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Research on endpoint security involves both traditional PC platform and prevalent mobile platform, among which the analysis of
software vulnerability and malware is one of the important contents. For researchers, it is necessary to carry out nonstop exploration
of the insecure factors in order to better protect the endpoints. Driven by this motivation, we propose a new threat model named
Process Memory Captor (PMCAP) on the Windows operating system which threatens the live process volatile memory data.
Compared with other threats, PMCAP aims at dynamic data in the process memory and uses a noninvasive approach for data
extraction. In this paper we describe and analyze the model and then give a detailed implementation taking four popular web
browsers IE, Edge, Chrome, and Firefox as examples. Finally, the model is verified through real experiments and case studies.
Compared with existing technologies, PMCAP can extract valuable data at a lower cost; some techniques in the model are also

suitable for memory forensics and malware analysis.

1. Introduction

Although mobile platforms represented by Android and iOS
have gained high market share and attracted many develop-
ers and researchers, PC terminals are still irreplaceable in
people’s work and life and Windows operation system (OS)
plays an important role for its openness in activities such as
writing and coding but is also accompanied by diversified
malware nowadays, including ransomware, botnet, and bank-
ing Trojan [1, 2]. In the past few decades there are a lot of
security research work on the Windows platform in order
to enhance its security and protect sensitive data, including
malware analysis and detection [3-5] and the state-of-the-art
vulnerability exploits and mitigations [6-11].

From the perspective of Windows OS development,
Data Execution Protection (DEP) and Address Space Layout
Randomization (ASLR) are introduced on Windows XP SP2
to prevent the buffer overflow exploits. Then Windows 7
restricts program permissions by mechanisms such as User
Account Control (UAC), protected mode, session 0 isolation,
and BitLocker. Further Device Guard and AppContainer

were integrated with Windows 10 which provide more fine-
grained protection. Practice shows that the difficulty of
compromising Windows OS is rising. Meanwhile Microsoft
has launched the bounty program, which could motivate
the researchers to discover new bypass methods [12]. This
measure can help prevent real attacks from happening.

A large amount of runtime code and data information is
stored in the volatile memory. Memory corruption bugs can
lead to code execution vulnerability [9]. Private sensitive data
of some programs are also stored in the volatile memory such
as session information, and crypto key data. The HeartBleed
vulnerability can cause the leakage of private key in the
OpenSSL process memory [13]. The famous tool Mimikatz
can extract plain user login passwords from the LSASS
process on the running system [14]. Malware such as Qadars
[1] and Lurk [2] can steal the banking information from the
memory. In the field of memory forensics, much research has
been done on memory data analysis and thus produced many
practical results [15-18], such as the open source Volatility
Framework [19]. On the other hand, some researches aim at
process memory data protection [20, 21] but failed to carry
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out large-scale deployment. Compared with memory data
forensics or memory dump analysis, our research focuses on
extracting and analyzing real time memory data which are
more volatile and change more continuously. Therefore, apart
from the reconstruction of data structure, time factor should
also be considered.

Currently, Windows has been equipped with many secu-
rity components and policies, but the applications running on
the platform still face security challenges in practical use.

(a) Windows is an open ecosystem, which allows users to
install and execute third-party program. It does not validate
the program origin strictly and prevent the unknowns from
being installed, despite giving some security warnings like
UAC. Most security policies are not deployed by default and
should always be configured by professionals. Attackers are
also working with PowerShell to create their own threats even
under the whitelist protection [22, 23]. All of these show that
the possibility of malware intrusion still exists.

(b) Compared with the application sandbox on mobile
platform, the access control mechanism on Windows is
coarse-grained [20]. Some resources are not protected effec-
tively; programs with basic permissions can generate poten-
tial threat capability. For example, processes at the same
integrity level can access with each other; applications can
read most directories and files on the disk. A privileged
process can modify the system security configuration, add a
trusted root certificate, or change the registry settings, and so
on.

In view of the security situation described above, this
paper proposes a new threat model PMCAP on the Windows
platform. Our model targets the volatile process memory
data in real time, especially network related data. Based on
the attacks on the endpoint system, similar to a minimum
fileless attack [24], the model first takes advantage of the
imperfections of access control and the data protection
mechanism, and then it can extract private data from the
process memory. In general, our paper makes the following
contributions.

First, it proposes a threat model of process memory
data in real time on the Windows operating system. The
model threatens web browsers and other programs built on
diversified attack techniques. It also considers the influence
of network factors on networking related memory data.

Second, it proposes a new memory data extraction
method based on the thread stack space, and it can extract
critical data effectively from the large address space.

Third, it analyzes the main data structures related to
communications of popular web browsers, takes that as an
example, and describes the implementation of the model.

Finally, it evaluates the implementation of the example
and discusses its benefits and limitations.

The remainder of the paper proceeds as follows. In
Section 2, we compare our work to some related works. In
Section 3, a model overview is given. In Section 4, we present
the implementation of the model in detail. In Section 5,
experiments and analysis are given. Finally, a conclusion is
given in Section 6.
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2. Related Work

Many researchers focus on vulnerability analysis of appli-
cation security; also, the detection and analysis of malware
receive continuous attention. Some related research works are
shown as follows.

2.1. Vulnerability Attack Techniques. Many state-of-the-art
vulnerability exploit techniques such as code reuse attacks
are proposed to bypass the latest mitigations; Schuster et al.
proposed a novel attack technique denoted as counterfeit
Object-Oriented Programming (COOP) [10], which con-
structs the malicious execution by invoking only chains of
existing C++ virtual functions in the program and can bypass
most Control Flow Integrity (CFI) solutions. A technique
called data-oriented programming (DOP) was presented by
Hu et al. [11], which does not depend on controlling data to
hijack the control flow and only uses noncontrol data to build
the Turing-complete attacks. Jia et al. analyzed the isolation of
Chrome and proposed a method to bypass the same origin
policy from a render process attack; then the attacker can
access local systems with the help of cloud services [26].

Making use of an exploit to execute attack Payload
on the target system is the first step of our model; the
existing available attack techniques can be applied. Windows
is equipped with many security mechanisms but there are
still some bypass approaches, including some strong practi-
cal techniques [27]. Although these attack techniques have
dependencies when actualized, but it shows that there always
is potential threat of unknown attacks.

2.2. Memory Forensics. Researches on memory forensics
mainly contain memory acquisition, memory analysis, and
data structure recovery. More specifically it first uses hard-
ware card, virtualization, and applications at different levels
including user level and kernel level. To acquire memory [15],
Hargreaves and Chivers proposed a method for recovering
the decryption keys from the memory using linear scan
[28]. Sylve et al. proposed a novel technique for locating
kernel object allocations with quick pool tag scanning [17],
which has a good performance in the large memory space.
Taubmann et al. presented TLSkex which can extract the
master key of a TLS connection at runtime from the virtual
machine’s memory. It works in a nonintrusive way and uses a
brute force approach to find TLS master secrets by decrypting
and verifying TLS records in a loop. For memory data
analysis, Fu et al. presented an automatic memory analysis
methodology based on data correlation through analyzing all
kinds of OS data structures [16]. MemPick proposed by Haller
et al. can detect and classify high-level data structures used
in stripped binaries [29]. DSCRETE is an excellent automatic
reverse engineering technique for recovering a variety of
application data which reuses application logic from a subject
binary program [30]. Neasbittt et al. proposed a lightweight
forensic engine for web browsers called WebCapsule which
can record and replay web sessions [31]. It is implemented
with instrumentation code.

Compared with these research works, our model aims at
obtaining live volatile memory data and tries to acquire and
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analyze data continuously in real time. It is a challenge to
solve the problem of locating and extracting the ephemeral
data. The attack Payload of the model will run in the user
mode on the target system. It has some limitations in terms
of nonintrusive matters, such as thread schedule. Some
techniques mentioned above, such as the automated data
structure recognition, can provide assistance to the model.
On the other hand, we think that some of the techniques
referred in the model are helpful for memory extraction based
on virtualization or hardware.

2.3. Process Data Protection. 'There are several research works
for process data protection including encryption and isola-
tion. Xie et al. proposed a binary code obfuscation method
against stack trace analysis [32] which encodes the return
address on the stack. Lutas et al. proposed a protection
tool (U-HIPE) [21], which prevents the hook injection and
injected code execution in the process. The solution is based
on hardware virtualization. Sze and Sekar presented a new
approach SPIF [20] which ensures that the permissions for
any process are influenced by code and data from untrusted
sources are restricted. Chen et al. proposed Shreds [33], which
implements a set of OS-backed programming primitives and
helps developers protect sensitive memory in the process.
Shreds has also been demonstrated on Linux. The most
practical technique is the Intel Software Guard Extensions
(SGX) [34], which has been supported by Windows 10 [35].
It provides a sandbox mechanism which can isolate the
malwares on the platform including rootkits. It can stop the
attacks implemented by Mimikatz [34] but is only supported
by the Skylake architecture. Although these protections can
prevent memory data from being accessed by malware, they
sometimes depend on hardware and are difficult to be applied
to common users of the Internet for large-scale protection in
the near future.

Security vulnerability plays a key role on the penetration.
Most existing research works for attack technology focus on

code execution, for it is the first step of the entire attack
process. Research works on memory forensics mostly solve
the problem of memory snapshot analysis. Protections for
memory data are not widely deployed on the endpoint
of common users. On the other hand, the real malware
always threatens data security through invasive behaviors
such as hooking [I, 2]. The model in this paper is built
on vulnerability attacks and emphasizes on live memory
data extraction, including the effect of network factors. Our
research proves it to be practical.

3. Model Overview

In most cases, the user encounters a malware attack because
of the software installation bound with malicious code or
a visit of deceptive URL link. The URL may be a normal
website address, but it contains malicious code which has
been deployed earlier by the attacker. On the other hand,
the URL link may redirect to the attacker-controlled site
when the communications are hijacked. Most commonly, the
user’s computer connects to the Wi-Fi hotspot faked by the
attacker and gets attack by the Man in The Middle (MITM)
technology. Even though the TLS protocols have been widely
used, there still is a lot of web traffic being exposed to the
risk. Figure 1 shows the typical attack scenario well known by
professionals.

3.1. Hypothesis. To obtain a clear description of the model’s
concerns, we give some assumptions as follows. In that,
assumptions (i) and (ii) are requisite, and assumption (iii) is
potential.

(i) Attackers hold some exploit kits which contain
remote code execution or privilege escalation vulner-
abilities; they act on web browsers or other programs.
In fact, there is much proof of concept code for
web browsers and their plugins on the Internet, such



as Metasploit Framework [36] and Exploit kits [2].
It is a challenge to obtain unknown or zero-day
vulnerabilities.

(ii) Code integrity protection exists in the target system.
In other words, the attacker is unable to modify exist-
ing code on the operating system using technologies
such as hooking.

(iii) The attacker can fake Wi-Fi hotspots and then control
the communication of victim who connects to the
hotspot. Free Wi-Fi hotspots are pervasive in the city,
so attackers can deceive the users easily based on the
flaw of the Wi-Fi protocol.

3.2. Model Description. PMCAP makes efforts to alleviate the
influence on the target system and takes aim at the network
related object structures in the live process memory. It has two
advantages. (i) When searching, we have a clear goal instead
of string matching in the entire memory address space, so as
to improve efficiency. (ii) Object structures, with the shape of
the expanding root of a tree, can indicate the data contentin a
wide range. Starting from data structures, we can obtain more
useful data at a lower overhead. First, we give the definitions
of PMCAP model as follows.

Definition 1 (victim). A victim is denoted as the four tuples
as shown in the following formula:

= (Ver, GP,HP, TP), 1

where Ver is a set of version information, including system
modules and programs on the victim’s computer. GP is a
process set which can trigger the exploits and then cause a
remote code execution. HP is the host process set; attack code
can inject itself into it for runtime persistence. TP is the target
process set, from which attack code will extract data.

Definition 2 (attacker). An attacker is denoted as a tuple as
shown in the following formula:

AR = (Exp, Payload, Loc), (2)

where Exp is the exploit collection owned by attackers;
Payload is the set of attack code, which perform the task of
data extraction in different ways. Loc denotes the location of
the attacker and decides whether the attacker can control the
victim’s network or not.

Definition 3 (PMCAP). PMCAP model is denoted as a tuple
as shown in the following formula:

PMCAP = (VR, AR, ENV), 3)

where VR is the victim including the pertaining resources;
see in Definition 1. Similarly AR represents the attacker;
see Definition 2. ENV is the network environment for the
attacker and victim; it decides if there are attacking paths
between them.

Then from all the elements enumerated above, we can
analyze the threat of the model by the Model Threat Value
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FIGURE 2: Intuitive view of PMCAP model.

(MTYV), which is defined as follows. From its definition and
calculation method we will realize the key components in the
model.

Definition 4 (MTV). MTV can measure the threat engen-
dered by the concrete attack; the calculation method is shown
in the following formula:

MTV = f (4, PC,«), (4)

where f is the calculation function; we do not give the
specific definition for it can be custom-defined according to
requirements. p is the network factor, which depends on the
ENV and the Loc. PC denotes the capability of the attack
code, which depends on the concrete Payload in Payload.
« is the stage flag; the flag denotes the current stage of the
entire attack process. For example, if GP is empty, the victim
does not satisfy the attack conditions; if TP is empty, the
attack code can not extract the data even if it has already been
executed on the target system.

A more intuitive description of the model is shown
in Figure 2. The left side shows the victims system which
contains a series of active processes with network activities.
The right side includes the normal web server and the
malicious server which is controlled by the attacker. The two
locations denote the possible positions of the attacker. The
attack flow is implied by the dashed arrow in this figure, and
the solid arrow denotes the normal communication flow of
target processes.

The dashed arrow and the solid arrow show the high-
lighted parts of PMCAP. We divide the attack process into
four steps. First, the attacker tries to compromise the target
website and deploy the exploit in Exp subsequently. The
process in GP running on the victim’s system triggers the
vulnerability exploit; mostly the process would be a web
browser. Second, the attack code in Payload executes and
considering that the trigger process may crash injects new
code into the memory space of the host process in HP sought
by the attack code at the same time. Third, the attack code
hunts for target processes in TP and acquires the live memory
data. Finally, the attack code transfers data back to the server
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controlled by the attacker. There are three types of process
on the victim’s system. The trigger process GP is often web
browser process or other network related processes. The host
process HP can be a similar process or other processes with
a long lifetime. The target process TP is the process which
contains sensitive data, such as a web browser or instant
message software. Specific description is as follows.

(1) Attack. The attacker leverages the vulnerable software and
constructs the exploit and then makes the target computer
trigger the attack code. The attack has been proved by many
incidents in real world [1, 2]. As shown in Figure 2, if the
attacker situates in Location I that is on side of the communi-
cation channel, a third party website is needed to accomplish
remote attack. If the attacker situates in Location 2, the
MITM attack will play its role by reason of network control.
The attacker aims at the HTTP session when the victim is
connected and then is able to choose web browser or other
types of software with remote execution vulnerability as the
attack target. Besides, arbitrary memory read vulnerabilities
may be not be suitable for the model. One of the reasons is
that it can not read memory data across processes. Nearly all
web browsers support multiprocess. The other reason is that
the exploit code will disturb the running status of the process
and even lead to a crash.

(2) Code Execution. The application on the victim’s system
triggers the exploit, after that the attack code will be executed.
The attack code faces two challenges. One of them is the code
permission problem. Mandatory Integrity Control (MIC)
provides a mechanism for controlling access to objects based
on integrity levels upon Windows 7 OS. The six integrity
levels defined by MIC, Installer, System, High, Medium, Low,
and Untrusted, are stored in an access control entry (ACE)
of the object together with object mandatory policy. Object
mandatory policies are No-Write-Up, No-Read-Up, and No-
Execute-Up [25]. Most applications on the system are assigned
Medium integrity label which inherited from the explorer
process. From Figure 3 we see that the No-Read-Up and
No-Write-Up policies can not stop the Medium integrity
process from reading and writing the process at the same
integrity level or lower. This means that if the attack code
obtains Medium integrity level, it can access resources of most
processes. For example, when Internet Explorer is running
in protected mode, its process is assigned Low integrity, so
any other process can read its memory data. MIC has not
provided perfect data protection for process memory. The
other problem is the attack code form. When some protected
process is forbidden to create a child process (e.g., Child
Process Policy [12]), code injection method can also be used.
Such method is widely used in both security software and
malware [1].

(3) Data Extraction. Acquiring and extracting live memory
data are the core function of the attack code. The model
pays more attention to the memory data related to network;
these data are more volatile and variable. Other data (e.g.,
cache data, user interface data) will maintain for a longer
period in memory and are much easier to extract. Traditional
malware often uses runtime hooking method to obtain target

5
Processes Objects
Medium integrity

—_— level process

Low integrity

level process
—> Read
Write

FIGURE 3: Access to processes versus objects for Medium and Low
integrity level processes [25].

information [1, 2], but our model does not take this method
for the following two reasons. (i) Function hooking needs the
memory write permission and will violate the code integrity
policy and disturb the origin work flow. (ii) With hooking,
lots of data will be intercepted and processed, which will lead
to higher costs. In an extreme case, our model only needs
process memory read permission. Several data acquisition
methods are supported in PMCAP. We will introduce and
discuss them using web browsers as examples in Section 4.

(4) Network Control. As shown in Figure 2, if the attacker sit-
uates in Location 2, the MITM attack will help to improve the
threat level. It should be common since there are many Wi-Fi
hotspots without authentication or with a known password
in the public place (e.g., cafe, hotel, and airport). In this case,
we can reduce network flow rate to increase the lifetime of
network related data in memory, even if the target process
encrypts communications using the SSL/TLS protocol, since
we do not need to know the packet formats and only need to
adjust the speed of packet forwarding. Another benefit is that
PMCAP can use normal communication sessions to transfer
extracted data.

Furthermore, there are a few challenges in real implemen-
tation.

(1) Process Privilege Problem. Most applications running on
Windows have a Medium integrity level label; in order to
read another process memory the attack code should be at
Medium integrity level at least. Actually it is not very difficult
to achieve the goal, as a lot of third party software including
security software may have code execution vulnerability [37].
We can also see that Low integrity process can access the
Internet Explorer process running in protected mode. The
browser runs at Low integrity level and makes it much easier
for it to be accessed by others.



(2) Search in Large Address Space. The size of a 32-bit process
virtual address space is 4 GB and 2%* bytes for 64-bit process.
It is difficult to traverse all of this. In fact, since it is only
necessary to search in the allocated memory space of target
process and in user mode, the target searching range is
still rather limited. Therefore, this paper proposes a stack
based data extraction method to avoid this problem. We will
describe it in the next chapter.

(3) Attack Persistence. The main problem is how to discover
the target process. One direct method is to enumerate the
process identify (PID) on the system, because the value of
PID has a limited range. Another way is to use the system
API function such as CreateToolhelp32Snapshot which can
be called from any integrity level. Enumerating the windows
related to threads is also a good method.

Compared with other methods, PMCAP has the follow-
ing characteristics. (i) It is an extension based on the attack of
vulnerability exploits and malware and takes full advantage
of the imperfection of access control mechanism on the
Windows platform. (ii) The attack Payload for data extraction
is live on the system. It does not corrupt the code integrity of
the target program and only needs memory read permission
in the extreme case. (iii) It pays more attention to the network
related data in the process memory which can be impacted by
network control.

4. Implementation

Some techniques involved in the model, such as vulnera-
bility exploit and attack method, can be frequently found
being researched and analyzed in many other papers. The
implementation will concentrate on data extraction in the
target process memory. We take IE/Edge, Chrome, and
Firefox as the target programs and choose three class
object structures as the target data for extraction. They are
HTTP_REQUEST_HANDLE_OBJECT in IE/Edge, URLRe-
questHttpJob in Chrome, and nsHttpTransaction in Firefox
which contains abundant HTTP session information. The
reasons are stated as follows. (i) Web browsers, as typical
applications, are commonly used by people and are also
most frequently attacked by vulnerability exploits. (ii) Source
code and debug symbols of these programs can help us to
analyze object structures rapidly. In fact, PMCAP is generic
on the Windows operating system, which threatens the
process memory data of not only web browsers but also other
applications.

4.1. Process Memory Acquisition. Since the process may crash
after triggering the exploit on the victim’s system, the attack
code should try to create a new process as a host with
current access token and then inject attack Payload into the
new process memory space for runtime persistence. It will
complicate matters if the trigger process is not allowed to
create a child process. We have to search for another process
which has the same integrity level as the trigger process;
sometimes the case will never happen.

Modern browsers use a multiprocess architecture which
means that each browser tab will run in a separate process.
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FIGURE 4: Capabilities of IE process at Low integrity level.

This mechanism can improve the browser’s reliability since
the crash of tab process will not impact the entire browser.
To avoid vulnerability exploits, tab process always runs with
a lower privilege. If the attack code can obtain the Medium
integrity level permission, it will be easier for it to access
the browser processes. Firefox chosen in this paper uses
single-process mode by default, and its latest version supports
multiprocess mode. IE/Edge and Chrome use multiprocess by
default.

IE/Edge runs in protected mode, and each browser win-
dow has its separate process. The network related data which
we concerned lay in the tab process. The difference between
IE and Edge is that the tab process of IE runs at Low integrity
level and the other runs in the AppContainer sandbox. App-
Container is a new process isolation environment introduced
on Windows 10, which provides fine-grained access control
to objects through adding additional access control entry
(ACE) in the system access control list (SACL) of objects.
However, different processes with the same AppContainer
security identify (SID) can also access one another, as shown
in Figures 4 and 5, while for IE/Edge the attack code only runs
with lower privilege, it can also read network related data in
memory and does not need to escape from the sandbox.

Unlike Microsoft’s products, the main process of Chrome
manages the tabs and processes the network communication
at the same time. It runs at Medium integrity level, the
GPU process runs at the same integrity level, and the render
processes run at Untrusted integrity level. If the attack code
runs at the latter two integrity levels, it can not read the main
process due to the MIC mechanism. As shown in Figure 6, to
acquire the network related data in memory, the attack code
must obtain at least the Medium level permission. On the
other hand, the render processes can not access one another.
Compared with IE, the architecture restricts the capability of
vulnerability exploit for the render process.

4.2. Data Extraction. This paper presents three methods for
memory data extraction, which we describe as follows.

(1) Search Based on the Vtable Pointer. The modern software
development generally uses Object-Oriented Programming
(OOP) method. Many classes define virtual function because
of the heavy use of inheritance and polymorphism. The
compilers will add a hidden member pointer at the beginning
of the object. The pointer points to an array which contains
all virtual function pointers; this is called virtual method
table (vtable). Most compilers store the vtable and vtable
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pointer in the binary file as a global variable. In the exploit
of vulnerabilities the vtable is always used to leak the module
address to bypass the ASLR protection [38]. On the contrary,
if we know the version and the image base address of the
target module, the address of vtable pointer can be calculated
at runtime. Therefore it is possible to mark the object by
vtable pointer and then search for object structures in heap
memory based on vtable pointer. Using only vtable pointer
as a characteristic may cause a high false alarm rate. The size
of the pointer is 4 bytes or 8 bytes, which is too small. We can
choose an additional characteristic in the object structure; the
characteristic should be fixed in the specific version of the
target module, such as magic number and callback function
pointer. In this case, we may achieve a low false alarm rate.

In fact, the method of brute force memory scanning has
been used in memory forensics [28]. It has to overcome
the difficulties of large address space and unclear goals.
Although the virtual address space is large especially in 64-
bit processes, the size of physical memory is 4 GB or 8 GB
in general. The size of process mapped memory depends
on its real time usage. An example of x64 process memory
layout is shown in Figure 7. We can see that a large number
of virtual addresses are free. The attack code of PMCAP
runs in user mode on the target OS, so it can not get the
Virtual Address Descriptor (VAD) of target process though
_EPROCESS structure [15]. We can still use VirtualQueryEx
to get the usage of virtual addresses of the process, which
needs the PROCESS_QUERY_INFORMATION access right
and is not prevented by MIC. In this case, the search range
is limited, so we can get a better result when searching for a
clear goal.

The attack code is side to the target process; ASLR defense
has no impact on the data acquisition. However we face a

Free
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PageFile, image

FIGURE 7: Example of x64 process memory layout.

challenge that the number of system and program module
versions is rather large [39]. We need to get the precise offsets
by additional enumeration and automation techniques.

(2) Search Based on the Global Variable. Applications usually
apply linked list, array, and hash table to manage objects,
which makes it possible to search object structures based
on these data structures that may be pointed by global
variables. Similar to characteristic value, search technique
based on global constants is used in memory forensics. For
example, PsActiveProcessHead is a constant which points
to the beginning of the process linked list, and hash table
_TCBTable points to the linked list of connection information
[15]. Some vulnerability exploit also makes use of global
constants to obtain the variable address in memory [27].
Unlike them, the model in this paper aims at the live memory
data; the technique will encounter a dynamic continuous
memory environment.

In software development singleton pattern and static
variable will be converted to global variable by the compiler.
Towards the open sources software, we can locate the variable
through keywords like Getlnstance, static, and so on. For
binary programs we have to do additional analysis in the data
segment. The global variable has the fixed offset from the
beginning of binary module the same as vtable pointer.

The search method based on global variable can avoid
searching in the whole address space but also has limitation.
Fortunately, the web browsers we chose satisty the condition,



|IE/Edge Wininet!GlobalObjectList — HTTP_REQUEST_HANDLE_OBJECT

nsHttpHandler

! nsHttpConnectionMgr mConnMgr;
nsClassHashtable<nsCStringHashKey, nsConnectionEntry> mCT;

Firefox nsConnectionEntry

nsTArray<RefPtr<nsHttpConnection>> mActiveConns;

}
}
}

URLRequest

URLRequestContext* context_;

Chrome <std::set<const URLRequest*>> url_requests_;

}
scoped_ptr<URLRequestHttpJob> job_;

FIGURE 8: Relations between the global variable and target objects.

with each program having a little difference. As shown in
Figure 8, HTTP_REQUEST _HANDLE OBJECT objects are
linked by a double linked list which is referenced by a
global constant Wininet!GlobalObjectList; we can read the
value directly through an address offset corresponding to the
module version.

There is no global constant pointing to nsHttp Transaction
objects; nsHttpTransaction appears as a member variable
of class nsHttpConnection which is referenced by class
nsHttpConnectionMgr. Class nsHttpConnectionMgr is also a
member variable of nsHttpHandler; nsHttpHandler is defined
as a singleton pattern which has only one instance at runtime.
We can also get nsHttpTransaction objects through the
nsHttpHandler instance after some jumps.

URLRequestHttpJob objects are also not organized by a
variable directly; the instance of URLRequestHttpJob is a
member variable of class URLRequest. Meanwhile URLRe-
quest has a member variable which points to the instance of
URLRequestContext. Class URLRequestContext manages all
URLRequest objects, but its instance is created at runtime, and
its value can be found using the aforementioned method in
this paper.

We can see that three cases are sketched in Figure 8,
including three type data structures: double linked list, hash
table, and red black tree (std::set). These structures dynami-
cally change at runtime, which will bring a challenge to the
search procedure. In particular, std::set uses red back tree
as an internal implementation. Its insertions and deletions
will cause a subversive structure change, but our experiments
show that it has limited effects.

(3) Search Based on the Stack Space. This approach tries to
discover the address of the target object in the thread stack
space and then extract the detailed object information in the
entire address space. The motivation is to avoid searching in
the large address space. The premise of the method is that
there are lots of leaks of code address and argument address
on the thread stack at runtime; commonly a return address
is saved on the stack. The range of stack address is limited,
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; CODE XREF: sub_180E5@460+BAlj
; sub_180E50C10+2F34p
; DATA XREF: ...

.text:0000000180E4D164 sub_180E4D164 proc near
. text:0000000180E4D164
.text:0000000180E4D164
. text:0000000180E4D164
.text:0000000180E4D164 var_F8 dword ptr -@F8h
byte ptr -@Feh
qword ptr -@E8h
byte ptr -@EGh
dword ptr -@DCh

.text:0000000180E4D164 var_Fo
.text:0000000180E4D164 var_E8
.text:0000000180E4D164 var_EQ
.text:0000000180E4D164 var_DC
.text:0000000180E4D164 var_C8
.text:0000000180E4D164 var_ B8

byte ptr -eC8h
byte ptr -@B8h

.text:0000000180E4D164 var_8 byte ptr -8
.text:0000000180E4D164

.text:0000000180E4D164 mov. rax, rsp

. text:0000000180E4D167 mov [rax+16h], rbx
.text:0000000180E4D16B mov [rax+18h], rsi
. text:0000000180E4D16F mov [rax+20h], rdi
. text:0000000180E4D173 push bp
.text:00000B018BE4D174 lea rbp, [rax-18h]
.text:0000000180E4D178 sub rsp, 11eh
.text:0000000180E4D17F mov rax, cs:__security_cookie
.text:0000000180E4D186 xor rax, rsp

. text:0000000180E4D189 mov [rbp+8], rax

FIGURE 9: A code snippet from chrome.dll.

so the search range is greatly reduced. The major challenge
we face is that data only stay on the stack for a short time. The
address information on the stack mainly comes from function
return addresses, function arguments, and local variable, also
including the history value of register at runtime brought by
the compiler. A case is shown in Figure 9, where the compiler
does not care about the value propagation, so it is possible
that register values are pushed into the stack.

We need to focus on the phenomenon that the arguments
passing between 32-bit and 64-bit program are different.
Mostly the 32-bit program uses the stack to pass arguments.
Even when using fastcall, it only passes the first two argu-
ments by ecx and edx. Therefore there will be much address
information on the stack. The 64-bit program uses rcx, rdx,
18, and r9 registers to pass the first four arguments [40]; this
will reduce the number of address appearing on the stack.

We propose the Thread Stack Search Algorithm (TSSA)
for PMCAP. First we give two definitions for describing the
algorithms:

Definition 5 (anchor point). It is a position where the address
of code appears on the stack. The address value remains stable
on the lifetime of process and is only impacted by ASLR and
program version, for example, function pointer address or
return address.

Definition 6 (target point). It is a position where an address
appears on the stack; through the address we can directly or
indirectly get the target object information. The distance is
defined as the offset between the Anchor Point and Target
Point on the stack.

Then we can obtain the target object structure informa-
tion based on the Anchor Point. It is a simple scheme to
choose a return address as the Anchor Point, and then there
can be multiple Anchor Points at the same time. When the
value associated with Target Point is fixed we can extract the
Target Point prior from the binary program and calculate the
distance between them. An example is shown in Figure 10.
We design two methods.

First, we can adopt simple taint trace method on the
program execution path related to the target object. There
are some excellent helpful tools, such as the IDA Pro and
its plugins. For object structures, we can choose the value of
register ecx or rcx as the taint source and simply trace the
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Stack
Anchor point 1
0x73F032A0
Offset 1
Target point
10201B
0x10201B00 Offset 2
Anchor point 2
0x75A24F12

FIGURE 10: Example for the Anchor Point and Target Point on the
stack.

value propagation on the instructions: mov, lea, pop/push,
and so on. We do not consider the impact by multiplication,
division, shift instructions, and the truncation of registers for
now. This method can not assess the time that the value stays
on the stack, because some value may be ephemeral.

Another method is based on the binary dynamic analysis.
We can debug and instrument the target binary program
using debuggers and trace tools and insert extra code before
and after each call instruction. As shown in Figure 11, before
the call instruction the code checks if there is an object
address value on the current stack frame. When the call
instruction returns, the code counts the instructions of the
following code and estimates the overhead of the execution.
Then we can approximately obtain the Anchor Point which
makes the object address stay on the stack for a relatively
long time. It is approximate, because there is the impact by
thread switches and analysis code self. In this case the value
associated with the Anchor Point is a return address, so before
the value is popped out the stack we can gain a stable stack
frame during the following code execution of target process.
The search code can obtain the target object address value
in a rather short time period. One ideal case is that there is
some code receiving the socket data in the following code, so
a transfer delay may help to expand the time period.

When the Target Point, the Anchor Point, and the distance
between them are confirmed, we use Algorithm 1 to obtain
the object address values in the process memory at runtime
and then can extract the data in an expansive region. First,
the algorithm will get the thread stack address range which
is contained in thread TEB structure. It is easy to find the
PEB and all TEB structures in the process memory in side
channel and then pick the target TEB by a thread stack
feature. The thread stack feature is related to the target objects;
often thread function address can be used. This means that
the thread deals with the target object data. Then the code
continuously searches on the stack in a loop; if some value
matches the value on the Anchor Point, the target object
address can be acquired in the position as a relative offset to
the Anchor Point.

Since our model acquires the process memory inside
the operating system, it can also use system call to get the
addresses of TEB structures. We can also choose multiple
Anchor Points to reduce the false alarm rate. By analyzing

the practice of the three web browsers, we know the target
objects are network related. IE/Edge processes the network
data with multiple threads and the others take a single thread.
It may produce a high overhead when tracing the stacks
of multiple threads, because the threads are created and
destroyed dynamically. However interestingly, we observe
that the multiple threads of IE/Edge are linked together and
pointed by a global constant, so we can rapidly capture the
changes of the threads.

5. Evaluation

We take real experiments to measure the effect of the model.
The experiments focus on the data extraction of different
methods, as there are many vulnerability exploits in practice.
Firstly we assess the practicability and then give two case
studies. The target systems run on the VMware. They are
64-bit Windows 7 SP1 with an Intel(R) Core(TM) i7-6700
CPU @ 3.40 GHz and 4 GB of RAM and 64-bit Windows 10
6700 with an Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz
and 8 GB of RAM; the network bandwidth is 20 Mbps.
Actually, for compatibility reasons, the 32-bit web browsers
are more widely used. The target web browsers are 32-bit IE11
(11.0.9600.18524), Firefox (48.0.2), Chrome (51.0.2704.103),
64-bit Chrome (51.0.2704.103), and Edge (38.14393.0.0).

5.1 Lifetime of the Target Objects. We measure the lifetime
of the three types of objects in the process memory and
analyze the network delay influence on it. For getting the
time of corresponding object constructed and destructed, we
inject extra code into the process memory of the browsers.
We record the time data by using a Lock-Free queue [41] to
reduce the influence on thread switches of origin processes.
We take experiments of the five browsers under the 20 Mbps
and 2 Mbps network bandwidth, respectively. We generate
nearly 50 thousand objects by visiting lots of websites both
at home and abroad, including different categories such as
Search, News, Shopping, E-mail, SNS, and Finance.

As shown in Figure 12, we divided these objects of each
browser into three parts by the duration, namely, less than
50 ms, between 50 ms and 1 s, larger than 1 s. It may be difficult
to obtain the objects with a lifetime less than 50 ms, because
Windows uses a preemptive thread scheduler. Our code runs
in user mode. It is hard to control the execution time without
interfering with others, because for most multiprocessors the
thread quantum is about 15 milliseconds [25]. In Figure 12,
the left bar of each group shows the object distribution on
the normal network bandwidth and the right on the limited.
We can see that the lifetime increases significantly with the
reduction of the network bandwidth, since they are network
related. Another interesting phenomenon we observed is that
a mass of objects will reuse the addresses which have already
been allocated in the memory. It means that we can obtain
more object information from fewer object addresses.

5.2. Vtable Search. We continuously measure the effect of
different search method and mainly inspect three indicators:
(a) detection rate (DTR), this denotes the result that extracted
objects cover the target objects really, (b) false alarm rate
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ESP -

ret_addr <j

ret_addr: _calculate_ \

push eax
mov ecx, edi
_check_

call new_func+—

new_func

Stable stack frame

FIGURE 11: Check object address on the stack and estimate the duration.

Input: P: the target process set, TF: the feature of thread
associated with target data, AP: the anchor point
set, OT: the distances between anchor points and target
points;

Output: results: Extracted data from the target process
memory;

(1) function SEARCHTHREADSTACK(P, TF, AP, OT)

2) st_list «—GETTHREAD(P, TF);

(3) for all stack in st_array do

(4) base «— stack.sb_addr;

(5) Reading the stack buffer buf of stack;
(6) s « stak;

7) while s < base do

(8) if s matches AP.value then
9) t — s+AP.offset;

(10) Extracting data from ¢;
11) Saving data to results;
(12) end if

(13) S+ +;

(14) end while

(15)  end for

(16)  return results

(17) end function

(18)

(19) function GETTHREAD(P, TF)

(20) Finding PEB address peb;

(21) Finding TEB addresses teb_array based on peb;
(22) for all teb in teb_array do

(23) Reading the stack base sb_addr from teb;
(24) Reading the stack limit sI_addr from teb;
(25) calculate size and read the stack buffer s_buf;
(26) p « sl_addr;

(27) while p < sb_addr do

(28) if p matches the value in TF then

(29) save sb_addr and sl_addr to threads;
(30) end if

(31) pP++

(32) end while

(33) end for
(34) return threads
(35) end function

ArLcorITHM 1: Thread Stack Search Algorithm for PMCAP.
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FIGURE 12: Lifetime of objects under different network environment.

(FAR), it denotes the interference of the irrelevant objects
in the extracted objects, and (c) average CPU time (ACT), it
is the CPU usage of the search thread on the target system.
The method based on vtable pointer characteristic searches
in the virtual memory space. Its efficiency will be impacted
by the real memory usage, in which web page content is the
major factor. Almost all modern browsers almost have a good
garbage collection mechanism, so the memory usage is stable
at runtime. The search code runs in a single thread in the
experiments; its maximum CPU usage is about 25% on a
quad-core environment. The overhead is acceptable and has
a relatively low influence on user experience.

In Table 1 we show the search results of the test browsers
under different network conditions. The thread switch can
bring deviation. Since we can not precisely control the CPU
usage of the search code, we can only get an approximate
value. In the condition of normal network bandwidth, the
detection rate is near 100% for each program with the search
thread running at full capacity. We keep the CPU usage of
the search thread at below 10%, and the detection rate keeps
up, but the false alarm rate will increase slightly, as shown
in the row named Normal b group in Table 1. It caused by
the low CPU usage; then the search code can not fast capture
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TABLE 1: Search results based on vtable feature in different condi-
tions.

Program Group TPR (%) FNR (%) ACT (%)
Normal a 100 1.72 24.83
IE Normal b 100 21.35 4.06
Limited 100 4.28 4.38
Normal a 100 7.22 24.64
Firefox Normal b 100 22.92 9.84
Limited 100 7.64 473
Normal a 100 8.95 24.70
Chrome Normal b 100 11.91 6.97
Limited 100 3.91 8.20
Normal a 100 3.43 24.68
Edge (64) Normal b 100 16.73 5.07
Limited 100 0.58 5.20
Normal a 100 3.35 24.52
Chrome (64)  Normal b 100 21.98 6.14
Limited 100 1.48 8.71
100 g o o
80 b , , N B
S
o 60 : : N e
g
§ 4. .0 , , BN e
&
200 : : N e
0
IE Firefox Chrome  Edge 64 Chrome 64
= DTR
= FAR
ACT

FIGURE 13: Results based on global variable search.

the transition of target objects. To further verify the network
bandwidth influence, we limit the bandwidth to 2 Mbps and
at the same time keep the CPU usage. In this case we also get
the high detection rate and low false alarm rate, as shown in
the third row in Table 1.

The values of false alarm rate are all low, which perhaps
is because we choose an additional characteristic besides
the vtable pointer, mentioned in Section 4. Furthermore the
results of the 64-bit program are similar to that of the 32-
bit program. We think it is because the code only searches in
the mapped memory address space rather than in the entire
space.

5.3. Global Variable Search. We can obtain a high-efficiency
search based on global variable because we have definite start
address and search direction. It is a special case but we think
it should appear frequently in modern programming. In this
experiment we do not limit the network bandwidth. To limit
the CPU usage of the search thread we add a short sleep in the
code after each traversal. The results are shown in Figure 13.

1

We get a high detection rate, a low false alarm rate and a low
CPU usage for each experiment. There is a low false alarm
for IE/Edge because the linked list structure is stable. The
detection rate for Chrome is slightly lower than others that
is because of the structural changes caused by insertion and
deletion of the red black tree. For the case of Firefox, we infer
that the path from the global pointer to the target object is
too long. When the browser sends requests frequently, it may
cause unpredictable errors and a higher CPU usage.

5.4. Stack Space Search. In the experiment we only choose
one Anchor Point for each browser, which is a requirement
easy to meet in practice. More remarkably, the Anchor
Points between 32-bit and 64-bit versions are different. Since
the target object address only exists on the stack for a
short time, to better measure the effect of search method
we carry out experiments under different CPU usage. The
network bandwidth has a limited impact on the duration
of target objects on the stack because the browsers all use
asynchronous communication and the network thread does
not wait for the server to respond.

We experiment on two cases respectively for the browsers.
In case (a), we do not control the CPU usage, so the search
thread gets a 25% average CPU time under a quad-core
environment. As shown in Figure 14, in this case we get a high
detection rate for all browsers. In case (b), we keep the CPU
usage to below 10%, and it may be lower in practice. In this
case we can also get a detection rate around 80%. Actually
we can increase the CPU usage of search thread to obtain
higher detection rate or adopt more effective thread scheduler
algorithm.

Another obvious case shown in Figure 14 is that the
detection rate is low in 32-bit Chrome, but it is normal in 64-
bit Chrome. After analyzing, we discover that it is caused by
the Anchor Point in 32-bit Chrome. We have more work to do
on the optimization of the Anchor Point selection.

The experiment results above show that the search
method based on the global variable has the highest efficiency
but requires meeting specific requirements. The other two
methods have a similar good effect. The search method based
on stack is more generic than the others. It supports the search
not only for object structures but also for the arbitrary buffer
referenced on the stack. On the other hand, the stack search
method maybe has the higher cost of binary analysis than
the other two methods. So the three methods can be used
together, according to the specific situations in practical.

5.5. Case Study

(1) Get Login Information through HTTP Objects. First, we
take a case study on the login procedure of outlook webmail
and try to get login information through the HTTP objects
mentioned above. One reason for choosing this case is that,
in here, the speed of outlook login is relatively slow and can
show clearly how network bandwidth affects the memory
data. Another reason is that although it transfers under
the HTTPS protocol, outlook does not encrypt POST data
additionally and that means the password in the HTTPS
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FIGURE 14: Results based on stack search.

TaBLE 2: Fields obtained from HT TP object structures.

Field IE/Edge Chrome Firefox
URL Y Y N
Cookie Y v Y
POST body X v v

channel is a plaintext. Therefore we can get the plaintext of
password through the object structures.

The results are shown in Table 2. It shows with multiple
trials that the success rate is high, almost near 100%. The
average CPU wusage of the search thread is about 12%,
which not only gets the plaintext in the POST data but
also URLs and Cookies related in the login procedure.

However, IE/Edge is an exception for the POST body
data, because the data are not directly associated with the
HTTP_REQUEST _HANDLE_OBJECT structure and are sent
to the server as a function parameter.

Further we explore the HTTPS communication
of IE/Edge. The POST body data is sent through the
wininet!CSecureSocket::Send function; then it is encrypted
in function wininet!CSecureSocket::EncryptData and sent
subsequently. Therefore we can get the send buffer based on
the method described in Section 4. Figure 15 shows a stack
layout example of 64-bit Edge at runtime. We can easily get
an Anchor Point and locate the send buffer and then extract
the POST body data including the outlook login password.

A similar case is also in the login procedure of Skype
which has been purchased and reformed by Microsoft. In the
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Child-sP Value

000000EF DIDEEBBO 00000212 BCEF3880

000000EF'DIDEEBBS 00007FFA'674B777A WININETICSecureSocket::Send+0xda

000000EF'DIDEEBCO  0000021A'CA5716E0

000000EF DIDEEBCS  00000000°'00000020

000000EF DIDEECO0 0000021A'C4572310

000000EF DIDEECO8 00007FFA'674A642A WININETIHTTP_REQUEST_HANDLE_OBJECT::SendRequest_Fsm+0x5a6
000000EF DIDEEC10 <—— buffer address

000000EF DIDEEC18 000000EF DIDEEDIO

000000EF'DIDEEC20 00000212'BCECF7D0

000000EF' DIDEEC28 | 00000000°0000027E | <—— buffer size

FIGURE 15: An example of stack frame for 64-bit Edge at runtime.

return address
function  [rcx]
entryPoint [rdx]
calllnfo [r8]
arge [19]
argy

sp———>

Current interpreter stack frame

Range of locals and temporaries

Output parameters

FIGURE 16: Stack layout when step into amd64_CallFunction.

new version of Skype on Windows 10, Skypeapp.exe processes
the login using the WININET library. The login data is
sent by the WININET!CSecureSocket::Send function without
additional encryption. We can also extract the plaintext
including the login name and password in the send buffer.

(2) Get the String Trace of the Chakra JavaScript Engine.
Chakra is a JavaScript engine developed by Microsoft. It is
integrated into the Edge browser and its core components
have become open source [42]. Same with other Just-in-time
(JIT) engines, Chakra provides an interpreter for JavaScript
byte code and also compiles byte code into machine code
just in time for an optimization. Chakra engine constructs an
interpreter stack frame for JavaScript code, which provides
convenience to the search based on stack space. We discover
that there is a stable function call in the Chakra engine
when JavaScript function is called; for 64-bit platform it
is amd64_CallFunction. The stack layout when executing
amd64_CallFunction is shown in Figure 16. In a 64-bit plat-
form the first four arguments are passed through registers in
function calls. The amd64_CallFunction has five arguments,
so the last is stored in the stack, which is shown in Figure 16
as argv with italic. The argument is a pointer that pointers to
an argument list which will be passed into the next JavaScript
function. In the implementation of Chakra, the address of
the argument is in the range of locals and temporaries in the
current interpreter stack frame. Therefore we can reference
the output parameters and locals through the last argument.
In this case, we try to extract the strings stored in the
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TaBLE 3: Fields obtained from HT TP object structures.

Website Success rate
www.baidu.com high
www.icloud.com high
mail.aliyun.com high
mail.163.com low
mail.yahoo.com null

LiteralString and LiteralString variables in JavascriptArray
and DynamicObject defined in the Chakra engine; then we
pick the login information in the string trace record.

We select five websites as the target in the experiment and
count the success rate of password acquisition. The average
CPU usage of Payload is suppressed to about 12%. The results
are shown in Table 3, where some websites have a high success
rate of nearly 100%. However, there is also low success rate,
especially for Yahoo. We think that it is because although
the JavaScript code executes fast in an interpreter procedure,
in most cases, there are no system calls involved, so it is
difficult to get all information. If a website provides additional
validation and encryption in the login procedure, it will bring
heavy JavaScript code and data propagation into the code.
We will get a high success rate in this case and opposite
results for other cases. We are not able to get the password
in Yahoo's login procedure in the experimental condition, as
its password is simply posted to the server as a plaintext.

Since we trace the string information of JavaScript code
dynamically, the log contains the semantic information of the
login context. From the log we can pick the password easily;
an example for iCloud is shown in Figure 17.

6. Conclusion

In this paper we propose a new threat model of process
memory data on the Windows platform. The core idea of
the model is to take full advantage of the imperfection of
current access control mechanism to acquire the live memory
data through critical data structures. The impact of network
bandwidth is considered in the model as well. We also design
several data extraction methods for the model, especially
the search method based on stack space. We implement and
verify our model through several popular web browsers.

In our model the function of data acquisition is deployed
on the OS, so it can use limited system calls to avoid
information inferring to some extent. However, it strives for
the CPU usage. This paper demonstrates the threat of the
HTTP communication structure of browsers, and its impact
on other kinds of information such as key structure. The
data extraction methods can also be applied to virtualization
environment and can provide a threat to virtual private
servers.

There are several restricted conditions on the application
of our model; for example, code execution on the target
system depends on the remote code execution vulnerability
or preinstalled malware. Also, we face challenges of attack
persistence and process data encryption and isolation, even
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1653296281: ax-border apple-id
1653296296: https://appleid.apple.com/account
1653305312: 6@qq . com
1653305734: Tab

1653305734: .mapl64|isPwdFocus
1653305734: isPwdFocus

1653306515: password

1653306531: si-password si-text-field
1653308156: 1C

1653309171: 1Cl

1653309468: 1Clo

1653309468: 1Clo

1653309718: 1Clou

1653310031: 1Cloud

1653311156: 1CloudI

1653311531: [1CloudID
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1653312046: Enter

1653312125: #sign-in

1653312140: si-password si-text-field disable dots
1653312140: POST

1653312140: /appleauth/auth/signin

1653312140: GET

- Password
/|
/

/|
|
|

/|
1653312140: {"accountName":"2[_  }@qq.com", "password” : ICIoudID], [ rememberMe” : false, "trustTokens":[1}

1653312140: application/json
1653312140: fdcBrowserData
1653312156: zh-CN

1653312187 7Ga44j1e3N1Y555°9240fjb75PaK4ijt.gEngMQEer_thTAZs.XTvyzeySGGEDdsihORoVyFGhScmvSuCKzI1nvsx1
1653312187: {"U":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) ApplelWebKit/537.36 (KHTML, like Gecko) Chrome

1653312187: {"accountName":"

@qq.com”, "password”:[1CloudID"|, "rememberMe" : false, "trustTokens":[]}

FIGURE 17: Part string trace log of iCloud login procedure.

though some protection mechanisms are not widespread.
Moreover, better automation methods of data structure anal-
ysis for target programs are need. Nevertheless, we show
the threat of the model through real experiments. The
existing research results of memory protection can mitigate
the threat to some extent, but we think that more defenses
should be integrated into the system. For example, we can
introduce more fine-grained permission control mechanisms
and take complicate data transformation to reduce the time of
plaintext in the memory.

In fact our terminals are faced with cyber threats such as
ransomware all the time. We explore the security weakness
of the endpoint and hope to enhance its security with more
practical defense.
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