑡
of the existing turbines, we calculate the quantity Γ𝐹

𝑇
pro-

vided by the entire farm and Γ𝐸𝑗
𝑇

for each turbine, that is,
𝑗 = 1, . . . , 4, and we get the values stored in Table 3.

Then, we can deduce the mean and the quantiles of the
annual power production (see Table 4).

3.3.2. The Preproduction Approach. First, we calculate 𝑃𝐸1
𝑡
,

𝑃
𝐸
2

𝑡
, 𝑃𝐸3
𝑡
, and 𝑃𝐸4

𝑡
based on the wind speed measurements

provided by each turbine through power law. Thereafter, we
follow the same procedure as mentioned previously. We get
Table 5.

Then, from these values, we obtained the mean and the
quantiles by using Theorem 1 for each turbine and for the
farm, for the annual wind power production (see Table 6).

We can also forecast the twenty-year wind farm power
production (20yPP), which corresponds to the lifespan of
some turbines (see Table 7).

Table 2: The overestimation rate.

𝐸
1

𝐸
2

𝐸
3

𝐸
4

Farm
Power law −4.4 −3.8 −0.7 +2.1 −1.8
Weibull law −1.8 −0.2 −46.3 +4.7 −10.43

Table 3: Estimated values of Γ for existing turbines.

Γ
𝐹

𝑇
Γ
𝐸
1

𝑇
Γ
𝐸
2

𝑇
Γ
𝐸
3

𝑇
Γ
𝐸
4

𝑇

9.159 10.068 10.015 9.891 10.008

Table 4: The annual mean power production and its quantiles
(GWH).

𝑇
1

𝑇
2

𝑇
3

𝑇
4

Farm
𝐸 (Pannual) 6.62 6.24 6.0 6.29 25.14
𝑄
0.05

6.18 5.82 5.58 5.86 23.47
𝑄
0.95

7.06 6.67 6.41 6.71 26.82
Spread (%) 13.4 13.6 13.9 13.5 13.3

Table 5: Estimated values of Γ obtained by the preproduction
approach.

Γ
𝐹

𝑇
Γ
𝐸
1

𝑇
Γ
𝐸
2

𝑇
Γ
𝐸
3

𝑇
Γ
𝐸
4

𝑇

10.095 10.085 9.995 9.904 10.026

Table 6: Forecasting power production for one year and its quantiles
(GWH).

𝑇
1

𝑇
2

𝑇
3

𝑇
4

Farm
E (Pannual) 6.33 6.0 5.95 6.42 24.70
𝑄
0.05

5.89 5.58 5.53 5.58 23
𝑄
0.95

6.77 6.42 6.37 6.85 26.41
Spread (%) 14 14 14.1 13.5 13.8

Table 7: Forecasting of twenty-year power production and its
quantiles (GWH).

𝑇
1

𝑇
2

𝑇
3

𝑇
4

Farm
20yPP 127 120 119 128 494
𝑄
0.05

125 118 117 126 486
𝑄
0.95

129 122 121 130 502
Spread (%) 3.1 3.1 3.1 3 3

We find that the uncertainties decrease with the length of
the forecast period, rising from 13.8% for one year to 3% for
twenty years on totalwind farmpower,whereas it is decreased
from 14% for one year to 3% for twenty years at each turbine.

3.4. The Relationship between the Measurements of Each
Turbine in the Farm. To achieve a good characterization of
the relationship between the power output and the wind
speed for the four turbines, we calculate the correlation
coefficients of wind power production (denoted by 𝑃

1
, 𝑃
2
,

𝑃
3
, and 𝑃

4
) and the correlation coefficients of wind speed

(denoted by 𝑆
1
, 𝑆
2
, 𝑆
3
, and 𝑆

4
) of the four turbines. Let us

recall that the correlation coefficient for two series𝑋 and 𝑌 is
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Table 8: Correlation coefficients for 𝑃
1
, 𝑃
2
, 𝑃
3
, and 𝑃

4
.

𝑃
1

𝑃
2

𝑃
3

𝑃
4

𝑃
1

1 0.91 0.90 0.91
𝑃
2

0.91 1 0.92 0.90
𝑃
3

0.90 0.92 1 0.90
𝑃
4

0.91 0.90 0.90 1

Table 9: Correlation coefficients using numerical sample for 𝑃
1
, 𝑃
2
,

𝑃
3
, and 𝑃

4
.

𝑃
1

𝑃
2

𝑃
3

𝑃
4

𝑃
1

1 0.96 0.94 0.96
𝑃
2

0.96 1 0.97 0.96
𝑃
3

0.94 0.97 1 0.97
𝑃
4

0.96 0.96 0.97 1

Table 10: Correlation coefficients for 𝑆
1
, 𝑆
2
, 𝑆
3
, and 𝑆

4
.

𝑆
1

𝑆
2

𝑆
3

𝑆
4

𝑆
1

1 0.97 0.91 0.97
𝑆
2

0.97 1 0.92 0.97
𝑆
3

0.91 0.92 1 0.92
𝑆
4

0.97 0.97 0.92 1

calculated as 𝜌(𝑋, 𝑌) = cov(𝑋, 𝑌)/𝜎
𝑋
𝜎
𝑌
. The correlations for

the existing turbines can be summarized in Table 8.
Let us point out that the coefficient correlation is always

superior to 0.9 for the wind power production of the four
turbines. This assessment is of importance to appreciate the
quality of the location of the turbines. We should take into
account the effect of interactions between neighbour turbines
which can eventually present loss in wind power production.
The results obtained by the data generated through the power
law are very close to this one. This once again underlines
the contribution of the proposed approach to study the rela-
tionship that may exist between the energy outputs of wind
turbines on a farm before their installation.

Similarly, regarding the correlation between the fourwind
speeds (denoted by 𝑆

1
, 𝑆
2
, 𝑆
3
, and 𝑆

4
), we can distinguish the

strong correlation between all the turbines which is nearly
equal to 1 (see Tables 9 and 10).

4. Discussion

The grouping of several wind turbines on the same site
reduces the investment costs. However, it is important to
make an optimal configuration of the turbines locations. For
this wind farm site, there will be certain directions for which
other turbines affect the production of single wind turbine.
A more detailed analysis of this dependence will be made in
further work.
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