
Real-Time Shadows for Animated Crowds in Virtual Cities

Céline Loscos
c.loscos@cs.ucl.ac.uk

Franco Tecchia
f.techhia@cs.ucl.ac.uk

Yiorgos Chrysanthou
y.Chrysanthou@cs.ucl.ac.uk

University College London
Computer Science Department

Gower Street
WC1E 6BT London, UK

ABSTRACT
In this paper, we address the problem of shadow computation for
large environments including thousands of dynamic objects. The
method we propose is based on the assumption that the environ-
ment is 2.5D, which is often the case for virtual cities, thus avoiding
complex visibility computation. We apply our method for virtual
cities populated by thousands of walking humans, which we render
with impostors, allowing real time simulation.

In this paper, we treat the cases of shadows cast by buildings on
humans, and by humans on the ground. To avoid 3D computation,
we represent the shadows cast by buildings onto the environment
with a 2.5D shadow map. When humans move, we quickly access
the shadow information at the current location with a 2D grid. For
each new position of a human, we compute its coverage by the
shadow, and we render the shadow on top of the impostor with low
cost using multi-texturing hardware. We also use the property of
an impostor to display the shadow of humans on the ground plane,
by projecting the impostor relatively to the light source.

The method is currently limited to sharp shadows and a single
light source. However approximations could be made to allow non-
accurate soft-shadows. We show in the results that the computation
of the shadows, as well as the display is done in real time, and
that the method could be easily extended to real time moving light
sources.

Keywords
Shadow computation, dynamic shadows, real time rendering, pop-
ulated virtual cities, multi-texturing.

1. INTRODUCTION
The interactive visualisation of complex and realistic environ-

ments has always been one of the goals of virtual reality. Over the
years, the performance of graphics hardware have greatly and sta-
bly improved, so that it is now possible to render in real time even
complex polygonal models. A common example of very complex
scenarios is cities and other urban environments which, especially

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VRST’01, November 15-17, 2001, Banff, Alberta, Canada.
Copyright 2001 ACM 1-58113-427-4/01/0011 ...$5.00.

in recent years, have been widely utilised in virtual reality and vir-
tual presence experiments.

As the available computational power increases, it becomes fea-
sible to introduce a higher level of complexity in city simulation:
ongoing research is analysing the issue of populating these empty
models with a crowd of intelligent virtual agents. In fact, only in
this way it is possible to obtain proper virtual cities, where the user
can navigate and, up to a certain extent, ”live”. Populating virtual
cities can considerably boost the realism of such models with the
presence of crowds and traffic, elements that we are used to in ev-
eryday life. The presence of crowd helps also to give a much better
idea of the size and the dimensions of buildings and roads, and also
to give a ”semantic” to the cities, where densely populated spots
normally highlight important features of blocks or single buildings
of the urban environment. Such simulations are important for appli-
cations such as architectural walkthrough, urban simulation, games
and the movie industry, as well as for internet applications.

Examples of such research can be found in [13, 9, 10, 19, 5, 7, 6].
In some of these works many efforts are devoted to give realistic be-
haviours to the virtual humans, so that is possible to simulate very
interesting behaviours such as flow of crowds or car traffic. Being
virtual reality application, most of these works normally share a
common strong requirement: the frame rate of the simulation must
be sufficiently high so to make the user feel immersed in a truly
interactive virtual city. For this reason, the accuracy and quality
of the graphical representation are often limited in order to obtain
higher rendering speeds, and, when it comes to choosing the visual
feature to implement in the application, an important detail that is
often dropped is the use of shadows. Unfortunately the absence of
shadows can greatly diminish the visual realism of a simulation; at
early stage of computer graphics shadows had been acknowledged
to be very important in order not only to contribute to the realism,
but also to help the user to situate objects relatively to each other
[16]. Shadows are so natural for the human eye, that their presence
greatly improves the overall perceived realism even if the scene is
not rendered in a photo realistic way. Typically, shadows are not
implemented because current shadow computation techniques are
too computationally intensive to be performed in real time on com-
plex scenarios; also, the human eye is very sensible to consistency,
and, in the case of urban environments, shadows need then to be
generated taking into account complex geometric relations. This is
especially true if a population is added, so that there can be thou-
sands of dynamic objects (humans, cars and so on).

In this paper we propose methods for computing real-time shad-
ows in such highly dynamic scenes. We make the assumption that
the static model - the city buildings - is 2.5D and we do not address
models with objects such as bridges. In [19], an urban simulation

Figure 1: Example of our system, allowing real time shadow
update for thousands of humans walking around a city.

system capable of rendering thousands of avatars in real time was
presented. These results were achieved by using image-based ren-
dering to represent each avatar with a single dynamic impostor. In
the present paper, we describe how real-time approximate shadows
can be added to this original system introducing just a relatively
small speed reduction. It is our experience that introducing shad-
ows greatly improves realism even if the shading is not perfectly
accurate. The basic idea of our approach is to use a discretization
of the environment to track the position of each virtual agent, and
to use 2.5D representation of the shadow volumes to locate shadow
areas. Because in our case the dynamic objects are visualised using
impostors, we render the shadows by placing a second texture on
top of the original impostor image. To minimise the rendering cost
of such a texture, we use the common multi-texturing capabilities
of modern hardware and at run-time we compute appropriate tex-
ture coordinates to fit the required coverage of the shadow. Finally,
we propose a simple (approximate) procedure to cast shadows from
impostors onto the static environment. An example image of the fi-
nal result is shown in Fig. 1.

2. PREVIOUS WORK
A large number of techniques exist in the literature for shadow

generation. They can be broadly subdivided into two categories.
Soft shadows are produced by taking the light source to be a finite
area or volume, and sharp shadows when the light is assumed to be
at infinity or a single point. The former case is much more accu-
rate and realistic, but at the same time they also require complex
and expensive visibility computations. In general they are not re-
ally applicable to real-time rendering for complex dynamic scenes.
Techniques such as discontinuity meshing are the most accurate
ones; they find not only the shadow boundaries but also the edges
where the direct illumination on the surfaces varies discontinuously
[14, 8]. However, they are slow to compute and render because of
the resulting complex mesh. More approximate techniques that use
texture mapping instead of partitioning the input polygons into a
mesh [17, 11] are faster to render. However, they still cannot be
computed in real time for any sizeable scene and they require sep-
arate textures for different surfaces.

For real time applications, the rendering of shadows has often
been restricted to sharp one. The simplest method is the fake shad-
ows technique [1]. After rendering the model from the given view
point, a matrix is added on the stack that has the property that it

projects every vertex onto a plane (usually the floor). The scene is
rendered again with the projected objects as ”grey”, appearing as
shadows. An additional rendering of the scene is needed for each
receiving surface. Shadows are computed at each frame. Some
methods, such as the SVBSP tree [2] precompute the shadows so
that they just need to be rendered for each new viewpoint. The
computation of a full solution on all surfaces is possible but is time
consuming. Although incremental update is possible for a small
number of dynamic objects [3], this would be too costly for a highly
dynamic setting such as ours. Also, even ignoring the update cost,
the number of extra shadow polygons that are needed for the dis-
play of shadows can greatly affect the rendering performance.

Currently the most popular techniques use the graphics hard-
ware to compute the shadows at a per pixel level, thus avoiding
the shadow storage problem. Shadow volumes methods [4] were
used to delimit a spatial region in shadow between the object sur-
face and a receiver. Using the stencil buffer [12], regions in shadow
can be automatically detected by the hardware. An interesting al-
ternative method for computing shadow planes was suggested by
McCool [15]. The scene is drawn first from the light position and
the z-buffer is read. The shadow volumes are then reconstructed
based on the edges of the discretized shadow map. The discretiza-
tion can introduce artefacts though. One of the drawbacks of this
method is that the shadow planes tend to be very large and they
have a detrimental effect on the rendering time. In practice this ef-
fect can be limited by using the method not for a complete solution
but rather for shadows only from the ’important’ objects. Similar
to the shadow Z-buffer this method can be used to cast shadows
onto any object that can be scan converted. But unlike the shadow
Z-buffer the objects causing the shadows need to be polygonal.

Methods based on shadow maps [21] are pixel-based mixing
depth information provided both from the light source and the user
points of view. Shadow areas are determined by comparing the
depth of the points from both the light source viewpoint and the
user viewpoint. Such methods are now implemented in hardware
allowing fast shadow computation for complex geometrical envi-
ronments. However they suffer from two major drawbacks due to
image resolution. First images can be aliased if the resolution does
not permit to accurately decide on depth. In particular this is often
the case for large scenes for which objects might be represented
by few pixels. Second, because it is pixel-based, the frame rate
depends on the displayed image size.

Depth images from light sources had been therefore widely used
to determine fast visibility without complex visibility computation.
We based our method in these ideas, taking advantage however
of the volume described by shadows rather than visibility bound-
aries. As explained in the following sections, our solution is view-
independent and the quality of the displayed results does not de-
pend on the resolution of the displayed image. Changes in visi-
bility are detected quickly using a 2D discretization of the shadow
depth, but shadows are computed locally reducing artefacts when
displayed.

3. OVERVIEW OF THE METHOD

3.1 The target rendering system
Before we describe the shadow method, let us motivate it by giv-

ing a short description of the system it will be used in. Tecchia et
al. [19] developed an image-based rendering system to simulate
thousands of animated humans inside virtual cities. Instead of us-
ing a polygonal model for each human, the complexity is reduced
using one impostor with an appropriate texture mapped on it. The
textures are pre-computed from a number of view positions dis-

tributed on a hemisphere placed around the avatar model and for
several frames of animation (see Fig. 2). For rendering, the cho-
sen image to display is the closest to the current viewpoint given a
frame of animation. This results in animated virtual humans walk-
ing around a city. The model of the city is 2.5D, which allows
for information access in 2D. When humans move in space, they
access the height information of the target cell to check for obsta-
cles. This allows for fast access to local information and this had
been used for fast collision detection against the buildings and the
other humans. Collision detection with the environment is done by
checking the height of the static objects stored in a depth map. The
algorithm is explained in [20]. An example of a collision detection
decision is shown in Fig. 3. A grid is then used as well to detect
inter-collision between humans. Although human are placed on the
2D grid, they can still occupy a discrete set of positions inside each
cell allowing smooth animation. The extension of using the 2D grid
to control general behaviour had been expressed in [18].

Figure 2: To create an impostor, images are computed for dis-
crete positions of a camera around a hemisphere surrounding
the avatar.

As presented in [19], the system did not compute or display dy-
namic shadows. In our approach, we also use the 2D grid to store
local information on shadows. Since humans are represented by
impostors, it is difficult to compute exact shadow boundaries. Tra-
ditional shading techniques run on polygonal models. A straight-
forward way to shade an impostor is to go back to its polygonal
model and re-generate the images. Another is to pre-compute dif-
ferent lighting configurations and to save images for each of them.
Since we deal with many impostors interacting in a complex polyg-
onal environment, we decided to reduce the image storage to one
given shading and approximate changes when they occur working
directly on the image. The shading chosen is diffuse, to reduce the
visual artefacts that specular effects may cause during reshading.

Figure 3: (a) A particle in red checks for accessing a new cell in
a 2D grid. In (b) the height stored in the cell (shown in grey) is
acknowledged to be climbable so that the particle can move to
the next cell. In (c), the height stored represents an obstacle too
high for the particle, which needs to change its direction (d).

3.2 Outline
In the context of a virtual city with animated humans, we can

differentiate 4 cases of shadow computations:

1. shadows between the static geometry, e.g. buildings casting
shadows onto the ground.

2. shadows from the static onto the dynamic geometry, e.g. from
the buildings onto the avatars (sections 4 and 5).

3. shadows from the dynamic onto the static geometry, e.g. from
the humans onto the ground (section 6).

4. shadows between dynamic objects, e.g. shadows of avatars
onto other avatars.

In this paper we address case (2) and partly case (3). However we
use fake shadows [1] to display shadows from the buildings on the
ground and the OpenGL lighting to shade buildings. Although it
does not allow us to treat case (1) for moving light sources, it allows
the method proposed to situate shadows. We do not address case
(4) in this paper since it is difficult to compute shadows between
thousands of moving objects. We do, however, have some ideas to
extend the method used for case (3).

Addressing case (2) is not obvious. When humans walk in a
virtual city, it means that thousands of dynamic objects (and their
shadow) need to be updated in real time. Especially, we need to up-
date shadows for every dynamic object. This problem is extremely
complex when considering it in a general case. However, in our
case, the static scene with which humans need to interact, can be
assumed to be 2.5 D and therefore the volume covered by the shad-
ows can be approximated by a 2.5D map. The idea is to discretize
the shadow planes and to store them as a 2D height map. Then it
is possible to compare the height of the people with the height of
the shadows and to compute the degree of coverage of a human by
a shadow. The way we compute the 2.5D shadow map and the way
dynamic objects access it, are described in section 4.

The shadow detection works for any kind of animated object.
If the objects are polygonal, the information stored in the shadow
height map can be used to quickly compute shadows onto the poly-
gons. In our case, we compute shadows for moving objects repre-
sented by impostors. We decided to use a shadow texture mapped
on the top of the impostor to darken the part in shadow. The way
the texture coordinates are computed and the texture applied is de-
scribed in section 5.

Finally we use impostors to display shadows cast by the humans.
Instead of using the viewpoint as a reference, we consider the light
source position. Therefore the same images as the one used for im-
postors can be used for shadows. This enables high-quality shad-
ows representing the exact shape of the walking human with ex-
tremely low additional cost. We describe this in section 6.

4. DISCRETIZED INFORMATION
FOR SHADOW DETECTION

In order to compute the shadows cast by the buildings onto the
animated humans, we take advantage of the 2.5D attributes of a
city. We use a height map to represent the area covered by the
shadows of the static scene. In the next section 4.1, we explain
how we compute the shadow height map, and how we access it in
section 4.2.

4.1 2.5D representation of shadow coverage
In order to get a 2.5D map to represent the shadows, we compute

for a given light source, the shadow planes that make shadow vol-
umes. The shadow planes can be computed in any of the standard

(a) (b)

Figure 4: (a) Height map showing the shadow volume. (b)
Height map showing the static objects. Notice that we modi-
fied the grey scale to illustrate these maps so that changes in
height are perceptible.

ways. We decided to compute shadow volume by setting a plane
below the whole scene, and then finding the intersection with this
plane of every ray going from the light source to each vertex of the
scene. For each model edge, the original vertices with the projected
ones define the shadow plane.

Once the shadow volume boundary planes are computed, the ren-
dering is done offscreen and from a viewpoint placed on the top of
the model, using an orthogonal projection. From the z-buffer of this
image, we extract the depth information that we store at the usual
grid resolution. The saved map is shown in Fig. 4 (a). The height
of the shadows relatively to the height of the objects is given by the
difference between our shadow height map and the original depth
of the geometry (shown in Fig. 4 (b)). This results to 0 in area
non-covered by shadows. The result map is called shadow height
map, and is the one we use to detect shadow in the following.

The important key point of this method is the use of the 2.5D map
to represent shadows in space. The way we computed the shadow
height map could be optimised using hardware. Quicker ways to
compute the shadow volume information could allow interactive
updates for a moving light source.

4.2 Access of shadow information
We check the shading in 2D, using a regular grid. At each cell

occupied by an agent, we check whether the current height of the
human is higher than the height of the shadow stored in a 2.5D
shadow map. The difference in height gives the percentage of cov-
erage of the shadow on the top of the human. While humans move,
their position is located in 2D. When reaching a new cell, the parti-
cle checks the depth of the shadow. Since we have a convex build-
ing configuration, the number of cases is limited to uncovered, par-
tially covered and fully covered.

5. APPROXIMATE SHADING OF ANIMATED
IMPOSTORS

5.1 Display using multi-texturing
When detecting in which case the shading of the impostor corre-

sponds, we set up the tag for the display. When fully covered and
uncovered, the impostor support polygon could be rendered either
in white or grey. When partially covered, we use a texture mapped
onto the impostor to reflect the shadow boundary.

We approximate the solution by the assumption that when a shadow
is cast, it covers everything under it, given the 2.5D configuration
of the scene. This excludes the case of roofs overhanging the edge

(a) (b) (c) (d)

Figure 5: (a) The simple texture used to display shadows on im-
postors. (b), (c), (d), mapping of the texture choosing appropri-
ate texture coordinates, for each cases respectively uncovered,
fully covered, partially covered.

of buildings, bridges, and other kind of ”non 2.5D” objects. We use
therefore a single texture representing 2 colours, white on the top
and black on the bottom. The texture is shown in Fig. 5 (a). Before
mapping this texture we need to compute the appropriate texture
coordinates. This is explained in the next section. This texture is
then sent to the rendering pipeline using the multi-texturing feature
of the graphic cards. If a second texture unit is not available two
rendering passes can be used instead. Because the multi-texturing
is virtually cost-free, we render the second texture for every poly-
gon using texture coordinates in the white area of the texture for
uncovered case, and in the black area for fully covered. An exam-
ple of the three different cases is shown in Fig. 5.

5.2 Shadow texture coordinate computation
A simple approach to compute texture coordinates is to compute

the percentage of coverage of the shadow comparing the height of
the human with the height of the shadow (see Fig. 6 (a)). This first
solution gives a very good impression on the shading. However
shadows rarely describe horizontal boundaries in a city lit by the
sun. To detect the inclination of the shadow, we therefore check the
cells around the occupied one, and check the difference in depth
(see Fig. 6 (b)). This may results in inaccuracy in the shadow
boundary, but it reflects the transition in getting into a shadow, and
avoids shadow popping when going from one cell to the other. At
this stage, we have not yet implement an algorithm for checking the
adjacent cells to compute the inclination of the shadow. The idea
is to compute an average out of the shadow height of the neighbour
cells, weighted by the position of the particle inside the current
cell. Since the particle has a discreet position inside a cell, we need
to compare its distance relatively to the centre of each cell. We
compute a shadow boundary for each of the side of the impostor.
This needs to be done at the rendering time since the borders of the
impostor are view dependant.

For faster computation, we separate the neighbourhood into four
quadrants, described by the connection of the middle of each cell
(see Fig. 6 (c)). The weighted average is done only considering
the cells of the quadrant the particle borders are. This interpolation
allows not only to have a better description of the inclination of
the shadow, but also to have smoother transitions when the humans
move.

6. SHADOWS OF PEOPLE ONTO THE EN-
VIRONMENT

In order to add realism, it is very important that humans cast
shadows onto the environment. We do not provide a complete so-

(a) (b) (c)

Figure 6: Computation of texture coordinates, based on the
height stored at each pixel. (a) The texture coordinates are uni-
form while the human stays inside the same cell. (b) If we inter-
polate with the adjacent cells, it can provide smoother shadow
boundaries. (c) Interpolation is done for the adjacent cells sit-
uated in the quadrant were the human is. In this example,
the human represented by a red dot, is situated in the upper
left quadrant in green. The four cells to be taken in consid-
eration for the shadow texture coordinate computation are the
cells covered by the green colour.

(a) (b) (c)

Figure 7: (a) Image of the avatar viewed from the light source.
(b) Impostor computed from this position (see Fig. 2). (c) Pro-
jection of the avatar impostor on the floor relatively to the light
position.

lution to this problem but we describe here a first step. This is
inspired by the way the texture for the impostor is computed. If
we replace the viewpoint by a point light source, the silhouette of
the projected shadow would be given by the position of the human
viewed by the light source. This shadow can therefore be repre-
sented as the image viewed from the light source mapped onto a
projected polygon.

If we precompute a set of projected polygons for each possible
light source position, the shadows can be displayed interactively
with a moving light source. However we solve this for projecting
shadows on a flat polygon situated at the feet level of the virtual
human. The position of the projected polygon is relative to the po-
sition of the human so that the feet of the human always touch the
feet of the shadow. If we want to allow flying objects, the method
should be extended to project the polygon accordingly to the envi-
ronment level.

At the display time, the appropriate texture is chosen correspond-
ing to the light position and the animation frame of the human. The
texture is mapped on the projected polygon, set with a dark colour
to darken the texture. No new texture needs therefore to be gener-
ated for the shadow.

As the texture is already loaded to render the impostor, the only
additional cost is for an additional polygon. Therefore, rendering
shadows only multiplies by two the number of rendered impostors,
without additional cost for texture loading. In term of memory, we
store once as a pre-process 32*8*2 vectors (32*8*2*3*4 bytes),
which are used for every impostor.

The shadow is cast only onto an assumed horizontal floor. There-
fore shadows miss surrounding building and people. However it is
possible to detect visibility changes such as buildings using grid
discretization. It is possible to check the coverage in cells by the
projected polygon and compute more accurate intersections when
close to the viewer.

7. IMPLEMENTATION AND RESULTS
This system was tested on a PC Pentium 833Mhz with an NVIDIA

GeForce GTS2 64 Mb graphic card. We tested the shadow method
for thousands of humans walking around a village modelled with
41,260 polygons, performing collision avoidance against the build-
ing and themselves. The tests were done for 1,000, 5,000 and
10,000 humans. The display window is set to be 1024x1024. Cre-
ating the 2.5D shadow map takes 1 second for such a model, in-
cluding the shadow volume vertices computation (which takes only
0.1 second). This map is 1024x1024 large and the stored depth is
represented in 24 bits.

(a) (b)

(c) (d)

Figure 8: (a) Model with human. No shadows are simulated.
(b) Same as (a) but with fake shadows, representing shadows
of the buildings. (c) Same as (b) with shadows of humans on
the ground added. (d) All shadows simulated, impostors are
darken in shadow area.

To evaluate the additional cost of the shadows, we activated step
by step the different components of shadow computation and dis-
play to highlight the time consumption of each step of the method.
We also set up a fixed walkthrough path since the number of human
and polygons rendered at each frame has a consequence on the ren-
dering frame rate. Each simulation is composed of 1160 frames.
For each animation we computed the average number of rendered
frames per second as well as the total time of computation for the
all 1160 frames. The results are summarised in Table 1. The sec-
ond column shows the timings for the scene rendered with the static
model and the avatars without any shadows (see Fig. 8 (a)). For the
timings of the third column we added in the simulation the display
of the fake shadows, representing shadows of the buildings on the
ground (see Fig. 8 (b)). The forth column shows timings for the
simulation including shadow projection of the humans on the floor
(see Fig. 8 (c)). The fifth column shows the results when every-
thing is simulated including shadows projected by the buildings on
the humans (see Fig. 8 (d)). The video of each case is shown on
http://www.cs.ucl.ac.uk/staff/Y.Chrysanthou/Crowds/VRST01/.

The display of the static model as well as the fake shadows ap-
pears to be the most time-consuming task. The table shows as well
that the frame rate decrease when more humans are simulated, but

Number of
avatars

Display of the system
without shadows

+ Display of fake shad-
ows

+ Display of the shad-
ows of the humans on
the floor

+ Computation and dis-
play of the shadow
mapped onto humans

Fps ms Fps ms Fps ms Fps ms
0 26.20 44263 19.78 58635
1,000 24.08 48159 18.87 61469 18.57 62460 18.32 63311
5,000 18.26 63521 15.29 75829 14.57 79745 12.45 93164
10,000 13.35 86845 11.67 99363 10.57 109718 8.48 136787

Table 1: Timings to evaluate the speed of the shadow methods.

this is true also when no shadows are present. The additional cost
of shadow computation and display is fairly low even when up-
dating 10,000 of moving humans. One of the advantages of the
implementation is we combine the display of the impostor with the
shadows computation. This means that the additional cost of shad-
ows is independent of the light position, and therefore the shadow
configuration.

Another interesting implementation detail is that when display-
ing the impostor, we load only once the texture for each position
of the avatar. Since the shadow corresponds to the same position
as the avatar, the cost of displaying the shadow of each human is
reduced to the display of one polygon. Since we load each tex-
ture only once, we activate since the beginning the multi-texturing.
Therefore displaying the shadow texture onto the avatar does not
add a cost even if the avatar is not in shadow since it is the second
texture of the multi-texturing. The shadow coordinates to map the
shadow onto the humans are computed at each rendering frame and
the projected polygon onto the ground to display the shadow of hu-
mans is precomputed. If reducing the cost of computing the 2.5D
shadow map, we could modify the light source position and per-
form real time updates of the shadows. The pictures in Fig. 9 show
different lighting conditions and different views of the system, and
were taken with 10,000 animated people.

8. CONCLUSION AND FUTURE WORK
We presented new methods to compute and update shadows for

thousands of dynamic objects, moving in a 2.5D environment. We
focused on improving consistency of positioning between objects
rather than accurate shadow casting. This method is adapted to the
context of a virtual city simulation with animated crowd of humans.
We extended the method presented by Tecchia et al. [19] that use
image-based rendering techniques to allow interactive frame rates.
In this system, to reduce the required number of polygons to dis-
play, humans are replaced by impostors.

To enable fast shadow detection, we use a 2.5D map to locate
shadows, avoiding complex visibility computations. This method
can be used for any type of dynamic scene with 2.5D configuration,
and is not restricted to scenes simulated with impostors. Because
in our case human are displayed using impostors, we use multi-
texture rendering to add a shadow texture on the top of each hu-
man. This texture is simple and the same for every human. We
compute texture coordinates to reflect the height of the coverage of
the shadow. Although the texture coordinates are easier to compute
for a single polygon, the application of a texture could also be used
for polygonal dynamic objects rendered. We also take advantage
of the impostor representation to quickly cast shadows of humans
onto the ground.

We show in this paper that the additional cost is relatively low,
and that the system still allows for interactive walkthrough in a
crowded virtual city. The display of shadows greatly improves the
visual quality of the simulation. However we do not compute accu-

rate shadows, and the quality of the result is limited by the resolu-
tion of the 2.5D shadow map, the resolution of the depth component
and the resolution of the impostor images. This work is at an early
stage, and some of the implementation could be optimised. There
is definitely room to accelerate the rendering of the shadows of the
buildings as well as the computation of the 2.5D shadow map.

We also still have configuration of shadows to take into account,
computing shadows between buildings, between avatars, and of
avatars onto the building. For the two latest cases, we want to take
benefit of the 2D grid to quickly locate grid cells affected by the
shadow of a human. Visibility computation should then just be
computed only for the humans or the buildings occupying the oc-
cluded cells. We can also reduce the visibility computation when
humans and buildings are close to the field of view of the user,
avoiding complex computation for the non-visible part.

In the long term, we would like to extend this system to take
into account multiple moving light sources as well as approximate
soft shadows, while keeping the real time constraint. A first step to
display soft shadows would be to soften the border of the shadow
textures.

Acknowledgement
This work was in part supported by the EPSRC project GR/R01576/01
and the EPSRC Interdisciplinary Research Centre equator.

9. REFERENCES
[1] J. F. Blinn. Jim Blinn’s Corner: Me and my (fake) shadow.

IEEE Computer Graphics & Applications, 8(1):82–86,
January 1988.

[2] N. Chin and S. Feiner. Near real-time shadow generation
using BSP trees. ACM Computer Graphics, 23(3):99–106,
1989.

[3] Y. Chrysanthou. Shadow Computation for 3D Interaction
and Animation. PhD thesis, Queen Mary and Westfield
College, University of London, June 1996.

[4] F. Crow. Shadow algorithms for computer graphics. ACM
Computer Graphics, 11(2):242–247, 1977.

[5] S. Donikian and B. Arnaldi. Complexity and concurrency for
behavioral animation and simulation. In G. Hgron and
O. Fahlander, editors, Proceedings of Framework for
Immersive Virtual Environments FIVE, September 1994.

[6] S. Donikian and R. Cozot. Reactivity, concurrency, data-flow
and hierarchical preemption for behavioural animation.
pages 197–209. Springer-Verlag, 1995.

[7] S. Donikian and E. Rutten. Reactivity, concurrency,
data-flow and hierarchical preemption for behavioural
animation. In E.H. Blake and R.C. Veltkamp, editors,
Proceedings of Framework for Immersive Virtual
Environments FIVE. Springer-Verlag, 1995.

(a) (b)

(c)

Figure 9: Results for 10,000 humans with different light source positions. (a) Noon shadows. (b) Mid-afternoon shadows. (c) Late
afternoon shadows. (Figure reproduced in color on page 199.)

[8] G. Drettakis and E. Fiume. A fast shadow algorithm for area
light sources using backprojection. In Andrew Glassner,
editor, ACM Computer Graphics, pages 223–230, July 1994.

[9] Nathalie Farenc, Ronan Boulic, and Daniel Thalmann. An
informed environment dedicated to the simulation of virtual
humans in urban context. Computer Graphics Forum,
18(3):309–318, September 1999. ISSN 1067-7055.

[10] S. Friedman, W. Jepson, and R. Liggett. An environment for
real-time urban simulation. In Symposium on Interactive 3D
Graphics, ACM, Monterey CA USA, 1995.

[11] Paul S. Heckbert and Michael Herf. Simulating soft shadows
with graphics hardware. Technical Report CMU-CS-97-104,
CS Dept., Carnegie Mellon U., January 1997.
http://www.cs.cmu.edu/ ph.

[12] Tim Heidmann. Real shadows, real time. Iris Universe,
18:28–31, 1991. Silicon Graphics, Inc.

[13] M. Kallmann, J.-S. Monzani, A. Caicedo, and D. Thalmann.
Ace: A platform for the real time simulation of virtual
human agents. In EGCAS’200 - 11th Eurographics Workshop
on Animation and Simulation, Interlaken, Switzerland,
August 2000.

[14] D. Lischinski, F. Tampieri, and D. P. Greenberg.
Discontinuity meshing for accurate radiosity. IEEE
Computer Graphics & Applications, 12(6):25–39, November
1992.

[15] Michael D. McCool. Shadow volume reconstruction from
depth maps. ACM Transactions on Graphics, 19(1):1–26,
2000.

[16] M. Slater, M. Usoh, and Y. Chrysanthou. The influence of
shadows on presence in immersive virtual environments,
pages 8–21. Springer Computer Science, 1995. Virtual
Environments ’95.

[17] Cyril Soler and François Sillion. Fast calculation of soft
shadow textures using convolution. In Computer Graphics
Proceedings, pages 321–332, Jul 1998. Annual Conference
Series, SIGGRAPH’98.

[18] F. Tecchia, C. Loscos, R.Conroy, and Y.Chrysanthou. Agent
behaviour simulator (abs): A platform for urban behaviour
development. In GTEC’2001, January 2001.

[19] F. Tecchia and Y.Chrysanthou. Real-Time Rendering of
Densely Populated Urban Environments, pages 83–88.
Springer Computer Science, 2000. Rendering Techniques
2000.

[20] F. Tecchia and Y.Chrysanthou. Real-time visualisation of
densely populated urban environments: a simple and fast
algorithm for collision detection. In Eurographics UK, April
2000.

[21] L. Williams. Casting curved shadows on curved surfaces.
ACM Computer Graphics, 12(3):270–274, August 1978.

