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The fluctuation of the dynamic correlation between bivariate time series has some special features on the time-frequency domain.
In order to study these fluctuation features, this paper built the dynamic correlation network models using two kinds of time series
as sample data. After studying the dynamic correlation networks at different time-scales, we found that the correlation between
time series is a dynamic process. The correlation is strong and stable in the long term, but it is weak and unstable in the short
and medium term. There are key correlation modes which can effectively indicate the trend of the correlation. The transmission
characteristics of correlation modes show that it is easier to judge the trend of the fluctuation of the correlation between time series
from the short term to long term.The evolution of media capability of the correlation modes shows that the transmission media in
the long term have higher value to predict the trend of correlation. This work does not only propose a new perspective to analyze
the correlation between time series but also provide important information for investors and decision makers.

1. Introduction

A financial time series records the behavior trajectory of a
financial market. By analyzing the fluctuation features of time
series, we can understand the structures and characteristics
of a financial market. There are many studies which focus on
the long-term cointegration relationship between two time
series [1–4]. However, other scholars have provided evidence
that, with the fluctuation of time series, the relationship
between any two time series also changes over time [5–7].The
fluctuation of the correlation between time series can help
us to detect the dynamic features of the interaction between
them.

Since Zhang and Small first proposed that univariate time
series can be transformed to a complex network [8], many
literatures have proved that different dynamic characteristics
of univariate time series show different topological struc-
tures [9–11]. In the last decade, the complex network has
showed its effectiveness in time series analysis in multiple
areas, including financial markets [12], engineering [13–15],

medicine [16–18], and geophysics [19]. Based on these exist-
ing researches, few studies are concernedwith another trigger
of turning time series to network: the hidden multiscale
information in the dynamic relationship between bivariate
time series in the frequency domain. Although some scholars
have made great progress in how to derive multifrequency
complex network to characterize the dynamical behavior of
time series [20, 21], it is still a challenge to transfer the
dynamic relationship between bivariate time series to a com-
plex network involvingmultiscale information and to explore
the underlying fluctuation features with time and frequency
change simultaneously.

Many studies indicate that financial time series contain
different information in the time domain and frequency
domain and have different fluctuation characteristics in dif-
ferent time-scales [22–25]. The fluctuation in the short term,
medium term, and long term can provide different reference
information for different purposes [26–28]. To find the
multiscale information in the relationship between bivari-
ate time series, the wavelet analysis provides an effective
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solution. The wavelet analysis can obtain the seasonal or
periodic characteristics by filtering nonlinear data to satisfy
the different investors’ needs [29–31]. Thus, it is necessary to
decompose the original series usingwavelet analysis to obtain
the multiscale fluctuation characteristics of time series.

How does one obtain the multiscale dynamic correlation
between bivariate time series? As we all know, at each time-
scale, time series fluctuates over time. If we divide the entire
time series into different subperiods, then each subperiod has
its own status of the correlation fluctuation. In this study,
we defined the correlation modes representing the different
correlation statuses [7]. The correlation modes change with
time and interact with each other successively, forming
the correlation modes transmission networks, which will
reveal the fluctuation of the dynamic correlation between the
bivariate time series.

In this paper, we design an algorithm to combine the
complex network with wavelet analysis to investigate the
fluctuation of the dynamic correlation between bivariate time
series on the time-frequency domain. First, we decompose
the original time series into the decomposed sequences at
different time-scales. Next, we build a correlation modes
transmission network at each time-scale. Finally, we study
the multiscale fluctuation characteristics of the dynamic
correlation between bivariate time series using the complex
network analytical approach, including the recognition of the
key correlation modes, the transmission characteristics, and
the transmission media.

2. Algorithm and Data Description

2.1. MODWTWavelet Decomposition. There are various clas-
sifications of the discrete wavelet basis used in existing work,
such asMODWT (Maximal Overlap DiscreteWavelet Trans-
form), Haar A-Trous, sym4, and db9 wavelets [32–35]. As one
of the discrete wavelet transformations, MODWT is widely
used [32]. Based on previous studies on the applications
of wavelet methods for specific purposes in economics and
finance, it appears thatMODWTcan avoid the adverse effects
attributable to the choice of a starting point or an origin for
analysis. With help of MODWT, the scale-based analysis of
time series can reveal the characteristics of volatility.

Let {𝑋𝑡, 𝑡 = 0, 1, 2, . . . , 𝑁−1} be a time series, where𝑁 is
the length of time series.TheMODWTof level 𝐽0 for the orig-
inal time series 𝑋𝑡 yields the column vectors 𝐷1, 𝐷2, . . . , 𝐷𝑗0
and 𝑆𝑗0 for any positive integer 𝐽0, each of which has 𝑁
dimensions. 𝐷𝑗 contains the MODWT wavelet coefficients
associated with changes in𝑋𝑡 between scale 2𝑗−1 and scale 2𝑗,
and 𝑆𝑗 contains the MODWT scaling coefficients associated
with the smoothness of𝑋𝑡 at the scale 2𝑗0 .

According to the output from the filters at each scale, the
time series 𝑋𝑡 can be decomposed and reconstructed into
wavelet details and approximation as follows:

𝑋𝑡 =
𝐽0

∑
𝑗=1

𝐷𝑗 + 𝑆𝑗0 . (1)

Wavelet decomposition based on 𝑛 time-scales (𝑛 =
1, 2, . . .) includes 𝐷1, 𝐷2, . . . , 𝐷𝑛, representing different devi-
ation subseries from the trend, and 𝑆𝑛, representing the long-
term trend subseries:

Original time series = 𝑆𝑛 + 𝐷𝑛 + 𝐷𝑛−1 + ⋅ ⋅ ⋅ + 𝐷2
+ 𝐷1.

(2)

2.2. The Multiscale Correlation Modes Transmission Net-
works Construction. After decomposing time series using
MODWT, we obtained the subseries of the time series at
different time-scales. At each time-scale, we divide the sub-
series into different subperiods. In this paper, we use sliding
windows. Compared with dividing time series into different
individual time periods, the advantage of sliding windows
is that they contain the features of memory and transitivity
[6, 36–38]. The length of sliding windows depends on the
needs of the analysis. If the goal is to study the short-term
fluctuation of time series, the length can be set to a smaller
value. If the goal is to understand the fluctuation of time
series in the long term, the length can be set to a larger
value.

In this paper, we set the size of a sliding window for 10
days because we want to analyze the short-term fluctuation
features of the correlation between bivariate time series. First,
we choose day 𝑡 as start point and get subperiod𝑡 which is
from day 𝑡 to day 𝑡 + 9. Then, we choose day 𝑡 + 1 as start
point and get subperiod𝑡+1 which is from day 𝑡 + 1 to day
𝑡 + 10. By that analogy, we can obtain a series of subperiods.
Then, at each time-scale, we follow four steps to construct the
correlation modes transmission networks.

Step 1. We calculate the correlation coefficient between two
time series in each subperiod at the same time-scale and
then obtain a sequence of the correlation coefficients. The
sequence shows the fluctuation of the correlation between
bivariate time series at each time-scale [7]. In this paper,
we use the Pearson Correlation Coefficient to measure the
correlation between time series as follows:

𝑟𝑥y =
∑𝑛𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)

√∑𝑛𝑖=1 (𝑥𝑖 − 𝑥)2√∑𝑛𝑖=1 (𝑦𝑖 − 𝑦)2
. (3)

𝑥 and 𝑦 denote the value of the subseries of two time series
at each time-scale, where 𝑥 and 𝑦 denote the mean of the
subseries. 𝑥𝑖 and 𝑦𝑖 denote the value of the subseries at time
𝑖. Let 𝑛 denote the values’ number of the subseries. The range
of the value of 𝑟𝑥𝑦 is [−1, 1].

Step 2. We symbolize the strength of the correlation between
two time series at different time-scales. After calculating
the correlation coefficient between two time series at each
time-scale, we divide the correlation coefficient into 5 levels.
Then,we get a sequence of symbolized correlation coefficients
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at each time-scale. The 5 levels are defined as follows
[36]:

CS𝑖

=

{{{{{{{{{{
{{{{{{{{{{
{

𝐿1 (−1 ≤ 𝑟𝑥𝑦 ≤ −0.8, strongly negative correlated)
𝐿2 (−0.8 < 𝑟𝑥𝑦 ≤ −0.3,weakly negative correlated)
𝐿3 (−0.3 < 𝑟𝑥𝑦 < 0.3, no correlation)
𝐿4 (0.3 ≤ 𝑟𝑥𝑦 < 0.8,weakly positive correlated)
𝐿5 (0.8 ≤ 𝑟𝑥𝑦 ≤ 1, strongly positive correlated) .

(4)

Step 3. We define the correlation modes between two time
series by the coarse graining process [39].The coarse graining
process is the concept in the phase space. The smallest grain
in the phase space is one dot. If we consider roughly a
set of dots as a mode, the study of a series of the dots
can become the research on modes consisting of a complex
system [36, 40]. Similar to the process for dividing the time
series into different subperiods, we use sliding windows to
obtain a series of the correlation modes from the symbolized
correlation coefficients. We set the size of a sliding window
for a transaction period (5 days).Thus, the correlationmodes
are comprised of 5 symbolized correlation coefficients. Each
correlation mode represents the status of the correlation
fluctuation of two time series at the corresponding time-scale.

Step 4. We build the correlation modes transmission net-
works at different time-scales. Like we defined at Step 3,
we obtain a series of correlation modes with the moving
of the sliding window. One correlation mode converted to
another as time goes by: mode1 → mode2 → mode3 →
⋅ ⋅ ⋅ → mode𝑛. Because the conversion between two types of
correlation modes would repeat in the transmission process,
the trajectory of the conversion among correlation modes
forms a network. In the correlation modes transmission
network, we take the correlation modes as nodes and the
succeeding sequence relations between the correlationmodes
as edges. The weight of an edge is the frequency of the
transformation between two types of correlation modes.
The process of building the correlation modes transmission
networks is shown in Figure 1.

2.3. Data Description. In this paper, we focus on the rela-
tionship between bivariate time series. As the precondition
of our work, there should be the theoretical and realistic
relationship between two time series. Based on this, we
choose the international crude oil spotmarket andnatural gas
spotmarket as the samplemarkets.Thedatawe choose are the
WTI crude oil spot price from NYMEX and natural gas spot
price from the Henry Hub. The data cover the period from
January 7, 1997, to November 23, 2015. All data are selected
from EIA (US Energy Information Administration).

𝑃𝑡 denotes the daily closing price on day 𝑡. The daily price
return is calculated as follows:

𝑟𝑡 = ln (𝑃𝑡) − ln (𝑃𝑡−1) . (5)
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Figure 1: Schematic illustration of building the correlation modes
transmission networks. Step 1: calculate the correlation coefficient
in each subperiod. Step 2: symbolize the strength of the correlation
coefficients. Step 3: abstract the correlationmodes from symbolized
correlation coefficients. Step 4: build the correlation modes trans-
mission networks.

3. Empirical Results

3.1. MODWT Wavelet Decomposition for the Return Series of
Crude Oil and Natural Gas Prices. To study the multiscale
phenomenon in the fluctuation of the correlation between
the daily crude oil spot price and natural gas spot price, we
decompose the return series of original prices into different
subseries. We choose 𝐽0 = 6 as the maximum level of
MODWT. Many researches show that using 6 levels can
achieve an optimal balance between sample size and the
length of the filter for financial or economic time series
[41, 42]. In our research, decomposing the return series into 6
levels can divide the time series into three fluctuation periods:
short term, medium term, and long term, so the results can
provide targeted suggestion for different investors and deci-
sion makers. The scale 𝐷1 represents the 2–4 days’ horizon
and the scale 𝐷2 represents the 4–8 days’ horizon. These two
scales represent the short-term variation. The scales 𝐷3 (8–
16 days) and 𝐷4 (16–32 days) represent the medium-term
variation. The scales 𝐷5 (32–64 days) and 𝐷6 (64–128 days)
represent the long-term variation. 𝑆6 represents the trend
of the original series obtained after subtracting 𝐷1, 𝐷2, 𝐷3,
𝐷4, 𝐷5, and 𝐷6 from the series. The results of the wavelet
decomposition are shown in Figures 2 and 3.

3.2. The Statistic Characteristics of the Correlation. After
decomposing the return series of crude oil and natural gas
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Figure 2: The wavelet decomposition for the return series of crude
oil price.
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Figure 3:Thewavelet decomposition for the return series of natural
gas price.

prices, we use sliding windows to calculate the dynamic
correlation coefficients between crude oil and natural gas
prices at each time-scale (see Figure 4). According to Figure 4,
the correlation coefficients change over time. The fluctuation
of the correlation has the multiscale feature. For the scales𝐷1
and 𝐷2, in the short term, the correlation between crude oil
and natural gas prices strongly fluctuates with small change
but high frequency. For the scales𝐷3 and𝐷4, in the medium
term, the change ranges are larger but the frequency is
lower. For the long-term 𝐷5 and 𝐷6, the correlation has the
largest change ranges and lowest frequency. Furthermore, the
correlation coefficients tend to −1 and 1 and usually last for a
period of time after peaking in the long term. Itmeans that the
correlation between crude oil and natural gas prices gradually
strengthens and tends to be stable with the increase of the
time-scales.

After symbolizing the correlation coefficients, the cor-
relation coefficients are divided into 5 levels which are
strongly negatively correlated, weakly negatively correlated,
not correlated, weakly positively correlated, and strongly
positively correlated.The distribution of the correlation levels
at different time-scales over time is shown in Figure 5.
The five colors from dark to light represent five levels of
the correlation. According to Figure 5, with the increase of
the time-scales, the percentage accounted for by the three
colors between the darkest and the lightest continues to
decrease, but the percentage accounted for by the darkest
and the lightest continues to increase. After calculating, the
percentage of the strongly correlation for the scales 𝐷1 and
𝐷2, respectively, accounts for 3.3% and 8.2%. For the scales𝐷3
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Figure 4: The fluctuation of the correlation between crude oil and
natural gas prices at different time-scales.

and 𝐷4, the percentage, respectively, increases to 26.4% and
47.1%. For the scales 𝐷5 and 𝐷6, the percentage is relatively
high and it, respectively, accounts for 73% and 82.7%. The
same color continues longer with the increase of the time-
scales. This result also means that the correlation between
crude oil and natural gas prices gradually strengthens and
tends to be stable with the increase of the time-scales from
another perspective.

3.3. The Recognition of the Key Correlation Modes. To recog-
nize the key correlation modes at different time-scales, we
choose weighted out-degree to measure the importance of
the correlation modes. The weighted out-degree of one node
represents that node’s weight connecting to adjacent nodes.
The weighted out-degree is calculated as follows:

𝑤out
𝑖 = ∑
𝑗∈𝑁𝑖

𝑤𝑖,𝑗. (6)

𝑁𝑖 denotes the set of the nodes connecting to node 𝑖. 𝑤𝑖,𝑗
denotes the weight of the edge from node 𝑖 to node 𝑗.

The weighted out-degree at all time-scales follows the
power-law distribution (Figure 6). The values of weighted
out-degree of most correlation modes are small but few
modes’ values of weighted out-degree are very large. This
finding means that there are few modes that have a strong
effect on the transmission process of the correlation modes.

Figure 7 shows the distributions of weighted out-degree
at all time-scales during the time span. In Figure 7, different
colors represent different value of weighted out-degree. The
lighter the color is, the larger the value of weighted out-
degree is. Every value of weighted out-degree represents a
correlation mode, so every color represents a correlation
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Figure 5:The distribution of the symbolized correlation coefficients
over time at different time-scales.
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Figure 6: The distribution of weighted out-degree.
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Figure 7:The distribution of weighted out-degree on the time span.

mode. The lighter the color is, the more important the
correlationmodes are. According to Figure 7, we can find that
the key correlation modes have more and more important
influence on the transmission process with the increase of
the time-scales. The width of one color bar represents the
time a correlation mode continues. Each mode will continue
for some time and then convert into another mode. The
average time that the correlation modes at each time-scale
continue is shown in Table 1. In the short term, 𝐷1 and 𝐷2
(2–8 days), and in the medium term,𝐷3 and𝐷4 (8–32 days),
the color distributions of weighted out-degree are uneven,
and the colors all continue for a short time. It means that
the transmission speed of the correlation modes is fast. The
process that one mode converts to another has stochastic
characteristics. In the long term,𝐷5 and𝐷6 (32–128 days), the
proportion of the light color increases and the colors continue
longer. Itmeans that the transmission speed of the correlation
modes slows with the increase of the time-scales.

Ranking the correlation modes at all time-scales by
weighted out-degree, we can recognize the key correlation
modes for the dynamic process. The key correlation modes
for the correlation modes transmission networks at different
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Table 1: The average time that the correlation modes at all time-
scales continue.

Time-scale The average time (days)
𝐷1 1.64
𝐷2 1.67
𝐷3 1.39
𝐷4 1.31
𝐷5 1.97
𝐷6 2.94
𝑆6 6.07
Note: the average time = the total time/the number of the color bars ranking
by time.

Table 2: The key correlation modes at all time-scales.

Time-scale Mode Percentage

𝐷1
𝐿3𝐿3𝐿3𝐿3𝐿3 10.4%
𝐿2𝐿2𝐿2𝐿2𝐿2 6.0%
𝐿4𝐿4𝐿4𝐿4𝐿4 5.7%

𝐷2
𝐿3𝐿3𝐿3𝐿3𝐿3 8.0%
𝐿4𝐿4𝐿4𝐿4𝐿4 7.5%
𝐿2𝐿2𝐿2𝐿2𝐿2 5.1%

𝐷3
𝐿4𝐿4𝐿4𝐿4𝐿4 4.7%
𝐿5𝐿5𝐿5𝐿5𝐿5 4.4%
𝐿3𝐿3𝐿3𝐿3𝐿3 2.9%

𝐷4
𝐿5𝐿5𝐿5𝐿5𝐿5 7.9%
𝐿1𝐿1𝐿1𝐿1𝐿1 3.8%
𝐿4𝐿5𝐿5𝐿5𝐿5 1.4%

𝐷5
𝐿5𝐿5𝐿5𝐿5𝐿5 18.4%
𝐿1𝐿1𝐿1𝐿1𝐿1 7.2%
𝐿5𝐿5𝐿5𝐿5𝐿4 1.6%

𝐷6
𝐿5𝐿5𝐿5𝐿5𝐿5 20.7%
𝐿1𝐿1𝐿1𝐿1𝐿1 12.6%
𝐿5𝐿5𝐿5𝐿5𝐿4 1.1%

𝑆6
𝐿1𝐿1𝐿1𝐿1𝐿1 21.5%
𝐿5𝐿5𝐿5𝐿5𝐿5 19.9%
𝐿2𝐿1𝐿1𝐿1𝐿1 0.6%

time-scales are shown in Table 2. At the time-scales 𝐷1 and
𝐷2 (2–8 days), the key mode is 𝐿3𝐿3𝐿3𝐿3𝐿3. At the time-
scales 𝐷3 and 𝐷4 (8–32 days), the key mode is 𝐿4𝐿4𝐿4𝐿4𝐿4.
At the time-scales𝐷5 and𝐷6 (32–128 days), it is𝐿5𝐿5𝐿5𝐿5𝐿5.
Thus, crude oil and natural gas prices are primarily not
correlated or are weakly correlated in the short term (2–8
days) andmedium term (8–32 days). In the long term (32–128
days), crude oil and natural gas prices are primarily strongly
positively correlated.

3.4.TheTransmissionCharacteristics of the CorrelationModes.
The transmission characteristics of the correlation modes
include two parts: the transmission speed and the transmis-
sion direction. We choose the average path length to mea-
sure the transmission speed. The transmission direction is

A B

Figure 8:The principle of the weighted clustering coefficient. Note:
𝐶𝑤𝐴 = 0, 𝐶𝑤𝐵 = 1.

described by the average weighted clustering coefficient. The
average path length equals the average number of the edges
that one correlation mode will pass to reach another. If one
correlation mode will pass few correlation modes to another
correlation mode, it means that the transmission speed is
fast. The average weighted clustering coefficient represents
the tightness of the network. The larger the average weighted
clustering coefficient is, the more closely the correlation
modes connect each other. In the loose network, the paths
formed by the transmission of the correlation modes are
mostly catenarian. In the tight network, the transmission of
the correlation modes is more random. The principle of the
weighted clustering coefficient is shown in Figure 8.

The average path length is calculated as follows:

𝐿 = 1
𝑁 (𝑁 − 1)∑𝑖 ̸=𝑗

𝑙𝑖,𝑗. (7)

𝑁 denotes the number of the nodes in the network and 𝑙𝑖,𝑗
denotes the shortest path from node 𝑖 to node 𝑗.

The weighted clustering coefficient of node 𝑖 is calculated
as follows [43]:

𝐶𝑤𝑖 =
1

𝑤𝑖 (𝑘𝑖 − 1)
∑
𝑗,ℎ

(𝑤𝑖𝑗 + 𝑤𝑖ℎ)
2 𝑎𝑖𝑗𝑎𝑖ℎ𝑎𝑗ℎ. (8)

𝑤𝑖 is the weighted degree of node 𝑖. 𝑘𝑖 is the degree of node
𝑖. 𝑤𝑖𝑗 is the weight of the edge connecting node 𝑖 to node 𝑗.
𝑎𝑖𝑗 is the adjacent matrix of node 𝑖 and node 𝑗. The mean of
the weighted clustering coefficients of all nodes is the average
weighted clustering coefficient of the network.

According to Figure 9, the general trend is that the average
path length increases and the average weighted clustering
coefficient decreases with the increase of the time-scales.
This result means that transmission speed becomes slower
with the increase of the time-scales. In the short term and
medium term, the transmission of the correlation modes has
the stochastic features. In the long term, the transmission
of the correlation modes has the characteristics that have a
certain direction.

3.5. The Recognition of the Transmission Media. In the trans-
mission of the correlation modes, some correlation modes
connect two or more correlation modes which do not
have a direct connection, and these modes are called the
transmissionmedia. Recognizing the important transmission
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Figure 9: The evolution of the transmission characteristics of the
networks.
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Figure 10: The evolution of the media capability on the networks.

media can help us to judge the tendency of the correlation
between crude oil and natural gas prices. In this paper, we
choose the betweenness centrality to measure the media
capability of the correlation modes in the correlation modes
transmission networks at different time-scales. The mean
of the betweenness centrality of all correlation modes is
the average betweenness centrality of the network, which
represents the average level of the media capability that
the modes have in the networks. The standard betweenness
centrality is calculated as follows [5]:

BC𝑖 =
∑𝑛𝑗 ∑𝑛𝑘 𝑔𝑗𝑘 (𝑖) /𝑔𝑗𝑘
𝑛2 − 3𝑛 + 2 , 𝑗 ̸= 𝑘 ̸= 𝑖, 𝑗 < 𝑘. (9)

𝑔𝑗𝑘(𝑖) denotes the number of the shortest paths that pass node
𝑖 between node 𝑗 and node 𝑘. 𝑔𝑗𝑘 denotes the number of the
shortest paths between node 𝑗 and node 𝑘.

Figure 10 shows that the average betweenness centrality is
stable in the short term and medium term, and the average
betweenness centrality in the long term is clearly higher.
Therefore, the modes have stronger media capability in the

Table 3: The key transmission media at different time-scales.

Time-scale Mode Betweenness centrality

𝐷1
𝐿4𝐿4𝐿3𝐿3𝐿3 0.138794
𝐿3𝐿3𝐿4𝐿4𝐿4 0.121528
𝐿2𝐿2𝐿3𝐿4𝐿4 0.112671

𝐷2
𝐿3𝐿3𝐿4𝐿4𝐿4 0.163039
𝐿3𝐿2𝐿2𝐿2𝐿2 0.122893
𝐿2𝐿2𝐿3𝐿3𝐿3 0.118542

𝐷3
𝐿2𝐿2𝐿3𝐿4𝐿4 0.122249
𝐿4𝐿4𝐿3𝐿3𝐿2 0.087785
𝐿4𝐿3𝐿2𝐿2𝐿3 0.079774

𝐷4
𝐿4𝐿5𝐿5𝐿5𝐿4 0.147686
𝐿5𝐿5𝐿5𝐿4𝐿3 0.133837
𝐿2𝐿3𝐿4𝐿5𝐿5 0.116286

𝐷5
𝐿1𝐿1𝐿1𝐿2𝐿3 0.276475
𝐿1𝐿1𝐿1𝐿1𝐿2 0.266845
𝐿5𝐿5𝐿5𝐿4𝐿3 0.255829

𝐷6
𝐿5𝐿5𝐿5𝐿5𝐿4 0.520667
𝐿4𝐿5𝐿5𝐿5𝐿5 0.520667
𝐿1𝐿1𝐿1𝐿1𝐿2 0.40357

𝑆6
𝐿2𝐿1𝐿1𝐿1𝐿1 0.549309
𝐿1𝐿1𝐿1𝐿1𝐿1 0.549309
𝐿1𝐿1𝐿1𝐿1𝐿2 0.549309

long term, and it explains that the transmission of the
correlation modes has the characteristics that have a certain
direction from another perspective.

There are some key transmissionmedia in the correlation
modes transmission networks at different time-scales, shown
in Table 3. When these modes appear in the transmission,
they usually predict that the correlation between crude oil
and natural gas prices is in the midst of transformation.

4. Conclusion

For studying the multiscale fluctuation features of the
dynamic correlation between bivariate time series, we pro-
posed an algorithm to map the fluctuation of the correla-
tion into networks which can show us the nonlinear and
nonstationary moving trajectory of the correlation modes.
After analyzing the structure characteristics of the correlation
modes transmission networks at different time-scales, we got
some findings that can help us understand the fluctuation
characteristics of time series on both the time domain and
frequency domain.

The correlation between bivariate time series is in the
fluctuation, which means that the correlation is dynamic.
The fluctuation of the correlation at different time-scales has
different features. In the short term, the correlation between
crude oil and natural gas prices strongly fluctuates with small
change ranges but high frequency. In the long term, the
change ranges are large but the frequency is low. There are
few key correlation modes which show the main status of
the correlation at different time-scales. In the short term,
medium term, and long term, the key correlation modes are,
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respectively, 𝐿3𝐿3𝐿3𝐿3𝐿3, 𝐿4𝐿4𝐿4𝐿4𝐿4, and 𝐿5𝐿5𝐿5𝐿5𝐿5.
Different transmission characteristics exist in the dynamic
process of the correlation between bivariate time series at
different time-scales. With an increase of the time-scales, the
transmission speed continues decreasing, and the transmis-
sion among the correlationmodes becomesmore directional.
This result means that it is easier to judge the trend of the
fluctuation of the correlation between bivariate time series in
the long term. For different time-scales from𝐷1 (2–4 days) to
𝐷6 (64–128 days), the correlationmode that has the strongest
media capability is 𝐿4𝐿4𝐿3𝐿3𝐿3, 𝐿3𝐿3𝐿4𝐿4𝐿4, 𝐿2𝐿2𝐿3𝐿4𝐿4,
𝐿4𝐿5𝐿5𝐿5𝐿4, 𝐿1𝐿1𝐿1𝐿2𝐿3, and 𝐿5𝐿5𝐿5𝐿5𝐿4.

These results show that the relationship between crude
oil market and natural gas market changes over time and
the fluctuation of the relationship is not random.Thus, there
exist some rules in the fluctuation of relationship between
crude oil market and natural gas market that we can discover
for providing the suggestion for the investors and decision
makers. For example, due to the dynamic correlation, the
decision or investment strategy concerning crude oil and
natural gas markets should also be dynamic and properly
adjusted according to reality. The key correlation modes can
provide information for adjustment of the strategy because
they effectively indicate the trend of the dynamic correlation
and provide predicting signal of the energy market for
decisionmakers.The transmission characteristics show that it
is easier and easier to judge the trend of the fluctuation of the
correlation between crude oil and natural gas prices from the
short term to the long term.Thus, for the decisionmakers and
the investors, predictions may be more accurate for natural
gas (crude oil) prices depend on crude oil (natural gas) prices
in the long term.The correlation modes which have stronger
media capability have higher reference value to predict the
trend of correlation with the increase of time-scales.

In this paper, we uncover the dynamic process of the
correlation between bivariate time series at different time-
scales. Furthermore, we will consider more time series in our
model so that we can study the entire financial market.
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