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Data fusion is a powerful tool for the merging of multiple sources of information to produce a better output as compared to
individual source. This study describes the data fusion of five land use/cover types, that is, bare land, fertile cultivated land, desert
rangeland, green pasture, and Sutlej basin river land derived from remote sensing. A novel framework for multispectral and texture
feature based data fusion is designed to identify the land use/land cover data types correctly. Multispectral data is obtained using a
multispectral radiometer, while digital camera is used for image dataset. It has been observed that each image contained 229 texture
features, while 30 optimized texture features data for each image has been obtained by joining together three features selection
techniques, that is, Fisher, Probability of Error plus Average Correlation, and Mutual Information. This 30-optimized-texture-
feature dataset is merged with five-spectral-feature dataset to build the fused dataset. A comparison is performed among texture,
multispectral, and fused dataset using machine vision classifiers. It has been observed that fused dataset outperformed individually
both datasets. The overall accuracy acquired using multilayer perceptron for texture data, multispectral data, and fused data was
96.67%, 97.60%, and 99.60%, respectively.

1. Introduction

The conventional methodologies are present to measure and
monitor the land use/land cover (LU/LC) for regional and
global environment changes [1]. The real-time LU/LC data is
very important for resource management, future prediction,
crop growth assessment, and sustainable development [2].
Although conventionally LU/LC data is collected through
field base survey, remote sensing data collection has its own
importance due to time, accuracy, and transparency factors
and so forth. During the last decade, space-borne multi-
spectral data have proved more beneficial over ground and
airborne data for land monitoring, assessment, and accu-
rate information due to their increased spectral resolution.

Previously single source dataset is mostly used for LU/LC
classification but recently multisource dataset is used for
better overall accuracy results. Land cover is a primary
factor that plays an important role for physical and chemical
variation in environment. The change in LU/LC can be
accurately identified by monitoring the regional and global
classification maps continuously. When remote sensing data
is used along with ground truth data then it provides reli-
able and cost-effective LU/LC information. Remote sensing
mostly used the synthetic aperture radar (SAR) data for
LU/LC information but cloudy weather is one of the major
obstacles to acquire the information through optical imagery.
It has been strengthened the significance of new tools and
techniques for acquiring LU/LC thematic information from
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remote sensing data [3]. In recent years, satellite-based
remote sensing data have been very hot research area for
earth scientists.Many researchers have worked on combining
the spectral and optical data, which enhanced discrimination
power of integrated data and their overall classification
accuracy results [4, 5], and described the simple fused model
for land cover classification which is named fused mixture
model. The spatial and temporal adaptive-reflectance fusion
model (STARFM) was proposed by [6], which gave the
better accuracy results. For earth observation applications,
remotely accessed sensor base multispectral data provides
better large-scale information as compared to optical data [7].
The fusion techniques enhance the operational capabilities
of dataset with respect to other tuning factors and overall
accuracy results [8]. In data fusion, two or more datasets
are merged together to acquire one single dataset with the
entire dataset features individually [9]. The low resolution
multispectral dataset is fused with high resolution optical
radar dataset to get the better results in terms of spatial res-
olution and overall classification accuracy [10]. Huang with
his companion described that LU/LC is the coarse dataset
in spatial resolution and changes frequently when observing
through remote sensing and it is very difficult to measure
and monitor the change accurately [11]. Different image
fusion techniques with their constraints in implementation
stages are discussed by [12, 13]. They proved quantitatively
that fusion plays important role in better interoperational
capabilities and reduces the ambiguity linked with the data
acquired by different sensors or by same sensorwith temporal
variation. Quartz rich and poor mineral types are identified
by using the image fusionmethodwith the implementation of
supervised classifiermaximum likelihood (ML) and acquired
overall accuracy and kappa coefficient of 96.53% and 0.95,
respectively [14].

In this study, it has been tried to design a framework for
analyzing the potential of multispectral dataset fused with
texture feature dataset for the discrimination of different
LU/LC classes.

2. Study Area

This study explains the data fusion technique for LU/LC
classification instead of traditional ground base field surveys.
All the experimentations have been performed at Islamia
University of Bahawalpur Punjab province (Pakistan) located
at 29∘2344N and 71∘411E.This study describes the LU/LC
monitoring, management, and classification using fused
dataset generated by the combination of photographic and
multispectral radiometric data, which is mostly bare and
deserted rangeland. It would provide accurate results for
LU/LC cover changes and prediction for better crop yield
assessment.

3. Dataset

For this study, multispectral dataset is obtained by using the
device named Multispectral Radiometer Crop Scan (MSR5).
It gives data which is equivalent to the Satellite Landsat
TM (Thematic Mapper) [15]. It has five spectral bands, that

is, blue (B), green (G), red (R), near infrared (NIR), and
shortwave infrared (SWIR) ranges from 450 nanometers
to 1750 nanometers, while digital photographic data are
acquired by a high resolution digital NIKONCoolpix camera
having 10.1-megapixel resolution.

4. Material and Methods

The objective of this study is to analyze the five types of
LU/LC multispectral data with the digital photographic data.
A multisource data fusion frame work is designed to classify
the subjective LU/LC type’s data accurately. Different image
processing techniques have been applied on photographic
data, that is, color to gray scale conversion, enhanced con-
trast, and image sharpening procedure. A still camera is
mounted at 4-feet height stand and acquired five types of
LU/LC images dataset. For image dataset, 20 images of each
LU/LC with the dimension of 4288 × 3216 pixels with 24-
bit depth of jpg format have been acquired. To increase the
size of image dataset, 5 nonoverlapping region of interests
(ROIs) with different pixels size, that is, (32 × 32), (64 ×
64), (128 × 128), (256 × 256), and (512 × 512), have been
taken on each image with the dimension of (4288 × 3216)
and a total of 100 (20 × 5) images of above discussed
sizes have been developed for each land type and a dataset
containing 500 images on five types of LU/LC has been
developed for experimentations. Similarly, for multispectral
dataset, five spectral bands data are acquired and each band
comprises visible ranges, that is, B, G, and R, from 400
nanometers to 700 nanometers, invisible bands near infrared
(NIR) ranging from 750 nanometers to 900 nanometers, and
shortwave infrared ranges from 1350 nanometers to 1650
nanometers. The multispectral dataset are acquired using a
device multispectral radiometer (MSR5) serial number 566.
For (MSR5) dataset, it has been observed that 100 scans
of each of the LU/LC types and a total of 500 scans are
acquired on the same locationwhere digital images have been
acquired. To avoid sun shadow effect, whole data gathering
process has been completed at noon time (1.00 pm to 2.30
pm) under clear sky.

Experimentation. This study is unique because there is no
need for any special laboratory setup. For image dataset,
prior to further processing, different sizes of images have
been converted from color to gray scale images (8 bits) and
stored in bitmap (.bmp) format because MaZda software
works better to calculate texture features in this format.
The contrast level of grayscale images has been enhanced
by using the image converter software. Now image dataset
has been ready to calculate the first-order histogram and
second-order texture parameters. MaZda software has been
used to calculate 9 histogram features and 11 second-order
texture features (Haralick) using gray level cooccurrence
matrix (GLCM) in four dimensions, that is, 0∘, 45∘, 90∘, and
135∘ up to 5-pixel distance and calculated 220 (11 × 4 × 5)
texture features with 9 histogram features and 229 features
in total for each ROI. It has been observed that total 114500
(229 × 500) features space for whole image dataset have been
calculated [16]. It is important to be mentioned here that it
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Figure 1: Proposed framework for LU/LC fused dataset classification.

is not so easy to handle this large-scale feature space that is
why three feature selection techniques, namely, Fisher (F),
Probability of Error plus Average Correlation Coefficient (PE
+ AC), and Mutual Information (MI), have been employed
to extract optimized features dataset. These three techniques
have beenmerged together (F +PA+MI) and extracted thirty
most discriminant features (10 features by each technique)
out of 229 features space for each (ROI) image dataset. All
the experimentations have been performed using MaZda
software version 4.6 with Weka data mining tool version
(3.6.12) on Intel� Core i3 processor 2.4 gigahertz (GHz) with
a 64-bit operating system [17].

Proposed Methodology. The proposed methodology has been
described in Figure 1. First data fusion algorithm has been
described with all procedural steps.

Data Fusion Algorithm

Start main
{

Input 𝜖 Multispectral and Photographic land use/
Land cover dataset
For {
Step 1 to Step 7
Step 1 = Photographic and multispectral datasets 𝜖
five land types.
Step 2 = Data Preprocessing
Step 3 = Developed co-occurrence matrix for photo-
graphic dataset and extract texture features
Step 4 =Multispectral dataset with five spectral bands
𝜖 visible and invisible wavelength
Step 5 = Three feature selection techniques, fisher
(F), probability of error plus average correlation

(POE+AC) andmutual information (MI) aremerged
(F + PA+MI) and employed on photographic dataset.
Step 6 = Extract 30 optimized texture features dataset
Step 7 = 30 optimized texture features + 5 spectral
features 𝜖 fused dataset
End For
}

Step 8 = Machine vision classifiers are employed on
fused dataset
Output = Land classification Results
End main
}

Now Figure 1 describes the proposed methodology in detail.
At first step, two different types of datasets are acquired,
that is, image dataset and multispectral dataset. The second
step employs different image preprocessing filters, that is,
Sobel or Laplacian, to sharpen the images and extract first-
order and 2nd-order texture features. In step three, optimized
features dataset has been acquired by implementing three
combined feature selection techniques (F + PA + MI) and 30
most discriminant features are extracted.These 30 optimized
texture features are shown in Table 1. It has been observed
in Table 2 that the Mutual Information (MI) based selected
texture features are very much correlated, namely, “inverse
difference moment,” but these features have variation in
interpixel distance and dimension and, due to this variation,
their computed values are also different. For every pixel dis-
tance (𝑑) and angular dimension (𝜃), the different calculated
values are acquired for this texture feature which is “inverse
difference moment.” For this study, we have taken 𝑑 =
1, 2, 3, 4 and 5-pixel distance with angle dimension 𝜃 = 0∘,
45∘, 90∘, and 135∘. So, as a result, we cannot ignore any value
of the given texture features. MI based texture features values
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Table 1: Integrated texture feature selection table (F + PA +MI) for
ROI (512 × 512).

F + PA + MI
1 S(0, 4)InvDfMm
2 S(0, 5)InvDfMm
3 S(0, 3)InvDfMm
4 S(4, 4)InvDfMm
5 S(0, 2)InvDfMm
6 S(5, 5)InvDfMm
7 S(3, 3)InvDfMm
8 S(2, 2)InvDfMm
9 S(3, 3)InvDfMm
10 S(0, 1)InvDfMom
11 S(0, 2)SumEntrp
12 S(0, 5)DifEntrp
13 Perc.01%
14 S(1, 0)Correlate
15 S(5, 5)Entropy
16 S(5, 5)SumAverg
17 Skewness
18 S(0, 3)AngScMom
19 S(0, 2)SumVarnc
20 S(1, 0)InvDfMom
21 S(0, 3)Correlate
22 S(0, 3)Contrast
23 S(0, 4)Correlate
24 S(2, 2)Correlate
25 S(2, 2)Contrast
26 S(0, 4)Contrast
27 S(0, 1)Entropy
28 S(0, 5)Correlate
29 S(0, 2)Correlate
30 S(0, 3)SumVarnc

actually describe the LU/LCdataset into its owndirection and
as whole these features disclose the entire texture patterns.
It has been discussed by many researchers [10–14] that five
control features, that is, window size, texture derivative(s),
input channel (i.e., spectral channel to measure the texture),
quantization level of output channel (8 bits, 16 bits, and 32
bits), and the spatial components, that is, interpixel distance
and angle during cooccurrence matrix computation, play a
very important role during the analysis of texture features.

In the fourth step, these 30 texture features are combined
with 5 multispectral datasets and a fused dataset is developed
with the combination of two different sources of data [18].

Table 1 describes the optimized texture feature dataset
while Table 2 describes the multispectral feature dataset.

In the last step, this fused dataset has been deployed to
different machine vision classifiers, that is, artificial neural
network (MLP), Naı̈ve Bayes (NB), Random Forest (RF),
and J48; here j48 is the implementation of C4.5 algorithm
of decision tree in Weka software. Figure 1 describes the
multisource data fusion framework for LU/LC classification.

5. Results and Discussion

It has been observed that, as discussed above for image
dataset, four ROIs with different pixel sizes, that is, 32 × 32,
64 × 64, 128 × 128, and 256 × 256, do not give satisfactory
results for classification. The overall classification accuracy
of less than 75% has been observed by implementing the
MLP, NB, j48, and RF classifiers on the basis of these four
ROIs which have not been acceptable, while, on ROI 512 ×
512, the promising results for image data classification are
provided. Finally to generate the fused dataset, the ROI of size
512 × 512 has been merged with multispectral dataset. For
classification, different machine vision classifiers have been
employed on this fused dataset using Weka software version
(3.6.12), that is, Multilayer Perceptron (MLP), Naı̈ve Bayes
(NB), Random Forest (RF), and J48 [19]. These machine
vision classifiers are employed on optimized fused dataset.
Before deploying the fused dataset on Weka software, it
has been converted into the Attribute Relation File Format
(ARFF). This fused dataset has also been compared to both
individual texture and multispectral dataset. These machine
vision approaches have the potential to analyze the fused
dataset. For this fused dataset, it has been separated into 66%
for training and 34% for testing with 10-fold cross-validation
method and same strategy also has been implemented for
individual datasets, namely, multispectral data and texture.
Besides this, quite a fewother performance evaluating factors,
that is, mean absolute error (MAE), root mean squared error
(RMSE), confusion matrix, true positive (TP), false positive
(FP), receiver-operating characteristic (ROC), time complex-
ity (𝑇), and overall accuracy (OA), have also been calculated.
At first, the fused dataset for LU/LC classification has been
employed with different machine vision classifiers, namely,
MLP, RF, NB, and J48 with an optimized set of 35 features that
have shown different accuracy results. The overall accuracy
with different performance oriented parameters are shown in
Table 3.

Table 4 represents a confusion matrix of fused dataset;
it includes the information which is extracted by deploying
the MLP classifier and diagonal of table shows the maximal
values which are placed in five different LU/LC classes. MLP
shows the best overall accuracy among different employed
classifiers.

Fused dataset LU/LC classification graph of MLP is
shown in Figure 2. This shows that each type of dataset
has 100 data instances (ROIs) and these ROIs or data have
been classified into their five classes. Graphically data have
been classified into five LU/LC classes, that is, “blue color”
for fused dataset, “green color” for texture, and “red color”
for multispectral dataset. Figure 2 explained the LU/LC data
classification in MLP graph. Similarly, for texture and multi-
spectral dataset, the same classifiers with same strategy have
been employed as discussed in the above fused dataset. For
texture dataset, 30 optimized texture features [20] have been
deployed while, for multispectral dataset, 5 spectral features
have been individually implemented. It has been observed
that, for both texture andmultispectral dataset,MLP classifier
has shown the higher overall accuracy as compared to the
others deploying classifiers. As a result, the deployed MLP
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Table 2: Multispectral feature table.

MSR Types Blue Green Red Near infrared Shortwave infrared
MSR5 (generic) 450–520 nm 520–600 nm 630–690 nm 760–930 nm 1550–1750 nm
MSR5 (S. number 566) 485 nm 560 nm 660 nm 830 nm 1650 nm

Table 3: Fused dataset classification table.

Classifiers Kappa statistics TP rate FP rate ROC MAE RMSE Time (sec) OA
Multilayer perceptron 0.995 0.996 0.001 1 0.0048 0.0303 4.86 99.6%
Random Forest 0.994 0.995 0.002 1 0.0195 0.064 0.58 99.5%
J48 0.9675 0.974 0.007 0.986 0.0104 0.1011 0.24 97.4%
Näıve Bayes 0.8950 0.916 0.021 0.99 0.0351 0.1814 0.01 91.6%

Table 4: Fused dataset confusion table for multilayer perceptron (MLP).

Classes Bare land Desert rangeland Fertile cultivated land Green pasture Sutlej basin river land
Bare land 100 0 0 0 0
Desert Rangeland 1 99 0 0 0
Fertile Cultivated land 0 0 99 0 1
Green pasture 0 0 0 100 0
Sutlej basin river Land 0 1 0 0 99

Table 5: Texture data classification table.

Classifiers Kappa statistics TP rate FP rate ROC MAE RMSE Time (sec) OA
Multilayer perceptron 0.9702 0.976 0.059 0.989 0.0189 0.0969 2.26 96.67%
Random Forest 0.8782 0.902 0.025 0.987 0.0835 0.1756 0.40 90.35
J48 0.7536 0.810 0.050 0.890 0.0850 0.2760 0.20 80.34%
Näıve Bayes 0.6960 0.757 0.060 0.941 0.0988 0.3062 0.03 75.70%

classifier showed the higher overall accuracy with others
performance evaluating parameters including kappa coeffi-
cient, TP, FP, ROC,MAE, RMSE, and time complexity factors
[21, 22]. The overall accuracy with different performance
evaluating parameters is shown in Table 5.

Table 6 represents a confusion matrix for texture dataset;
it contains the information which is actual and predicted
data for MLP classifier. MLP shows the best overall accuracy
among different employed classifiers. Texture dataset LU/LC
classification graph of MLP is shown in Figure 2. This shows
that each type of dataset has 100 data instances (ROIs) and
these ROIs or data have been classified into their five classes.

Figure 2 explained the LU/LC data classification in MLP
graph. The overall accuracy of multispectral dataset with
different performance evaluating parameters with details is
shown in Table 7 [23].

It contains the information which is actual and predicted
data for MLP classification system. MLP shows the best
overall accuracy among different employed classifiers for
multispectral datasets. MLP confusion table formultispectral
dataset is shown in Table 8.

Multispectral LU/LC dataset classification graph of MLP
is shown in Figure 2. This shows that each type of dataset has
100 data instances or (ROIs) and these ROIs or data have been
classified into their five classes. Figure 2 explained the LU/LC
data classification in MLP graph.

Finally, a comparative LU/LC classification graph of
fused, multispectral, and texture dataset using MLP classifier
is shown in Figure 3. This shows that each type of dataset
has 100 data instances (ROIs) and these ROIs or data have
been classified into their five classes. The classification graph
for MLP classifier is shown in Figure 3. It has been observed
that fused dataset has relatively better overall accuracy as
compared to multispectral and texture dataset [24]. It shows
that data fusion plays a vital role for better land assessment,
management, and accurate monitoring purposes [25, 26].

6. Conclusions

This study is focused on the classification of five different
types of LU/LC datasets. Four data mining classifiers, that is,
MLP, RF, NB, and J48, have been employed on fused, texture,
andmultispectral dataset.These three types of dataset (fused,
texture, and multispectral) have been examined for overall
accuracy in classification with some other performance
evaluating factors as discussed above in Results and Discus-
sion. All the classifiers have shown satisfactory results, but
multilayer perceptron (MLP) result was considerably better
among all of them. It has been observed that, after deploying
MLP, an overall accuracy of 96.67% for texture data, 97.60%
for multispectral data, and 99.60 for fused dataset has been
observed. Fused dataset has shown better overall accuracy
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Figure 2: Classification graph using multilayer perceptron (MLP).

Table 6: Confusion table of texture data for multilayer perceptron (MLP).

Classes Bare land Desert rangeland Fertile cultivated land Green pasture Sutlej basin river land
Bare land 98 2 0 0 0
Desert rangeland 1 96 2 0 1
Fertile cultivated land 0 1 96 2 1
Green pasture 0 1 2 97 0
Sutlej basin river land 1 2 1 0 96

Table 7: Multispectral data classification table.

Classifiers Kappa statistics TP rate FP rate ROC MAE RMSE Time (sec) OA
Multilayer perceptron 0.9743 0.964 0.009 0.997 0.0240 0.0904 0.45 97.60%
Random Forest 0.9340 0.950 0.014 0.992 0.0395 0.1332 0.13 94.70%
J48 0.9170 0.934 0.020 0.965 0.0296 0.1610 0.03 93.30%
Näıve Bayes 0.7710 0.818 0.045 0.962 0.0730 0.2550 0.02 81.75%

Table 8: Confusion table of multispectral data for multilayer perceptron (MLP).

Classes Bare land Desert
rangeland

Fertile
cultivated land

Green
pasture

Sutlej basin river Land

Bare land 97 2 0 0 1
Desert rangeland 1 96 2 0 1
Fertile cultivated land 0 0 98 1 1
Green pasture 0 0 2 98 0
Sutlej basin river land 1 0 1 0 98

99.6

97.6
96.67

Fused dataset Multispectral dataset Texture dataset

Fused dataset
Multispectral dataset
Texture dataset

Figure 3: A comparison classification graph of fused, multispectral, and texture dataset.
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among all types of dataset. It has been observed that final
classification results of three datasets are not differing too
much but other performance evaluating factors, that is, kappa
statistics, RMSE, TP, FP, MAE, and execution time also play
an important role for analysis. It is worth mentioning here
that photographic data (texture data) is the visual data and
its visual frequency ranges from 400 nm to 700 nm which
has classification accuracy of 96.67%whilemultispectral data
include the visual plus nonvisual data (IR and SWIR) and
nonvisual frequency ranges from 750 nm to 1650 nm and
attained classification accuracy of 97.60%, while fused dataset
which integrated both types of data, that is, multispectral
and statistical texture, acquired better overall accuracy which
is 99.60% as compared to multispectral and texture dataset.
Finally, it is observed that as dataset features values have
been increased, the overall accuracy results have also been
observed better and this shows that multisource data inte-
gration significantly improves the analysis and classification
of LU/LC types and the employed classification framework
is a powerful tool to generate reliable, comprehensive, and
accurate results for LU/LC classification. In addition, it has
been observed that this method can be used for decision-
making, future prediction, and quick and accurate analysis
of land use and land cover, when employing sophisticated
rules on multisource LU/LC datasets. In future, the effect of
variation in light intensity with incident light angle will be
verified.
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