
Research Article
Automatic Emergence Detection in Complex Systems

Eugene Santos Jr. and Yan Zhao

Thayer School of Engineering, Dartmouth College, Hanover, NH, USA

Correspondence should be addressed to Eugene Santos Jr.; eugene.santos.jr@dartmouth.edu

Received 14 March 2017; Revised 1 July 2017; Accepted 24 July 2017; Published 12 September 2017

Academic Editor: Sergio Gómez

Copyright © 2017 Eugene Santos Jr. and Yan Zhao. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Complex systems consist of multiple interacting subsystems, whose nonlinear interactions can result in unanticipated (emergent)
system events. Extant systems analysis approaches fail to detect such emergent properties, since they analyze each subsystem
separately and arrive at decisions typically through linear aggregations of individual analysis results. In this paper, we propose
a quantitative definition of emergence for complex systems. We also propose a framework to detect emergent properties given
observations of its subsystems.This framework, based on a probabilistic graphical model called Bayesian Knowledge Bases (BKBs),
learns individual subsystem dynamics from data, probabilistically and structurally fuses said dynamics into a single complex system
dynamics, and detects emergent properties. Fusion is the central element of our approach to account for situations when a common
variable may have different probabilistic distributions in different subsystems. We evaluate our detection performance against a
baseline approach (Bayesian Network ensemble) on synthetic testbeds from UCI datasets. To do so, we also introduce a method
to simulate and a metric to measure discrepancies that occur with shared/common variables. Experiments demonstrate that our
framework outperforms the baseline. In addition, we demonstrate that this framework has uniform polynomial time complexity
across all three learning, fusion, and reasoning procedures.

1. Introduction

Complex systems usually consist of multiple subsystems,
whose nonlinear interactions can cause unpredictable and
disastrous outcomes. However, it is intractable to analyze
all possible outcomes in complex systems directly due to
the combinatorial nature of this problem. Extant analysis
approaches often build separate models for all subsystems
and make conclusions about the entire system by lin-
early aggregating individual analysis results. This approach,
although simple, cannot model emergence of complex sys-
tems. In fact, emergence is one of the most challenging
concepts of complex systems. However, there exists sig-
nificant discrepancy about the nature of emergence. Some
researchers, such as Mill and John [1] and Broad [2], model
complex systems using a layered approach, in which the
world consists of different strata. Per this approach, higher-
level emergent properties result from lower-level causal
interactions. Others, such as Wears et al. [3], study emergent
properties by predictive approaches and claim that emergent
properties are system level features that could not have been

anticipated. Per this definition, emergent properties are those
that cannot be predicted even by individuals who possess
thorough knowledge of the parts of this system. Popper and
Eccles [4] relate emergence to unpredictability by study-
ing the nondeterminism within complex system. Another
viewpoint identifies a spectrum of approaches to emergence.
Bedau [5] distinguishes between weak and strong emergence.
Per his definition, weak emergence can be derived from
the knowledge of the system’s microdynamics and external
conditions but only by simulation. Strong emergence, on the
other hand, cannot be derived even by simulation.

No matter how emergence is defined, the consensus
among these definitions is that emergence stems from the
interaction of subsystems of a complex system. To model
subsystem interactions and detect resulting emergence in
a complex system, we need to model this complex system
first. Extant complex systems modeling techniques can be
classified into three groups: (1) subjectmatter experts (SMEs)
manually analyze system dynamics and create a descriptive
model, such as the model in [3]; (2) experts simulate system
dynamics via agent-based complex systems model (ACS),

Hindawi
Complexity
Volume 2017, Article ID 3460919, 24 pages
https://doi.org/10.1155/2017/3460919

https://doi.org/10.1155/2017/3460919

2 Complexity

such as the model in [6]; and (3) data scientists collect
data about individual subsystems, learn subsystem models
from data via machine learning approaches, and integrate
subsystem models via ensemble methods, such as the model
in [7]. The first approach is only useful to perform postevent
analysis, since SMEs can only manually analyze event related
scenarios from all possible scenarios, whose number is
combinatorial. The second approach requires that experts
manually build behavioral models for each agent and set up
proper parameters. It is both time-consuming and expensive
to build such models for large-scale complex systems. The
third approach, even though easy to apply and suitable for
large complex systems, cannot detect emergence, because
ensemble methods integrate subsystem models by their out-
puts, neglecting their interactions among shared/common
variables.

To overcome the drawbacks in extant approaches, we
need a new framework that can automatically build complex
system models from data, can detect emergence, and can
scale to large complex systems simultaneously. The first
requirement for the new framework is learning a complex
systemmodel from data automatically. Given a single dataset
drawn from the entire complex system, we could simply learn
a single model in hopes of capturing all interactions and
then detect emergence within it. However, since large-scale
complex system usually consists of multiple (loosely) coupled
(possibly competing) subsystems, it is impractical (and likely
infeasible) to construct a single dataset which captures all
its features and dynamics. We typically only have access to
multiple datasets corresponding to different subsystems at
best. Due to this limitation, we can only learn a separate
model from each dataset for a subsystem and fuse them into
one model via shared variables between different submod-
els. Ensemble methods learn separate models for different
subsystems, but ensemble method infers on these models
separately and chooses the (weighted)majority opinion as the
final opinion. However, the true result may differ from the
majority opinion.

We provide an alternative definition of emergence in
complex systems derived as follows: Given some target
variable, we query its state on the subsystem models learned
from corresponding datasets and group their opinions into
majority and minority sets. Then we observe its state at
the entire system level. If its true state (observed over the
entire system) is different from the majority opinion given
by subsystems, we consider this situation as emergent.This is
like the one given by predictive approaches in that it “cannot
be predicted even by individuals who possess thorough
knowledge of the parts of this system.”

As such, based on the existence of majority and minority
opinions, we can define emergence as composed of four types.
If all subsystems form a unanimous opinion, and the true
result differs from it, we call it Type 1 emergence. If both
majority and minority opinions exist, but the true result
differs from both opinions, we call it Type 2 emergence.
If both majority and minority opinions exist, and the true
result is consistent with the minority opinion, we call it Type
3 emergence. If only minority opinions exist, but the true
result differs from all minority opinions, we call it Type

4 emergence. This emergence definition is complete for a
complex system with an arbitrary number of subsystems, if
each subsystem can provide a valid opinion about the queried
target. However, if some subsystem cannot provide direct
opinion on target variable but can provide opinion about
variables which also exist in other subsystems, its opinionwill
impact other subsystems’ opinions about target variable in an
implicit manner. Even worse, if such feedback exists among
these subsystems, we will not reach a conclusion easily. Such
complex scenario will be studied in the future.

In this paper, we describe our approach to modeling
and detecting emergence in complex systems according to
our proposed definition of emergence. In brief, we first
learn subsystem dynamics through a probabilistic graphical
model called Bayesian Knowledge Bases (BKBs) [8] from
observations on each subsystem. Then we fuse these BKBs
into one BKB via the BKB fusion algorithm [9], which
includes interactions among subsystems both probabilisti-
cally and structurally sound. We name the fused BKB as
FBKB. Lastly, we perform belief updating on the fused BKB
(FBKB) to detect emergence in this complex system. The
entire framework, which consists of learning, fusing, and
reasoning blocks, is named as the Bayesian Knowledge Fusion
for Complex System (BKFCS).

Experiments on synthetic datasets show that our pro-
posed method can detect emergence over extant approaches.
We also show that our proposed algorithm has polynomial
time complexity for all three phases of learning, fusion, and
reasoning.

The contribution of this paper is twofold:

(i) It defines four types of emergence in a complex system
based ondeviations frommajority andminority opin-
ions observed from each subsystem, derived from
observations/datasets of its subsystems. This quanti-
tative data-driven emergence definition is different
from extant descriptive definitions of emergence in
that it sets up a concrete boundary between dif-
ferent kinds of emergence. This unique quantitative
approach is the first of its kind to the best of our
knowledge.

(ii) It designs an automatic emergence detection algo-
rithm based on supervised machine learning tech-
niques. This framework is built upon a probabilistic
graphical model named Bayesian Knowledge Base,
which not only detects the four types of emergence,
but also traces back variable interactions resulting in
emergence.

The rest of this paper is organized as follows: We
begin with brief backgrounds on Bayesian Knowledge Bases
(BKBs), learning BKBs from data, multiple BKB fusion, and
belief updating on BKBs.These are the principle components
used in our detection framework and algorithm. Next, in
Section 3, we formally define emergence in complex systems
according to our four proposed types, provide an illustrative
example of a complex system, apply our emergence detection
framework to this example, explore factors underlying emer-
gence in complex systems with respect to our framework,

Complexity 3

and briefly recap the framework and its operation. Having
established our framework, we detail our experiments and
analyses on synthetically generated complex systems testbeds
against extant approaches and our proposed factors and
measures.

2. Background

This section first introduces Bayesian Knowledge Bases
(BKBs), the building block of our proposed framework. Next,
we summarize the BKB learning approach for subsystem data
and describe how to fuse such multiple BKBs into one fused
BKB, which represents subsystem interaction that can cause
emergence. Lastly, we present how to run belief updating on
a fused BKB and its role in emergence.

2.1. Bayesian Knowledge Bases (BKBs). Before introducing
BKBs, we would like to provide some intuitions behind our
choice of building blocks for our framework. Researchers
have proposed various methods and modeling strategies to
explore different aspects of complex system. In this paper,
since the research objective is to detect and explain emer-
gence in complex systems, we opted for probabilistic graph-
ical models, which are powerful tools to explore variable
relationships and provide quantitative explanations. In fact,
probabilistic graphical models such as Bayesian Networks
(BN) [10] and Markov Random Fields (MRF) [11] have
been widely applied to model causal relationships and/or
interactions among variables in a system. Many researchers
also proposed different methods to learn a Bayesian Network
or Markov Random Field from data [12–20].

However, neither BNs or MRFs will serve our purpose
well. In a MRF, variable connections are undirected, which
cannot provide a causal relationship. However, one of our
goals is to understand causal relationship in emergence. For
BNs, extantmethods of fusingmultiple BNs into one BNhave
several drawbacks. First, if two BNs include contradictory
information about variable causality direction, extant fusion
algorithm requires compromise and consensus regarding this
direction [12, 13], which results in unrecoverable information
loss. Second, if two BNs contain incompatible variable distri-
butions, a new distribution is created by merging them [12].
Unfortunately, this new distribution no longer represents the
observed causal relationships found in the subsystems.

To solve these problems, we apply Bayesian Knowledge
Bases [8] into our emergence detection framework. BKBs
are an alternative to Bayesian Networks (BNs), by specifying
dependence at the instantiation level (versus BNs that are
specified only at the random variable level); by allowing for
cycles between variables; and by loosening the requirements
for specifying complete probability distributions. Figure 1
illustrates a simple BKB.

In general, a BKB 𝐾 is specified by a set of I-nodes I
(instantiation nodes, rectangles), a set of S-nodes S (support
nodes, circles), and edges E between I and S, namely, the
tuple {I, S,E}. In a BKB, a variable is called a component
(denoted as 𝐶). A BKB does not include an icon for a
component; instead it represents all instantiations/states of
a component with multiple I-nodes. This is different from

A = Yes A = No

0.02 0.98

B = Yes B = No

0.01 0.99 0.84 0.16

Figure 1: BKB 1.

a BN, which represents a variable/component with a single
icon. In Figure 1, there are two components, 𝐴 and 𝐵. Each
component can take two states, Yes and No. An I-node 𝐼𝑖𝑗 is
noted as a rectangle, and it represents the 𝑗th state of the 𝑖th
variable. In this example, an I-node 𝐼11 : 𝐴 = Yes corresponds
to the first rectangle in the first row with remaining I-nodes𝐼12 : 𝐴 = No, 𝐼21 : 𝐵 = Yes, and 𝐼22 : 𝐵 = No, respectively.

An S-node is represented as a circle, and it contains a
value for some prior or conditional probability. A directed
edge connects an S-node and an I-node, which represents
direct conditional dependency between the single immediate
I-node descendant of the S-node (also called its head,
denoted as head𝐾(𝑆)) and the immediate I-node predecessors
(also called its tail, denoted as tail𝐾(𝑆)). The conditional
probability 𝑃(head𝐾(𝑆) | tail𝐾(𝑆)) is denoted as Pr(𝑆). In the
example, the I-node 𝐼21 : 𝐵 = Yes is the descendant or head
of the S-node with value 0.01, and the I-node 𝐼11 : 𝐴 = Yes
is a predecessor or tail of the same S-node. This connection𝐼11 → 0.01 → 𝐼21 represents the conditional probability𝑃(𝐵 = Yes | 𝐴 = Yes) = 0.01. If an S-node only has a
descendant but no predecessor, the connection from it to its
descendant represents the prior probability. In the example,
one such connection is 0.02 → 𝐼11 , representing that 𝑃(𝐴 =
Yes) = 0.02.

The set of components which set {tail𝐾(𝑆)} belongs to
is the parent component set of I-node head𝐾(𝑆), noted as
Pa(head𝐾(𝑆)). In the example, component 𝐴 is the parent set
of the I-node 𝐼21 and the I-node 𝐼22 .This relationship is similar
to that in a BN, where all states of one variable have the same
set of parent variables. In a general BKB, however, different
states of a component can have different parent variable sets.

4 Complexity

This feature allows more flexible variable relationship in a
BKB than a BN; however, this is beyond the scope of this
paper.

∑
𝑖∈[1,𝑛]

{{{
∑

𝑗=[1,𝑞(𝐶𝑖)]

∑
𝑠∈{𝑠|head𝐾(𝑠)=𝐼𝑖𝑗}

𝑛 (𝐼𝑖𝑗, tail𝐾 (𝑆))
⋅ log (Pr (𝑠))
− 𝜆𝑚[

[
𝑞 (𝐶𝑖) ∏

𝐶∈{Pa(𝐶𝑖)}
𝑞 (𝐶)

− ∑
𝑗=[1,𝑞(𝐶𝑖)]

󵄨󵄨󵄨󵄨󵄨{𝑠 | head𝐾 (𝑠) = 𝐼𝑖𝑗}󵄨󵄨󵄨󵄨󵄨]]
}}}
.

(1)

2.2. SubsystemLearning fromData. This subsection describes
a BKB learning algorithm, inspired by extant BN learning
algorithms.

The first step of building our Bayesian Knowledge Fusion
for Complex System (BKFCS) emergence detection frame-
work is to learn a probabilisticmodel from subsystem data. In
machine learning literature, scoring function-basedmethods
have been widely applied in BN learning problem. Scoring
functions can be classified into two categories: information
theory-based scoring functions and Bayesian scoring func-
tions [14].

Typical information-theoretic scoring functions include
log likelihood (LL), minimal description length (MDL),
Bayesian information criterion (BIC) [15], Akaike informa-
tion criterion (AIC) [16], and mutual information test (MIT)
[17]. Typical Bayesian scoring functions include BD [18],
BDe [18], BDeu [19], and K2 [20]. However, BKBs represent
variable correlations at the variable instantiation level, so we
cannot apply existing scoring functions directly to a BKB
learning algorithm.

Instead, we propose amodified scoring function designed
for learning a BN-like BKB and a greedy algorithm to learn
a BKB from a given dataset. This algorithm learns a BKB
that maximizes the scoring function (1) given dataset 𝐷,
assuming it contains 𝑚 cases and 𝑛 variables/features, and
each feature/component 𝐶𝑖, 𝑖 ∈ [1, 𝑛], has 𝑞(𝐶𝑖) states/I-
nodes.Thenotation 𝑛(𝑋)means the number of cases inwhich
condition “𝑋” holds. The penalty constant 𝜆 is set to 0.01
in our algorithm. This function consists of two parts: the
first part computes the log likelihood of BKB given dataset𝐷, and the second part is the penalty for complexity and
overfitting, which is proportional to the difference between
number of possible S-nodes and number of S-nodes that
appear in the BKB. The difference between existing scoring
functions and our proposed function is that in the penalty
term (the second part), MDL, BIC, and AIC only penalize
network fitness by total number of parent-child patterns,
namely, 𝑞(𝐶𝑖)∏𝐶∈{Pa(𝐶𝑖)}𝑞(𝐶).

Wehave also learnedBKBs usingBayes, BDeu,MDL/BIC,
and MIT (entropy) and AIC scoring functions and tested
their performance against BKBs learned by our proposed

function on thirteen UCI datasets. We choose these five
popular scoring functions whose usefulness has been widely
tested and validated. Their average accuracies are 84%, 83%,
82%, 70%, and 85%, respectively (details in Table 12). Our
scoring function achieves 85% average accuracy on the same
testbed (details first column in Table 13). It turns out that
our function can outperform four of five scoring functions
and has comparable performance with AIC. However, BKBs
learned using AIC tend to result in simple structures. Even
though simple BKBs based on AIC scores can perform
equally well in classification tasks compared to BKBs learned
based on our proposed method, a BKB learned from AIC
score drops variable interactions within a BKB and across
BKBs. Without sufficient interactions across BKBs, a BKB
learned from AIC score reduces the capability to detect
emergence. As such, we cannot use AIC.

In general, learning a BN or BKB from data is NP-hard;
therefore we make several tradeoffs to achieve polynomial
time complexity. A detailed complexity analysis is provided
in Appendix A. In the worst case, the time complexity of the
entire learning algorithm is 𝑂(100 ∗ 1000 ∗ 𝑛2𝑚) = 𝑂(𝑛2𝑚),
where 𝑛 is the number of variables and 𝑚 is the number of
cases.The other two constants are explained in the Appendix.

To test its performance against other kinds of models
on a general supervised classification task on the same
testbed, we compare BKB classifier’s performance with a
wide range of popular classifiers: Adaboost [21], Bayesian
Network [22], SequentialMinimal Optimization (SMO) [23],
logistic regression [24], and decision tree [25]. Experiment
results show that our classifier has comparable accuracy. Since
learning a BN-like BKB is not the central contribution of this
paper, these results are detailed in Appendix A.

2.3. SubsystemProbabilistic Fusion. This subsection describes
how to fuse multiple BKBs learned from multiple subsystem
related datasets into one fused BKB (FBKB) that represents
the entire system dynamics.

To fuse multiple BKBs, we apply the BKB fusion algo-
rithm developed by Santos Jr. et al. [9]. This resulting
fused BKB (FBKB) is the Knowledge Base that the BKFCS
framework will reason on.

We design another BKB in Figure 3, which contains the
same set of variables, but different probabilistic distributions
with BKB 1 in Figure 1. Then we get a fused BKB in Figure 2
by fusing BKB 1 and BKB 2 from Figure 3. Briefly, the
idea is to associate each component from each BKB with a
special component named as source fusion component. In
this example, there are two such components: src𝐴 and src𝐵,
and each has two source I-nodes: “tom” and “john.” Each
source I-node connects to an I-node via all S-nodes pointing
to it. Each source I-node also has one S-node that points
to it, representing the reliability/weight of its source. In this
example, this weight is 0.5/0.5, meaning that two sources
“tom” and “john” are equally reliable.

This source fusion component is the glue that connects
variables from different subsystems together. Therefore, it
fuses BKBs from various subsystems at the variable instan-
tiation level. In this way, fusion not only computes inferences
originated from each subsystem, but also computes new

Complexity 5

srcA = Tom srcA = John

srcB = Tom A = Yes A = No srcB = John

B = Yes B = No

0.50.5

0.02 0.98 0.98 0.02 0.5

0.01 0.84 0.83 0.01 0.99 0.16 0.17 0.99

0.5

Figure 2: A fused BKB from BKB 1 and BKB 2.

inferences generated by subsystems interactions through
their shared variables. The accumulated probability of these
new inferences contributes to detection of emergence. Fusion
also preserves the distributions and variable relationships in
the base subsystems without loss of information. In general,
a fused BKB cannot be represented as a BN since both
cycles and different parent I-node combinations can occur
for each target I-node drawn from the different BKBs being
fused together [9]. We provide the details of the BKB fusion
algorithm in Appendix B.

The time complexity of BKB fusion algorithm is also
polynomial. In particular, its worst-case complexity is𝑂(|𝐼󸀠|+|𝑆󸀠|+|𝐸󸀠|), where |𝐼󸀠| is the number of I-nodes in all subsystem
BKBs, |𝑆󸀠| is the number of S-nodes, and |𝐸󸀠| is the total
number of edges/arcs. Please refer to Appendix B for details.

2.4. Belief Updating for Emergence Detection. This subsection
describes an efficient belief updating algorithm on the FBKB
and briefly demonstrates how to detect emergence and
perform general classification tasks at the same time.

In general, performing belief updating on a BN or a
BKB is an NP-hard problem. It is also NP-hard to find an
approximate solution [26]. Bayesian belief updating involves
computing the probability that target variable Tar takes a
certain state 𝑡 based on an observation that some other
feature variables take certain states. It is denoted as 𝑃(Tar =𝑡 | Evidence), where Evidence is a set of observed feature
variables instantiations. Since it is proportional to the joint
probability 𝑃(Tar = 𝑡,Evidence), we only compute this joint
probability. We can compute this probability by summing
up all inferences probabilities which are consistent with

Table 1: 𝑆-node marks.

Source Mark Value Meaning
Tom 𝑠1 0.02 𝑃 (𝐴 = Yes)
John 𝑠2 0.98 𝑃 (𝐴 = Yes)
Tom 𝑠3 0.01 𝑃 (𝐵 = Yes | 𝐴 = Yes)
Tom 𝑠4 0.84 𝑃 (𝐵 = Yes | 𝐴 = No)
John 𝑠5 0.83 𝑃 (𝐵 = Yes | 𝐴 = Yes)
John 𝑠6 0.01 𝑃 (𝐵 = Yes | 𝐴 = No)

Evidence and Tar = 𝑡. Exact inferencing simply enumerates
all inferences, picks out consistent ones, and sums their
probabilities as the joint probability.

If we do belief updating on BKB 1, BKB 2, and their fused
BKB, we will discover emergence. As a simple demonstration
of the belief updating procedure, we first name all S-nodes of
the three BKBs in Table 1. Notice that, in this example, each
pair of S-nodes sums up to 1, so only half of all S-nodes need
to bemarked. Based on thesemarks and belief updating rules,
we compute variable 𝐵’s state probability in the three BKBs,
as shown in Table 2. In the last two rows, the constant 0.25
is the product of two source fusion variable priors, namely,0.5 ∗ 0.5. In fact, since two sources have equal weights, and
the constant appears in all inferences, it does not change the
relative ordering of 𝐵’s (two) states’ probabilities.

From the last column 𝑃, we see that, for both BKBs 1 and
2, 𝑃(𝐵 = Yes) > 𝑃(𝐵 = No). In the fused BKB, on the other
hand, we see that 𝑃(𝐵 = Yes) < 𝑃(𝐵 = No). This is one
type of emergence, which cannot be detected by aggregating
separate analyses on the subsystems. This is just a simple

6 Complexity

Table 2: Belief updating of 𝐵’s state.
𝐵’s state Expression 𝑃𝑌tom 𝑠1𝑠3 + (1 − 𝑠1) 𝑠4 0.82𝑁tom 𝑠1 (1 − 𝑠3) + (1 − 𝑠1) (1 − 𝑠4) 0.17𝑌john 𝑠2𝑠5 + (1 − 𝑠2) 𝑠6 0.81
𝑁john 𝑠2 (1 − 𝑠5) + (1 − 𝑠2) (1 − 𝑠6) 0.18
𝑌fuse 0.25 (𝑠1 + 𝑠2) (𝑠3 + 𝑠5) + 0.25 (2 − 𝑠1 − 𝑠2) (𝑠4 + 𝑠6) 0.42𝑁fuse 0.25 (𝑠1 + 𝑠2) (2 − 𝑠3 − 𝑠5) + 0.25 (2 − 𝑠1 − 𝑠2) (2 − 𝑠4 − 𝑠6) 0.57

A = Yes A = No

B = Yes B = No

0.98 0.02

0.83 0.17 0.01 0.99

Figure 3: BKB 2.

example of emergence. For general purpose complex systems,
we will fully describe our detection framework through real-
world examples and provide the underlying mathematical
formulations and solutions.

Finally, we note that, in the example fused BKB, the
number of inferences doubled compared with that in each
single BKB, which is the result of variable interaction. In a
fused BKB, there can exist an exponential number of infer-
ences, which makes exact inferencing algorithm extremely
demanding with multivariate systems. Instead, we provide a
sampling-based approach to approximate the joint probabil-
ity. To overcome the NP-hard problem, we set up a constant
threshold on the number of valid samples we collect before
termination. Therefore, our approximation approach has
uniform polynomial time complexity and maintains decent
performance compared to exact inferencing algorithm. We
also compared its running time and accuracy against exact
inferencing algorithm and conclude that it is sufficient to

serve our purposes for detecting emergence efficiently. In
worst case, the time complexity of approximation algorithm is𝑂(SV∗|Evid|), 𝑟 ∈ 𝑁+, while the exact inferencing algorithm
is𝑂(𝑎SV∗|Evid|), where SV is the number of shared variables
among subsystems, |Evid| is the number of evidences in a
testing case, and 𝑎 is the average number of states across all
shared variables. Details are described in Appendix C.

3. Automatic Detection of Emergence

This section first formally defines different types of emer-
gence in complex systems and explains the intuitions behind
these definitions. Next, it applies our proposed framework
on a real-world example about a historical US blackout.
Lastly, we analyze some major factors causing emergence
in a general complex system and how to detect emergence
from data automatically. We briefly summarize our proposed
emergence detection framework.

3.1. Definition of Emergence in Complex Systems. We define
emergence in complex systems formally in this subsection,
which forms the basis for all the following subsections.

As mentioned in the Introduction, emergence is unpre-
dictable system behaviors caused by nonlinear interactions
within its subsystems. However, many other reasons can
cause unexpected/unpredictable system behaviors. In such
cases, those unpredictable behaviors should not be catego-
rized as emergence. To rule out alternative explanations of
unexpected behavior or emergent behavior of a complex
system, such as due to incomplete information, inconsis-
tent measurements, or inexpert judgments, we make three
assumptions about this definition:

(i) Assumption one is that all subsystems within a com-
plex system are observed, and their features/behaviors
are recorded descriptively and/or quantitatively. This
assumption indicates that there is no hidden sub-
system or obscured subsystem behavior, which may
result in unpredictable behavior in the overall system.

(ii) Assumption two is that someone with sufficient expert
knowledge can build consistent models based on
these observables for each subsystem and analyze
subsystem behaviors from the constructed models.
In this assumption, “consistent” means that the same
modeling technique and logic are applied across all
subsystems, and no discrimination is allowed.

(iii) Assumption three is that we have access to ground
truth about both subsystem and overall subsystem

Complexity 7

Table 3: Illustration of 4 emergence types.

Sub 1 Sub 2 Sub 3 Whole Type
a a a b 1
a a b c 2
a a b b 3
a b c d 4

behaviors, so that the emergence definition is based
on ground truth, rather than relative metrics influ-
enced due to applied modeling techniques.

In our framework, we require that datasets are available
for both subsystems and the overall system and that a
maximum likelihood logic is applied in the system behavior
modeling. In this way, all three assumptions are satisfied.
Prior work [28] studied an emergent border crossing behav-
ior during the 2009 H1N1 pandemic in Mexico using the
BKB framework. In that paper, two types of emergence were
defined: strong emergence and weak emergence. However,
the BKBs were manually constructed from descriptive data
sources. In this paper, we apply a data-driven approach for
automatic emergence detection whenever data is available.

Given subsystem data and maximum likelihood logic,
we can query about target variable’s (Tar’s) most likely state
in all subsystems. Then each subsystem makes decisions
based on their partial knowledge of Tar, learned from the
corresponding subsystem dataset. The subsystems’ opin-
ions can form multiple sets: a majority opinion set and/or
minority opinion set(s). In an extreme case, all subsys-
tems form a unanimous opinion, and there is no minority
opinion. In another case, each subsystem has a different
opinion from the others’, or each opinion has an equal
number of supporters. In this case, there is no majority
opinion.

At last we apply the same logic on an overall system
dataset to figure out the most likely state of Tar. Intuitively,
if there is a majority opinion from the subsystems side, it is
expected to coincide with the overall system opinion. Oth-
erwise, we claim this discrepancy as one form of emergence.
If there is no majority opinion from the subsystem side, and
overall system opinion agrees with one of theminor opinions,
it is also accepted. Otherwise, we also claim it as one type
of emergence. Based on these intuitions, we illustrate four
types of emergence in Table 3. In this table, Sub 1 to Sub 3
represent three subsystems. Whole means the opinion from
overall system. Type labels the type of emergence this case
belongs to. The states “a”, “b”, “c”, and so forth represent
different opinions about Tar from subsystems and/or overall
system.

In general, a complex system can have an arbitrary
number of subsystems, but three is the minimum number to
have all types of emergence. We notice that not all (if any)
will occur in a complex system. If Tar is binary, only Type 1
and Type 3 can occur; if it is multinomial, all four types can
occur. Furthermore, per this definition, we believe that Type
3 emergence should be observed most often. The condition
for Type 2 emergence is harder to meet, so it should occur

less frequently. Type 1 and Type 4 are likely rarest as their
conditions are most stringent.

3.2. Emergence Detection: BKFCS. This subsection details
emergence detection through BKFCS.

If we have a dataset about system behaviors under
various circumstances, we can apply our BKFCS to detect
emergence within the system from data. We also name a
system configuration as a case in the dataset. A system
configuration refers to a variable-state pair tuple, representing
system working status. For instance, if a system has two
binary variables, 𝑋 and 𝑌, then it will have at most four
different configurations, namely, 𝑋 = Yes, 𝑌 = Yes; 𝑋 =
No, 𝑌 = Yes; 𝑋 = Yes, 𝑌 = No; 𝑋 = No, 𝑌 = No.
In the system dataset, which is stored as a two-dimensional
matrix format, each row corresponds to one configuration,
and each column corresponds to a feature/variable in that
system. We also call each row an entry or case of the system.
In addition, we assume both subsystem datasets and overall
system dataset are available. Therefore, we can set up ground
truth for each case. To identify an emergent case against
a nonemergent case, we need to label each testing case as
emergence or nonemergence based onmajority andminority
opinions. Assuming that subsystem datasets are labeled as𝐷𝑙, 𝑙 ∈ [1, #subsystems 𝑛], and overall system dataset is
labeled as 𝐷𝑐. We use 𝐷𝑐 to label ground truth of each case,
but only provide BKFCS with subsystem datasets 𝐷𝑙. By
comparing its prediction with ground truth, we can measure
BKFCS’s performance.

To classify a testing case as emergent or nonemergent,
we first run belief updating on all BKBs learned from those
subsystem datasets. Then we form majority and minority
opinions based on individual opinions from all BKBs. Based
on these opinions, we know which state of target leads to
emergent case and which does not. Next, we perform belief
updating again on the fused BKB, which gives probabilities
for both emergence and nonemergence states.

𝑝+ = ∑
𝑡∈{𝑒|𝑒 is emergent}

Pr (𝑡) ,
𝑝− = ∑

𝑡∈{𝑓|𝑓 is nonemergent}
Pr (𝑡) , (2)

th = 𝑝󸀠+ − 𝑝󸀠− = 𝑝+ − 𝑝−𝑝+ + 𝑝− . (3)

To simplify this procedure, we first treat emergence
detection as a binary classification problem; namely, all
types of emergence cases are viewed as positive, while
nonemergence cases are viewed as negative. For each testing
case, we compute the accumulated probability of this case
being positive 𝑝+ and the accumulated probability of it being
negative 𝑝− per function (2). Then we normalize 𝑝+ and 𝑝−
into 𝑝󸀠+ and 𝑝󸀠− and compare them to determine if this case is
emergent per (3). In this equation, if the difference th = 𝑝󸀠+ −𝑝󸀠− is bigger than a predefined threshold (will be discussed
in experiment section), we declare it as emergence. Then
we compare claimed result with ground truth to evaluate
BKFCS’s performance.

8 Complexity

3.3. An Example of Emergence in Complex System. This
subsection details a real-world emergence example.

We selected the 1996 US west coast blackout [29] as
our conceptual demonstration example. On July 2, 1996,
a blackout occurred on the west coast of the US, which
impacted over two million customers. The first event was
a single phase-to-ground fault on the 345 kV Jim Bridger-
Kimport line. System protection removed this line from
service clearing the fault. Twenty milliseconds later, system
protection opened the 345 kV Jim-Bridger-Goshen line due
to misoperation of the ground element in a relay at Bridger.
Loss of the two lines correctly initiated a remedial action
scheme (RAS) that removed two generating units from
service. The next event was system protection opening the
230 kV Round Up-LaGrande line due to misoperation of
a zone 3 relay at Round Up. These three events together
caused a series of disturbances to the entire systemand caused
overload on other lines, which further brought down more
lines offline.

Per incident report [30], “the simultaneous combination
of operating conditions on July 2 was not anticipated or
studied.The speed of the collapse seen July 2was not observed
in this region and was not anticipated in studies.” In fact, due
to the combinatorial nature of interactions that could happen
in such complex systems, it is impractical to evaluate all
combinations in their studies and prevent all possible advert
outcomes before they happen.

This incident meets all three assumptions of proposed
emergence definition. First, all behaviors and features of each
subsystem, which is power supply and delivery system in the
case, are recorded. Their designed features are all functional
as expected. For each subsystem, its individual purposes,
such as line protection, power delivery rebalancing, and
overload protection, are all achieved as well. In theory, these
measures should be sufficient to protect the entire system
fromcollapsing. In short, thismeets the first assumption of no
hidden behavior or missing information. Second, all subsys-
tems handle incidents according to the same logic, which is
prebuilt into hardware and software action rules. Employees
in that company also followed operation procedures to
handle all situations they met to solve immediate problems.
This satisfies the second assumption of equal treatments in
all subsystems. Finally, the entire system behavior is also
recorded, which represents system-scale failure. Therefore,
we know the ground truth behavior of both subsystems and
overall systems.

Since all three assumptions are met, we can claim that the
observed behavior belongs to Type 1 emergence. Itmeans that
since all subsystems have been reviewed separately, power
delivery in the entire network should not fail. However,
overall system observation tells us the opposite. In the next
subsection, we apply our proposed framework to model this
incidence and compute the emergence.

3.4. Applying Emergence Detection Framework on 1996 US
West Coast Blackout Incidence. This subsection details how
to apply our proposed framework to model this incidence.

In this accident, the first three major events are Jim
Bridger-Kimport line open, Jim Bridger-Goshen line open,

andRoundUp-LaGrande line open. Since details of incidence
are recoded in descriptive manner, we manually build three
BKBs representing each event (Figure 4). Next, we fuse them
into one FBKB (Figure 5) by BKB fusion algorithm. Then
we perform BKB belief updating on three-event BKBs and
the FBKB and choose variable “system failure” (abbr. “SF”)
as target. For demonstration purpose, we label S-nodes as
before in Table 4. Next, we list target state probabilities for
every subsystem (single event) and entire system in Table 5.
In the last two rows of this table, variable𝑤1 is the product of
source fusion variable probabilities which correspond to that
inference. Remember that the BKBs in this case are simplified
such that only instantiated variables states are depicted, so we
can see some S-nodes do not occur in any subsystem BKB but
occur in overall system BKB.

In Table 5 checking target state probabilities, we know
that, in all three events, 𝑃(SF = 𝑌) < 𝑃(SF = 𝑁), but in
the overall system BKB, we see that 𝑃(SF = 𝑌) > 𝑃(SF = 𝑁).
This is a Type 1 emergence per our definition. Now we study
this emergence from a mathematical point of view. We know
the values of S-nodes in these BKBs are just one solution to
the following set of inequalities. Other types of emergence
can be constructed in a similar way if the feasible region
for these inequalities is not empty. This is the mathematical
foundation (4) for emergence in thiswork.However, this real-
world example only displays one type of emergence. In the
next section, we will discuss emergence detection in a general
system.

𝑃𝑑 (Tar = Yes) > 𝑃𝑑 (Tar = No) ,
𝑃𝑓𝑢 (Tar = Yes) < 𝑃𝑓𝑢 (Tar = No) ,

𝑑 = 1 ⋅ ⋅ ⋅ 𝐾 s.t. ∀𝑖, 𝑠𝑖 ∈ (0, 1) .
(4)

3.5. Relevant Factors Underlying Emergence. This subsection
describes relevant factors effecting emergence in complex
systems from data-driven approach and emergence detection
on general systems.

Recall the US blackout example above. We noticed that
it shared multiple parameters in different subsystems, both
variables and probabilities. In a general complex system,
however, all kinds of divergence can occur across different
subsystems. We now discuss these variations from a data-
driven approach, which provides quantitativemetrics of these
factors.

In some complex systems, different subsystems have
similar structures and parameters, such as power delivery
system; in other complex systems, subsystems differ from
each other, such as in health care delivery systems. It is
reasonable to believe that subsystem variation also plays
a role in emergence of complex systems. Therefore, if we
collect multiple datasets for subsystems of a complex system,
we should consider how different datasets coming from
different subsystems differ from each other. To quantify their
difference, we define dataset similaritymetrics.Thesemetrics
introduce relevant factors for emergence. These metrics will
be used in the Experiments.

Complexity 9

Jim Bridger-
Kimport line
open = Yes

Jim Bridger-
Goshen line
open = No

Initiate RAS = Yes Initiate RAS = No

Disturbance = Yes Disturbance = No

System failure = Yes System failure = No

0.5 0.5

0.05 0.95

0.999 0.001 0.002 0.998

0.4 0.2 0.6 0.8

Jim Bridger-
Kimport line
open = No

Jim Bridger-
Goshen line
open = Yes

Initiate RAS = No

Disturbance = Yes Disturbance = No

System failure = Yes System failure = No

0.5 0.5

1.0

0.02 0.98

0.4 0.2 0.6 0.8

Disturbance = No

Round Up-LaGrande line
open = Yes

Round Up-LaGrande line
open = No

Low voltage alarm = Yes Low voltage alarm = No

System failure = Yes System failure = No

0.7

0.02 0.98

0.98 0.02 0.01 0.99

0.99 0.01 0.02 0.98

Figure 4: US blackout three-event BKB.

10 Complexity

Src_Jim Bridge-Kimport
line open = event 1

Src_Jim Bridge-Kimport
line open = event 2

Src_Jim Bridge-Goshen
line open = event 1

Src_Jim Bridge-Goshen
line open = event 2

0.5 0.5 0.5 0.5

im Bridge-Kimport line
open = Yes

Jim Bridge-Goshen line
open = Yes

0.5 0.5 0.5 0.5

Src_initiate RAS = event 1 Src_initiate RAS = event 2

0.5 0.5

Initiate RAS = Yes Initiate RAS = No

0.99 0.999 0.01 0.001

Src_disturbance = event 3

Src_disturbance = event 2

Src_disturbance = event 10.33

0.33

0.33

Distrubance = Yes

0.3 0.99 0.9990.02

0.002

0.99 0.01

0.4 0.6 0.4 0.6

Round Up-LaGrande line
open = Yes

Round Up-LaGrande line
open = No

Low voltage alarm = Yes Low voltage alarm = No

0.98 0.010.02 0.99

Src_System
failure = even 3

Src_System
failure = even 2

Src_System
failure = even 1

System failure = Yes System failure = No

0.99 0.01 0.02

0.98

0.33

0.33
0.33

Figure 5: Three-event fused BKB with equal weight.

Complexity 11

Table 4: 𝑆-node labels for US blackout incidence BKBs.
Event Mark Value Meaning
1, 2 𝑠1 0.5 Jim Bridger-Kimport line open = 𝑌
1, 2 𝑠2 0.5 Jim Bridger-Goshen line open =𝑁
1 𝑠3 0.05 Initiate RAS = 𝑌 | (Jim Bridger-Kimport line open = 𝑌, Jim Bridger-Goshen line open =𝑁)
1 𝑠4 0.999 Disturbance = 𝑌 | Initiate RAS = 𝑌
1 𝑠5 0.002 Disturbance = 𝑌 | Initiate RAS =𝑁
1, 2 𝑠6 0.4 System failure = 𝑌 | Disturbance = 𝑌
1, 2 𝑠7 0.2 System failure = 𝑌 | Disturbance =𝑁
2 𝑠8 1.0 Initiate RAS =𝑁 | (Jim Bridger-Kimport line open =𝑁, Jim Bridger-Goshen line open = 𝑌)
2 𝑠9 0.02 Disturbance = 𝑌 | Initiate RAS =𝑁
3 𝑠10 0.7 Disturbance =𝑁
3 𝑠11 0.02 Round Up-LaGrande line open = 𝑌 | Disturbance =𝑁
3 𝑠12 0.98 Low voltage alarm = 𝑌 | Round Up-LaGrande line open = 𝑌
3 𝑠13 0.01 Low voltage alarm = 𝑌 | Round Up-LaGrande line open =𝑁
3 𝑠14 0.99 System failure = 𝑌 | low voltage alarm = 𝑌
3 𝑠15 0.02 System failure = 𝑌 | low voltage alarm =𝑁
1, 2 𝑠16 0.99 Initiate RAS = 𝑌 | (Jim Bridger-Kimport line open = 𝑌, Jim Bridger-Goshen line open = Y)

Table 5: Target state probability in US blackout.

State Expression Value
SF = 𝑌 in event 1 𝑠1𝑠2 (𝑠3 (𝑠4𝑠6 + (1 − 𝑠4) 𝑠7) + (1 − 𝑠3) (𝑠5𝑠6 + (1 − 𝑠5) 𝑠7)) 0.053
SF =𝑁 in event 1 𝑠1𝑠2 (𝑠3 (𝑠4 (1 − 𝑠6) + (1 − 𝑠4) (1 − 𝑠7)) + (1 − 𝑠3) (𝑠5 (1 − 𝑠6) + (1 − 𝑠5) (1 − 𝑠7))) 0.197
SF = 𝑌 in event 2 (1 − 𝑠1) (1 − 𝑠2) 𝑠8 (𝑠9𝑠6 + (1 − 𝑠9) 𝑠7) 0.051
SF =𝑁 in event 2 (1 − 𝑠1) (1 − 𝑠2) 𝑠8 (𝑠9 (1 − 𝑠6) + (1 − 𝑠9) (1 − 𝑠7)) 0.199
SF = 𝑌 in event 3 𝑠10𝑠11 (𝑠12𝑠14 + (1 − 𝑠12) 𝑠15) + 𝑠10 (1 − 𝑠11) (𝑠13𝑠14 + (1 − 𝑠13) 𝑠15) 0/034
SF =𝑁 in event 3 𝑠10𝑠11 (𝑠12(1 − 𝑠14) + (1 − 𝑠12) (1 − 𝑠15)) + 𝑠10 (1 − 𝑠11) (𝑠13 (1 − 𝑠14) + (1 − 𝑠13) (1 − 𝑠15)) 0.667
SF = 𝑌 overall 𝑤1𝑠1𝑠2𝑠16𝑠4𝑠6 + ⋅ ⋅ ⋅ 0.109
SF =𝑁 overall 𝑤1𝑠1𝑠2𝑠16𝑠4(1 − 𝑠6) + ⋅ ⋅ ⋅ 0.077

Assume 𝑉𝑖 and 𝑉𝑗, 𝑖 ̸= 𝑗, are two sets both including
variable V. Let V𝑖 ∈ 𝑉𝑖 and V𝑗 ∈ 𝑉𝑗 be V in 𝑉𝑖 and 𝑉𝑗.

Define pairwise variable similarity, 𝛽V(𝑉𝑖, 𝑉𝑗) =
exp(−(𝐷𝑘𝑙(V𝑖 ‖ V𝑗) + 𝐷𝑘𝑙(V𝑗 ‖ V𝑖))/2), where 𝐷𝑘𝑙(V𝑖 ‖ V𝑗) is
the Kullback-Leibler divergence of V𝑗 from V𝑖.

Thismeasures the difference of a certain variable between
two experts’ views.

Assume that V ∈ 𝐼 and that it only exists in 𝑉𝑘1 , 𝑉𝑘2 , . . . ,𝑉𝑘𝑞 , where 1 < 𝑞 ≤ 𝑛, 1 ≤ 𝑘1 < 𝑘2 < 𝑘𝑞 ≤ 𝑛.
Define variable similarity, 𝛾V, as the average pairwise

variable similarity for variable V in these sets, namely, 𝛾V =∑1≤𝑡<𝑤≤𝑞 𝛽V(𝑉𝑘𝑡 , 𝑉𝑘𝑤)/𝑛(𝐼). This measures the difference of
certain variable in all experts’ views on average.

Define datasets similarity, Ω, as the ratio between 𝑛(𝐼 ={V | V ∈ 𝑉𝑖∩𝑉𝑗, 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛}) and 𝑛(𝑈 = {V | V ∈ 𝑉𝑖∪𝑉𝑗, 1 ≤𝑖 ̸= 𝑗 ≤ 𝑛}), where 𝑛(𝑋) denotes number of variables of set𝑋.
This measures the difference in the variable selection criteria
of two experts.

𝑇𝑑𝑙 = 𝐷𝑗max
𝑙 [Tar] ,
s.t. 𝑗max = argmax

1≤𝑗≤𝑚

∑
1≤𝑖≤𝑛

1 (𝑉𝑑𝑙𝑖 == 𝐷𝑗𝑙 [𝑉𝑙𝑖]) , (5)

𝑇𝑑∗𝑙 = argmax
𝑡∈{𝑇𝑑
𝑙
}

𝑚∑
𝑗=1

1 (𝐷𝑗
𝑙 [Tar] == 𝑡) . (6)

A related question is how these differences could happen
in real-world systems.The answer is complicated. Sometimes
different subsystems observe partially overlapped subsets
of features on a system, and each shared variable in dif-
ferent subsystems has the same probability distribution.
Such systems should have high dataset similarity scores
between their subsystems. In other situations, different sub-
systems observe the same variable from various perspectives,
resulting in contradictory probability distributions on each
shared variable. These systems will have low dataset simi-
larity scores between their subsystems. In the second kind
of situations, shared variables have different distributions
from one source to another caused by perspective differ-
ence, sample representativeness, random noise, and system
biases.

Therefore, once we have datasets about subsystem char-
acteristics under various system configurations, we should
be able to identify which configurations lead to emergent
behaviors.

As for ground truth, we apply a model independent
criterion. Let 𝑉𝑙 = {𝑉𝑙1, 𝑉𝑙2, . . . 𝑉𝑙𝑛,Tar} be the set of variables

12 Complexity

observed in 𝐷𝑙, and let 𝑉𝑐 = {𝑉1, 𝑉2, . . . , 𝑉𝑁,Tar} be the set
of variables observed in 𝐷𝑐. For the 𝑑th case 𝐷𝑑𝑐 ∈ 𝐷𝑐, we
denote its target state (Tar = 𝐷𝑑𝑐 [Tar]) as Tar𝑑. Similarly,∀𝑉𝑙𝑖, 𝑖 ∈ [1, 𝑛], we denote its state (𝑉𝑙𝑖 = 𝐷𝑑𝑐 [𝑉𝑙𝑖]) as 𝑉𝑑𝑙𝑖 . Let𝑚 be the number of observations in 𝐷𝑙, and let 𝐷𝑗

𝑙
[𝑉𝑙𝑖], 𝑗 ∈[1,𝑚], 𝑖 ∈ [1, 𝑛], be the state of variable𝑉𝑙𝑖 of 𝑗th observation

in𝐷𝑙. We determine target state of case𝐷𝑑𝑐 through function
(5), namely,𝑇𝑑𝑙 . However, if𝑇𝑑𝑙 is not unique, we pick the best
state𝑇𝑑∗𝑙 by function (6).Then, for each case𝐷𝑑𝑐 , 𝑑 ∈ [1,𝑀],
in 𝐷𝑐, we can compute opinions about target state from all
subsystems based on {𝐷𝑙, 1 ≤ 𝑙 ≤ 𝐿} and these two equations,
resulting in opinion vector (𝑇𝑑∗1 , 𝑇𝑑∗2 , . . . , 𝑇𝑑∗𝐿). Combined
with its true target state 𝐷𝑑𝑐 [Tar], we can determine whether
it is an emergent case and which type of emergence it belongs
to. This forms the ground truth for each case in testing set𝐷𝑐.

Based on the ground truth, we can perform an emer-
gence detection task. Given several datasets 𝐷𝑙, 𝑙 ∈ [1, 𝐿],
representing subsystem dynamics, we first learn each BKB
from one dataset by BKB learning algorithm introduced in
the Background. Then we fuse these BKBs into one FBKB
per BKB fusion algorithm. Lastly, we run belief updating via
sampling method on both individual BKBs and the FBKB for
each testing case. To detect emergence versus nonemergence
case, we form majority and minority opinions by querying
about most probable state of target variable Tar on individual
BKBs and compare the opinion of querying FBKB on target
variable Tar. Per emergence definition, we decide whether
this case is emergence andwhich type of emergence it belongs
to. Finally, we compare our decision with ground truth label
to see if we make the right call.

3.6. Emergence Detection Framework Recap. We now provide
a step-by-step recap description of our framework.

Step 1. Collect data frommultiple subsystems.These datasets
contain subsystem feature states as well as target variable
states.

Step 2. Learn BKBs for each subsystem via BKB learning
algorithm if subsystem data are presented in a structured
form. Otherwise, we build BKBs manually based on descrip-
tive data about subsystem features and target variable states.

Step 3. Fuse BKBs for subsystems into one FBKB via BKB
fusion algorithm. If we have information about BKB reliabili-
ties, we assign them to fusion algorithm; otherwise, we simply
assign equal reliabilities to all subsystem BKBs.

Step 4. Analyze single BKBs and FBKB using belief updating.
Compute individual BKB opinions and FBKB opinions for
each system feature state combinations.

Step 5. Determine which cases belong to emergence and the
emergence type according to definitions in Table 3.

Step 6. Compare BKFCS decision of emergence with ground
truth if we have access to it and evaluate its performance.

Table 6: UCI benchmarks characteristics [27].

Dataset Var State Case Tar
Balance scale 5 23 625 3
Balloon 5 10 76 2
Breast cancer 10 39 286 2
Cars 7 26 1728 4
Hayesroth 5 18 132 3
Monks 7 19 556 2
Nursery 9 32 12960 5
Tictactoe 10 29 959 2
Vote 17 34 435 2
Lymphography 19 63 148 4
Krvskp 35 75 3196 2
Mushroom 23 114 8124 2
Connect 4 43 129 6756 3

4. Experiments

This section begins with designing synthetic datasets that
simulate various types of complex systems. Then, it details
building complex system models from synthetic dataset via
BKB learning and fusion. Finally, we summarize the frame-
work’s performance in comparison with existing methods.

4.1. Designing Synthetic Datasets. Even though various types
of complex systems exist in real world, the subsystem datasets
for emergence modeling typically have not been available
for one of two reasons. (1) Extant subsystem behaviors
and features are usually described in natural language or
equations in postmortem briefings, but we cannot directly
apply the framework to such forms of knowledge now. (2) In
the cases when subsystem datasets have been recorded, they
are not available to the public for commercial, security, or
political reasons. As such, we test our proposed framework
BKFCS against baselines using synthetic testbeds.

We selected thirteen datasets (Table 6) fromUCImachine
learning library [27] per several rules. First, both independent
and dependent variables are categorical or binary, since
BKBs do not currently handle continuous variables. If we
choose continuous features and discretize them, we will
introduce an uncontrolled level of noise. Second, sample
number is sufficient compared to variable number; otherwise,
no algorithm will extract useful pattern from that dataset
and result in meaningless comparison. Finally, these datasets
include various variable and sample number combinations
so that they represent a diversity of scenarios—covering
different scales of complex systems, different amounts of
available data, and various kinds of variable interactions
between subsystems and within a subsystem.

To evaluate BKFCS performance, we split one dataset into
training and testing set in a 10-fold cross validation fashion.
For each training set, we can split it into multiple subsets,
where a subset includes a part of all features and all cases.
Different subsets have varying numbers of shared/common
variables, representing their interactions in complex systems
(Algorithm 1). To simulate the dataset similarity difference,

Complexity 13

(1) DatasetD contains variable set V and target Tar
(2) For Ω in {0.1, 0.3, 0.6}
(3) # of shared variables:𝑁𝑠V = ⌊Ω ∗ |V|⌋
(4) For ℎ in [1, 5]
(5) Pick𝑁𝑠V variables from V randomly, assign to Vs
(6) For V in [1, 10]
(7) Split D intoDv

tr andDv
ts, |Dv

tr| = 90%|D|, Dv
ts = D \Dv

tr
(8) Split V \ Vs into V1,V2,V3 evenly
(9) Add Vs and Tar to V1,V2,V3
(10) Split𝐷V

𝑡𝑟 into𝐷V1
𝑡𝑟 , 𝐷V2

𝑡𝑟 , 𝐷V3
𝑡𝑟 per V1,V2,V3

(11) End for
(12) End for
(13) End for

Algorithm 1: Generating original synthetic datasets.

Table 7: Perturbation function to create perturbed sets.

𝑓1 (𝑥) ∼ 𝑓5 (𝑥) 𝑓6 (𝑥) ∼ 𝑓10 (𝑥)−log (𝑥) 𝑥2−log10 (𝑥) 𝑥3𝑒𝑥 2√𝑥
3√𝑥 𝑥4
cosh (𝑥) 𝑥

we introduce ten popular perturbing functions that trans-
form an original distribution to a perturbed one on shared
variables (Table 7).

These functions have various effects on the original
distribution: some can transform a uniform or relatively even
distribution to a skewed one, others can lessen the skewness
of distribution, and others can flip the density of distribution,
making rare cases more popular and common ones less
popular. In short, they cover most scenarios in which the
procedure of fusing multiple inconsistent information can
result. The perturbation procedure is as follows: (1) for each
shared variable, we compute its original probability mass
function (pmf); (2) choose a function randomly for each
source; (3) compute the perturbed pmf for each source; and(4)modify shared variable instantiations so that the distribu-
tion of the modified shared variable follows perturbed pmf
with minimal change.

4.2. Applying BKFCS on One Synthetic Dataset. This sub-
section demonstrates learning BKBs and BKB fusion from
synthetic datasets.

We first demonstrate BKFCS on dataset balloon, where
there are 76 cases, and each case includes five variables.
Therefore, per algorithm in Algorithm 1, each training set
contains 68 cases, and each testing set contains 8 cases. The
five variables are “size,” “act,” “age,” “color,” and “class”
(target variable), all of whom are binary variable. If we
set low variable overlap (Ω = 0.1), we can have one
shared variable. In one round, we pick “size” as shared
feature variable and split the rest three into three subsystems
evenly.

Based on three subsets created via this manner, we learn
three BKBs via the BKB learning algorithmmentioned in the
Background, which are drawn in Figure 6.

Then, we apply the BKB fusion algorithm detailed in the
Background to fuse three BKBs into one and perform belief
updating on fused BKB. For space reason, we omit showing
fused BKB here. Finally, we run emergence detection algo-
rithmon the testing set.Thedetails of emergence detection on
it aswell as on other datasetswill be presented in the following
subsection.

4.3. Emergence Detection on All Synthetic Datasets. This
subsection details emergence detection algorithm on all
synthetic datasets

Here we evaluate BKFCS performance on these datasets.
A typical way of evaluating classifier performance is to
compare true positive rate against false positive rate and
plot the results into ROC figures. To study the ratio of
correct claims of emergence versus false claims, we need to
know how many cases are truly emergence cases. After all,
emergence can only be detected if it occurs in testing sets.
We analyze the emergence rate in the synthetic datasets by
comparing majority and minority of individual subsystem
dataset opinions against overall system opinion on each case
in the testing sets. For instance, if, for a test case, three subsets’
opinions are the same, but the overall set opinion is different
than this opinion, we label this case as Type 1 emergence
case. If our model predicts that it has the same opinion
of the overall opinion, we classify it as correctly identified;
otherwise, we claim it generates a false negative case. To
evaluate its overall emergence rate in a dataset, we collapse
different types of emergence.The aggregated emergence rate,
which sums up all four types of emergence for each dataset
under different parameters, is summarized in Table 8.

Perturbation is also involved in some experiments to
simulate probability distribution variations in subsystem
datasets. We simply named these datasets as perturbed sets
and named those which have the same distribution of shared
variables as original sets. In most datasets and both original
and perturbed sets, emergence rate is positively correlated
(with 𝑃 value < 0.05) to datasets similarity,Ω. This is because

14 Complexity

Size = 1 Act = 1 Act = 2 Size = 2

Class = 1 Class = 2

0.478 0.493 0.507 0.522

0.438 0.563 0.882 0.118 0.222 0.778 0.556 0.444

Size = 1 Age = 2 Age = 1 Size = 2

Class = 1 Class = 2

0.478 0.478 0.522 0.522

0.438 0.563 0.882 0.118 0.222 0.778 0.556 0.444

Size = 1 Color = 1 Color = 2 Size = 2

Class = 1 Class = 2

0.478 0.5 0.459 0.522

0.438 0.563 0.882 0.118 0.222 0.778 0.556 0.444

Figure 6: Balloon dataset three-part BKBs.

Table 8: Emergence rate in all datasets.

Set 0.1 0.3 0.6 0.1 0.3 0.6
Original Perturbed

Balance-scale 0.25 0.27 0.28 0.25 0.27 0.31
Balloon 0.34 0.34 0.38 0.34 0.32 0.36
Breast cancer 0.31 0.43 0.69 0.35 0.60 0.94
Cars 0.28 0.24 0.26 0.28 0.25 0.27
Hayesroth 0.44 0.52 0.62 0.46 0.52 0.56
Monks 0.35 0.29 0.23 0.35 0.3 0.24
Nursery 0.31 0.30 0.25 0.31 0.3 0.25
Tictactoe 0.28 0.28 0.72 0.28 0.31 0.77
Vote 0.20 0.33 0.51 0.21 0.37 0.62
Lymphography 0.44 0.77 0.95 0.57 0.90 0.96
Krvskp 0.20 0.20 0.31 0.51 0.89 0.97
Mushroom 0.01 0.01 0.02 0.12 0.56 0.97
Connect 4 0.35 0.40 0.67 0.73 0.95 0.93
Average 0.29 0.34 0.45 0.37 0.50 0.63

the more shared variables there are among different subsys-
tems, the more interactions exist among various subsystems.

Recall that, in 3.2, we need to compare computed accu-
mulated state difference th in (3) with some predefined
decision threshold. In our experiments, we vary this thresh-
old from 0.05 to 0.25 at 0.05 step and list all results. The

results for different decision thresholds and different dataset
similarities are shown in Figure 7. It only contains results
for original sets. We also compute ROCs for perturbed sets
and it shows similar relationships, so we omit that due to
space limitation. From this figure, we see that, in both original
and perturbed sets, all ROCs are above the baseline (this
line means “true positive rate” = “false positive rate”). In
addition, as Ω grows from 10 percent to 60 percent, most
ROC curves move northwest (ensemble method), indicating
an improved performance. Thirdly, in most datasets, the
decision threshold has a significant impact on precision and
recall. Finally, at a fixed threshold, precision and recall have
huge variances among different datasets. However, in most
conditions, our proposed algorithm can reach 50 percent true
positive rate while controlling false positive rate to be under
20 percent.

This figure demonstrates the overall performance of
BKFCS on all types of emergence. However, we still want
to break it down by each type. Therefore, we need to know
emergence rate in each dataset for each type and evaluate its
detection efficiency.

Here, we treat the different types of emergence cases
separately and show the emergence rate for each dataset in
Table 9. In this table, the first column in the first row shows
9%, meaning, in original dataset, when omega is set to 1
(10% overlap features), the average Type 1 emergence rate
across thirteen datasets is 9 percent. The second column of

Complexity 15

ROC original omega = 0.3

0.2 0.4 0.6 0.8 10
False positive rate

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Tr
ue

 p
os

iti
ve

 ra
te

ROC original omega = 0.1

0.2 0.4 0.6 0.8 10
False positive rate

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Tr
ue

 p
os

iti
ve

 ra
te

ROC original omega = 0.6

Balance-scale
Balloon
Breast_cancer
Cars
Hayesroth

Monks
Nursery
Tictactoe
Vote
Lymphography

0.2 0.4 0.6 0.8 10
False positive rate

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Tr
ue

 p
os

iti
ve

 ra
te

Figure 7: ROC for all parameter combinations.

the first row shows 12%, meaning that the average Type 1
emergence rate for thirteen datasets is 12 percent, and so
on. For each omega, Type 3 emergence occurs most often,
followed by Type 1 emergence. Type 2 and Type 4 emer-
gence are less often observed. These results are consistent
with our emergence definition, because Type 2 and Type 4
emergence indicatemore divergent opinions from the various

Table 9: Rate for 4 types of emergence.

Type Original PerturbedΩ = 1 Ω = 3 Ω = 6 Ω = 1 Ω = 3 Ω = 6
1 9% 12% 25% 11% 19% 34%
2 6% 11% 11% 9% 19% 19%
3 17% 17% 15% 22% 22% 19%
4 1% 1% 1% 1% 2% 2%

Table 10: Confusion matrix for four emergence types.

Actual type Predicted type
No 1 2 3 4

No 67% 3% 1% 3% 0%
1 2% 10% 0% 0% 0%
2 1% 0% 1% 0% 0%
3 5% 0% 1% 8% 0%
4 0% 0% 0% 0% 0%

subsystems, indicating a harder decision-making process.
Type 1 and Type 3 emergence, on the other hand, occur more
often in practice, and it should be easier to detect themaswell.

To test this hypothesis, we compute a confusion matrix
for detection rates on each type of emergence by BKFCS
and the average detection rate across thirteen datasets in all
omega values in Table 10. In this table, the sum of each row
represents the percentage of total cases that really belong to
a certain type of emergence. The sum of each column is the
percentage of cases that are predicted to be a certain type
of emergence. In each column and each row, the number
denotes the percentage of cases that is classified as that
kind of emergence. The results indicate that BKFCS can
detect most Type 3 and Type 1 emergence, but it performs
worse on Type 2 emergence. It cannot detect any Type 4
emergence. Its performance is reasonable in that proposed
BKB learning algorithm learns a BKBmodel from subsystem
data by maximizing likelihood score, penalized by BKB
structure complexity. As a result, it has limited capability in
capturing extreme low frequency patterns, which maps to
Type 4 emergence.

4.4. Performance Comparison against Ensemble Methods.
This subsection compares the performance of BKFCS with
BN fusion baselines.

The baseline is set up as follows: for each subsystem
dataset, we learn a BN using the Weka machine learning
package. Then we learn a BN for the whole system from the
union of subsystem dataset. Remember that we only provide
classifiers with subsystem dataset and keep whole system
dataset as ground truth. Then by comparing majority and
datasets with opinion of BN learned from the union dataset,
we evaluate its emergence detection capability.

We repeat this procedure on all datasets with all param-
eters and list true positive rate and false positive rate in
Table 11. In comparison, we list BKFCS results in the same
table with threshold 0.05 results. At last, we summarize their
average performance in six configurations in Figure 8. In

16 Complexity

Table 11: BKFCS versus BN performance.

Dataset
Omega = 0.1 Omega = 0.3 Omega = 0.6

False positive True positive False positive True positive False positive True positive rat
BKFCS BN BKFCS BN BKFCS BN BKFCS BN BKFCS BN BKFCS BN

Original
Balance-scale 0.054 0.399 0.306 0.387 0.076 0.026 0.375 0.272 0.176 0.133 0.476 0.067
Balloon 0.043 0.021 0.102 0.227 0.026 0.033 0.118 0.220 0.023 0.043 0.127 0.265
Breast cancer 0.046 0.471 0.183 0.283 0.055 0.301 0.395 0.221 0.058 0.018 0.588 0.113
Cars 0.036 0.135 0.071 0.235 0.063 0.061 0.124 0.182 0.176 0.076 0.584 0.245
Hayesroth 0.159 0.082 0.398 0.218 0.116 0.042 0.347 0.198 0.193 0.018 0.411 0.218
Monks 0.041 0.055 0.649 0.214 0.010 0.048 0.675 0.194 0.000 0.017 0.485 0.158
Nursery 0.480 0.465 0.849 0.217 0.375 0.463 0.688 0.315 0.279 0.252 0.612 0.200
Tictactoe 0.052 0.441 0.187 0.271 0.083 0.301 0.379 0.206 0.098 0.133 0.674 0.063
Vote 0.015 0.004 0.687 0.009 0.010 0.002 0.797 0.011 0.019 0.004 0.899 0.002
Lymphography 0.023 0.181 0.567 0.289 0.026 0.096 0.746 0.283 0.033 0.000 0.794 0.074
Krvskp 0.043 0.014 0.620 0.122 0.056 0.016 0.620 0.119 0.053 0.015 0.713 0.042
Mushroom 0.029 0.001 0.158 0.171 0.025 0.002 0.307 0.100 0.029 0.004 0.646 0.007
Connect 4 0.189 0.585 0.315 0.461 0.221 0.437 0.468 0.386 0.227 0.257 0.635 0.237

Perturbed
Balance-scale 0.055 0.403 0.314 0.390 0.073 0.029 0.379 0.279 0.141 0.094 0.533 0.065
Balloon 0.046 0.017 0.122 0.188 0.021 0.042 0.122 0.210 0.030 0.048 0.121 0.185
Breast cancer 0.052 0.441 0.206 0.303 0.032 0.279 0.448 0.233 0.033 0.057 0.607 0.104
Cars 0.027 0.136 0.057 0.240 0.060 0.059 0.122 0.206 0.155 0.065 0.513 0.236
Hayesroth 0.274 0.082 0.662 0.164 0.221 0.073 0.536 0.135 0.272 0.043 0.549 0.110
Monks 0.036 0.055 0.634 0.202 0.012 0.043 0.686 0.182 0.000 0.015 0.573 0.146
Nursery 0.480 0.465 0.849 0.217 0.377 0.462 0.688 0.314 0.278 0.251 0.613 0.200
Tictactoe 0.059 0.447 0.194 0.280 0.085 0.277 0.431 0.193 0.140 0.099 0.713 0.067
Vote 0.014 0.004 0.679 0.016 0.008 0.002 0.802 0.013 0.029 0.000 0.893 0.007
Lymphography 0.027 0.142 0.563 0.289 0.000 0.022 0.608 0.254 0.020 0.020 0.586 0.121
Krvskp 0.039 0.025 0.703 0.059 0.082 0.045 0.694 0.034 0.120 0.055 0.419 0.034
Mushroom 0.024 0.005 0.674 0.067 0.053 0.007 0.862 0.020 0.273 0.032 0.895 0.006
Connect 4 0.069 0.203 0.498 0.515 0.008 0.023 0.529 0.477 0.031 0.034 0.462 0.283

0.1 0.3 0.1 0.3 0.6
original original original perturbed perturbed perturbed

0.6

Experimental groups

BKFCS versus BN average true positive rate and false positive rate

FPRBKFCS
FPRBN

TPRBKFCS
TPRBN

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ra
te

Figure 8: BKFCS versus BN average performance.

this figure, we organize results into six groups from left to
right, where group 1 represents original set, omega = 0.1, and
group six maps to perturbed set, omega = 0.6. Remember
that, for false positive rates, lower is better, and for true
positive rate, higher is better. Then we do a one-tail paired

t-test for both true positive and false positive rates on all six
configurations. Results show that eleven out of twelve tests
are significantly different at 0.05 level. All six true positive
rates in BKFCS are those of BN, but two are significantly
larger than those of BN (groups 3 and 6). Only group 5 shows

Complexity 17

no significant difference in false positive rate between two
classifiers. In short, BKFCS is much better than BN ensemble
approach in detecting emergence in these synthetic datasets
results.

5. Conclusion

In this paper, we propose a quantitative definition of emer-
gence and an emergence detection algorithm that learns and
fuses several subsystem models through variable interaction,
which preserves all inconsistent information. Experiments on
synthetic datasets show that this algorithm can better detect
emergence in complex systems than extant methods. To the
best of our knowledge, this automatic emergence detection
approach of fusing graphical models is the first in this
field.

Appendix

A. BKB Learning Algorithm

This appendix provides details on a new BKB learning
algorithm, analyzes its time complexity, and compares its
performance against five baselines on thirteen datasets from
UCI machine learning library [27].

We assume that there exists at least one dataset𝐷 for each
subsystem, from which we learn a BKB. Even though a BKB
can contain cycles, we concentrate on learning acyclic BKBs
now for simplicity. Learning cyclic BKBs and their modeling
impacts will be studied in future work. This algorithm first
learns a component level structure 𝐺 and then builds a BKB𝐾 from 𝐺 and dataset𝐷. In a general BKB, different states of
a component 𝑖 can have different sets of parent components,
namely, {Pa(𝐼𝑖𝑗1)} ̸= {Pa(𝐼𝑖𝑗2)}, 𝑗1 ̸= 𝑗2. However, different
states of a component have the same set of parent components
in a BKB built from 𝐺, for 𝐺 specifies parent-children
relationship at variable level other than variable instantiation
level. The set of parent components of a component 𝐶 is
denoted as Pa(𝐶). Based on this simplification, our algorithm
learns a BKB that maximizes the score function given dataset𝐷, assuming it contains𝑚 cases and 𝑛 variables/features, and
each feature/component 𝐶𝑖, 𝑖 ∈ [1, 𝑛], has 𝑞(𝐶𝑖) states/I-
nodes.Thenotation 𝑛(𝑋)means the number of cases inwhich
condition "𝑋" holds. The penalty constant 𝜆 is set to 0.01
in our algorithm. This function consists of two parts: the
first part computes the log likelihood of BKB given dataset𝐷, and the second part is the penalty for complexity and
overfitting, which is proportional to the difference between
maximized number of possible S-nodes and number of S-
nodes that appear in the BKB. A nonzero difference means
this BKB only associates component 𝐶𝑖 with some instan-
tiations of Pa(𝐶𝑖) that occur in the training set but cannot
generalize to unobserved instantiations, which is a sign of
overfitting. What is more, a parent set Pa(𝐶𝑖) containing∏𝐶∈Pa(𝐶𝑖)𝑞(𝐶) > 𝑚 possible instantiations must overfit to
the training data, since 𝑚 is the upper bound of observed
patterns.

Based on (1), we design a polynomial time BKB learning
algorithm which finds a near-optimal solution, as shown in

Algorithm 2. It has been well known that learning a general
BN from data is a NP-hard problem, so we set up some
constraints to make a polynomial time algorithm possible:
first, we include a threshold in the number of iterations
(1000); second, we set up an upper bound on the number of
parents each feature/variable can have in the BKB (C.1), and
it also avoids overfitting per previous analysis about parent
pattern limit; last but not least, since this algorithm takes
a greedy strategy, it can only find a local maximum from
a given starting search point, and we precompute multiple
starting points with various density and search for multiple
local maxima in parallel. Then we choose the best BKB
among these local maxima as an approximation of the global
maxima.

The algorithm works as follows: a fully connected DAG
(directed acyclic graph) has 𝑛(𝑛 − 1)/2 edges/arcs, and
we would like to search from multiple initial graphs with
different densities. Remember that an “edge/arc” in structure𝐺 connects two components/variables, while an edge in
BKB 𝐾 connects an I-node and an S-node. In line (2), we
generate a random DAG 𝐺0 with density ratio ∗ 𝑛(𝑛 −1)/2, where ratio ranges from 0.01 to 1 at an interval of
0.01.

To compute it, we first do a random shuffle of variables
1 to 𝑛 and build a fully connected graph based on this
shuffle. Namely, the variable in the front of shuffle points
to all variables behind it. It guarantees acyclic property and
its time complexity is 𝑂(𝑛). Then we pick the first ⌊ratio ∗𝑛(𝑛 − 1)/2⌋ edges from this fully connected graph to form𝐺0, and its time complexity is 𝑂(1). From 𝐺0, we iteratively
search for a better graph from all its immediate neighbors.
Here an immediate neighbor of 𝐺0 means a graph which
can be built by adding, deleting, or reversing an arc/edge(𝑇,𝐻), 𝐻 ∈ [1, 𝑛], 𝑇 ∈ [1, 𝑛], 𝐻 ̸= 𝑇. Here 𝐻 and 𝑇
represent two components this edge connects with, while, in
a BKB 𝐾, head𝐾(𝑆) and tail𝐾(𝑆) represent I-nodes. There are
three possible scenarios, and each scenario corresponds to
two potential neighbors, as shown from line (7) to line (11).
In each scenario, we test the acyclic property of two potential
neighbors through topological ordering in line (13).The time
complexity of the acyclicity check is 𝑂(𝑛+ | Enb |), where|Enb| is the number of edges in this graph𝐺nb. If a neighbor is
acyclic, we compute its score and compare it with the current
graph’s score 𝑆(𝐺𝑐). In fact, we only compute the scores of
nodes in the set {𝑉 | 𝑆𝑉(𝐺nb) ̸= 𝑆𝑉(𝐺𝑐)} through function
(A.3).

In this function, structure graph𝐺 is associated with BKB𝐾, and 𝐺 can be either current graph 𝐺𝑐 or its neighbor
graph 𝐺nb. In line (4), each node score of current best
graph 𝐺𝑐 is stored as 𝑆𝑖(𝐺𝑐). In line (14), the change of
score Δ is computed as follows: if this neighbor is built by
adding or removing an arc (𝑇,𝐻), only 𝐻 will change its
score.

Δ = 𝑆𝐻 (𝐺nb) − 𝑆𝐻 (𝐺𝑐) (A.1)

Δ = 𝑆𝑇 (𝐺nb) + 𝑆𝐻 (𝐺nb) − 𝑆𝑇 (𝐺𝑐) − 𝑆𝐻 (𝐺𝑐) (A.2)

18 Complexity

(1) For ratio in 0.01 : 1 by 0.01
(2) Create a random acyclic graph 𝐺0 with density |ratio ∗ (𝑛 ∗ (𝑛 − 1))/2|, set 𝐺𝑐 = 𝐺0
(3) For 𝑟 in 1 : 1000
(4) 𝑆max = 𝑆(𝐺𝑐) = ∑ 𝑆𝑖(𝐺𝑐), Δmax = 0, 𝐺max = 𝐺𝑐
(5) For head in 1 : 𝑛 − 1
(6) For tail in head +1 : 𝑛
(7) Edge 𝐸 = (𝑇,𝐻), Edge 𝐸󸀠 = (𝑇,𝐻)
(8) If 𝐸 ∈ E(𝐺𝑐), then 𝐺1𝑛: remove 𝐸 from 𝐺𝑐, and 𝐺2𝑛: reverse 𝐸
(9) Else if 𝐸󸀠 ∈ E(𝐺𝑐), then 𝐺1𝑛: remove 𝐸󸀠, and 𝐺2𝑛: reverse 𝐸󸀠
(10) Else 𝐺1𝑛: add 𝐸, and 𝐺2𝑛: add 𝐸󸀠
(11) End if
(12) For 𝑘 in 1 : 2
(13) If 𝑎𝑐𝑦𝑐𝑙𝑖𝑐(𝐺𝑘𝑛) == true; then
(14) compute Δ = ∑𝑖∈{𝑖|𝑆𝑖(𝐺𝑘nb) ̸=𝑆𝑖(𝐺𝑐)}(𝑆𝑖(𝐺𝑘nb) − 𝑆𝑖(𝐺𝑐))
(15) If Δ > Δmax; then
(16) Δmax = Δ, and 𝐺max = 𝐺𝑘𝑛
(17) End if
(18) End if
(19) End for
(20) End for
(21) End for
(22) If 𝐺max == 𝐺𝑐; then
(23) a local maximum 𝐺max is found, 𝐺𝑟 = 𝐺max
(24) break
(25) End if
(26) End for
(27) If 𝑆(𝐺𝑟) > 𝑆(𝐺global); then
(28) 𝐺global = 𝐺𝑟
(29) End if
(30) End for

Algorithm 2: BKB learning algorithm.

𝑆𝑉 (𝐺) = {{{
∑
𝑗∈𝑉

∑
𝑠∈{𝑠|head𝐾(𝑠)=𝐼𝑉𝑗 }

𝑛 (𝐼𝑉𝑗 , tail𝐾 (𝐼𝑉𝑗))

⋅ log (Pr (𝑠)) − 𝜆𝑚[
[
𝑞 (𝑉) ∏

𝐶∈{Pa(𝑉)}
𝑞 (𝐶)

− ∑
𝑗∈𝑉

󵄨󵄨󵄨󵄨󵄨{𝑠 | head𝐾 (𝑠) = 𝐼𝑉𝑗 }󵄨󵄨󵄨󵄨󵄨]]
}}}
.

(A.3)

Therefore, we computeΔ via (A.1). If this neighbor is built
by reversing an arc, both𝑇 and𝐻will change their scores, and
we compute Δ via (A.2). In both cases, we count all instanti-
ations of Pa(𝐶𝑉) in one loop over 𝑚 cases and compute the
log likelihood score for each instantiation. In the worst case,
dataset 𝐷 contains min(𝑞(𝐶𝑖)∏𝐶∈{Pa(𝐶𝑖)}𝑞(𝐶),𝑚) different
patterns.Therefore, the time complexity of computing a node
score difference is 𝑂(𝑚 + min(𝑚, 𝑞(𝐶𝑖)∏𝐶∈{Pa(𝐶𝑖)}𝑞(𝐶))) =𝑂(𝑚). After we get Δ, we compare it with current largest
improvement Δmax and update its value, as shown from line
(15) to line (17). After we evaluate all neighbors of 𝐺𝑐, we
update 𝐺𝑐 with the best neighbor 𝐺max for the next iteration.
However, if no neighbor has a higher score, then 𝐺𝑐 is a local
maximum, and the iteration stops, as shown from line (22) to

line (25). In each iteration, the worst-case time complexity is𝑂(𝑛2𝑚). For all iterations from each starting point, the worst-
case time complexity is 𝑂(1000𝑛2𝑚) = 𝑂(𝑛2𝑚). The time
complexity of entire algorithm is 𝑂(100 ∗ 1000 ∗ 𝑛2𝑚) =𝑂(𝑛2𝑚). Therefore, this is a polynomial time complexity
algorithm.

In practice, we can optimize running time in several
ways: first, we compute a local maximum from different
initial graphs in parallel. Second, within each iteration, we
compute the node scores of neighbors in parallel. Third, we
memorize all node scores for patterns already computed and
do a constant-time look up for existing patterns.The platform
we use is a 16-node Dell cluster, and each node contains two
Intel� Xeon� CPU E5-2640 clocked at 2.6GHz. Each node
has 512G of RAM. We have a total of 512 hyperthreaded
cores/216 physical cores, which can speed up the algorithm
by 2 orders of magnitude.

First, we learn BNs from UCI single datasets with five
scoring functions using Weka. The classification accuracies
are listed in Table 12. In the first column, each abbreviation
corresponds to one dataset in the same order as in Table 6.
For instance, “Bs” refers to “Balance-scale” and “Co” is short
for “Connect 4”. The last row “Avg” denotes the average
result of all datasets. In the first row, each abbreviation
denotes one learning scoring function. Next, we compare

Complexity 19

Table 12: Performance comparison of BNs learned by different
scoring functions.

Bayes BDeu MDL MIT AIC
Bs 91.4 91.4 91.4 74.7 91.4
Ba 71.1 71.1 69.7 76.3 78.9
Bc 74.8 69.6 69.6 69.6 71.0
Ca 93.5 93.8 83.3 20.1 93.6
Ha 67.4 81.1 81.1 67.4 73.5
Mo 74.6 74.6 74.6 91.9 77.5
Nu 94.3 93.3 91.7 0.0 95.3
Ti 80.0 68.2 68.7 76.5 86.2
Vo 95.2 94.9 95.6 92.9 95.4
Ly 81.8 78.4 75.0 72.3 76.4
Kr 97.5 97.1 95.2 96.9 96.8
Mu 100.0 100.0 99.3 99.0 99.7
Co 70.5 67.5 67.2 71.8 69.3
Avg 84.0 83.1 81.7 70.0 85.0

Table 13: Performance comparison on single dataset.

Data bkbc ad bn smo lr dt
Bs 0.90 0.69 0.91 0.90 0.99 0.67
Ba 0.81 0.77 0.77 0.60 0.76 0.65
Br 0.68 0.71 0.73 0.69 0.68 0.73
Ca 0.83 0.70 0.85 0.94 0.94 0.93
Ha 0.78 0.38 0.73 0.80 0.77 0.64
Mo 1.00 0.75 0.75 0.75 0.75 0.96
Nu 0.93 0.66 0.90 0.93 0.92 0.97
Vo 0.94 0.95 0.90 0.96 0.96 0.97
Ly 0.73 0.75 0.85 0.81 0.76 0.80
Kr 0.95 0.94 0.88 0.96 0.98 0.99
Mu 1.00 0.96 0.97 1.00 1.00 1.00
Co 0.65 0.60 0.66 0.74 0.74 0.76
Avg 0.85 0.74 0.82 0.85 0.86 0.84

our algorithm with five baselines. We choose these older
algorithms instead of the state-of-the-art ones because the
goal is not about learning a classifier that must beat the best
performer, but to learn a BKB that can help in detecting
emergence. Their 10-CV accuracy is tabulated in Table 13. In
the first column, dataset abbreviations are the same as in the
previous table. In the first row, each term represents a type
of classifier. In particular, “bkbc” means BKB classifier, “ad”
means Adaboost classifier, “bn” means Bayesian Network
classifier, “smo” means sequential minimal optimization
classifier, “lr” means logistic regression classifier, and “dt”
means decision tree classifier. The results indicate that our
algorithm has competitive performance with other baselines
in single source classification tasks.

In addition, we notice that BKBs learned by proposed
scoring function also outperform most BNs learned by
several extant scoring functions. In fact, according to the “no
free lunch theorem” [31], all classifiers have their strength
and weakness, as shown in performance variation on various
datasets.

B. BKB Fusion Algorithm

This appendix details the BKB fusion algorithm initially
designed by Santos Jr. et al. [9] and analyzes its time
complexity.

Given 𝐿 BKBs {𝐾1, 𝐾2, . . . , 𝐾𝐿} learned from 𝐿 distinct
subsystems, we integrate them into a single BKB 𝐾𝑓 that
reflects the entire complex system through BKB fusion [9].
Santos Jr. et al. have proven that if all individual BKBs are valid
BKBs, the fused BKB is also a valid BKB. This feature means
we can build a hierarchy of BKBs representing emergent
properties appearing on different levels of complex systems;
however, we will not do this in this paper. We first introduce
this algorithm and then analyze its complexity.

The BKB fusion algorithm is shown in Algorithm 3. To
fuse multiple BKBs, we start with an empty BKB 𝐾𝑓 ={I󸀠, S󸀠,E󸀠}, and we also need a weighting function repre-
senting each BKB’s relative importance in a complex system,
noted as 𝑤 in line (1). In line (2), we add all I-nodes from all
individual BKBs to I󸀠, add all S-nodes to S󸀠, and add all edges
to E󸀠. The time complexity of this combination operation is𝑂(∑𝑖∈[1,𝐿] | 𝐼𝑙 | +∑𝑖∈[1,𝐿] | 𝑆𝑙 | +∑𝑖∈[1,𝐿] | 𝐸𝑙 |). From line
(3) to line (11), we add a source fusion I-node for each S-
node in all individual BKBs and add a supporting S-node for
each source fusion I-node just added. In lines (4) and (5), for
each S-node 𝑞 coming from BKB𝐾𝑙, we note its head I-node
head𝐾𝑙(𝑞) as 𝛼. In line (6), we add a source I-node 𝑖, which
connects to I-node 𝛼 via S-node 𝑞. It is an instantiation of
source fusion component related to I-node 𝛼, noted as 𝑆𝑅𝛼 .

We use a source fusion component to distinguish S-nodes
from different BKBs that all support the same I-node 𝛼. The
instantiation 𝑖 = (𝑆𝑅𝛼 = 𝜎𝑙) means S-node 𝑞 comes from
BKB 𝐾𝑙, and the name of 𝐾𝑙 is 𝜎𝑙. Then we add an S-node𝑞𝑖 pointing to 𝑖, which represents the prior probability of
this source fusion I-node. Next, we add them into sets 𝐼󸀠
and 𝑆󸀠 and add two edges/arcs 𝑞𝑖 → 𝑖 and 𝑖 → 𝑞 to 𝐸󸀠
in lines (7) and (8). In line (9), we set weight of 𝑞 in 𝐾𝑓
to its weight in 𝐾𝑙. The time complexity of line (3) to line
(11) is 𝑂(∑𝑙∈[1,𝐿] |𝑆𝑙|). In line (12) to line (17), we compute
a normalized weight 𝑤󸀠(𝑞𝑖) for each S-node 𝑞𝑖 supporting
each source fusion I-node 𝑖. This weight is also set as the
prior probability of this S-node.The complexity of this part is𝑂(∑𝑆𝑅𝛼 |{𝑖 | 𝑖 is a state of 𝑆𝑅𝛼}|) = 𝑂(𝐿|{𝐶𝑓}|), where 𝐶𝑓 is
a nonsource fusion component of fused BKB𝐾𝑓. The overall
time complexity is 𝑂(|𝐼󸀠| + |𝑆󸀠| + |𝐸󸀠|).
C. Sampling-Based BKB Updating Algorithm

This appendix details a uniform polynomial time complex-
ity approximation algorithm for BKB updating, proves its
convergence, and compares its performance against an exact
inferencing algorithm.

To detect emergent properties in complex systems repre-
sented in the form of a fused BKB 𝐾𝑓, we need to run belief
updating on it. Bayesian belief updating involves computing
the probability that target variable Class takes on state 𝑗
based on an observation that feature variables take on certain
states. It is denoted as 𝑃(Class = 𝑗 | Evidence), where

20 Complexity

(1) Let 𝐾𝑓 = {I󸀠, S󸀠,E󸀠} be an empty BKB and 𝑤󸀠 a weight function
(2) I󸀠 = 𝐿⋃

𝑙=1

I𝑙, S󸀠 = 𝐿⋃
𝑙=1

S𝑙, E󸀠 = 𝐿⋃
𝑙=1

E𝑙
(3) For each BKB 𝐾𝑙, 𝑙 ∈ [1, 𝐿]
(4) For each 𝑆-node 𝑞 ∈ 𝑆𝑙
(5) Let 𝛼 = head𝐾𝑙 (𝑞)
(6) Let the source node for 𝑞 be 𝑖 = (𝑆𝑅𝛼 = 𝜎𝑙)
(7) Add 𝑖 to 𝐼󸀠 and add a new 𝑆-node 𝑞𝑖 to 𝑆󸀠
(8) Add the edges 𝑞𝑖 → 𝑖 and 𝑖 → 𝑞 to E󸀠
(9) Let 𝑤󸀠(𝑞) = 𝑤𝑙(𝑞)
(10) End for
(11) End for
(12) For all source variables 𝑆𝑅𝛼
(13) Let Λ = {𝑖|𝑖 is a source node which is a state of 𝑆𝑅𝛼 }
(14) Let 𝜌 = ∑𝑖𝜖Λ 𝑟(𝑖)
(15) for each 𝑖 ∈ Λ, let 𝑞𝑖 be the 𝑆-node such that 𝑞𝑖 → 𝑖 ∈ 𝐸󸀠
(16) Let 𝑤󸀠(𝑞𝑖) = 𝑟(𝑖)/𝜌
(17) End for
(18) Return 𝐾𝑓 = (𝐾𝑓, 𝑤󸀠)

Algorithm 3: BKB fusion algorithm (Santos et al. 2011).

Evidence is a set of observed feature variable instantiations.
Since it is proportional to the joint probability 𝑃(Class =𝑗,Evidence), we only compute this joint probability. We
compute this probability by summing up the probabilities
of all inferences which are consistent with Evidence and
Class = 𝑗. Exact inferencing simply enumerates all inferences,
picks out consistent ones, and sums their probabilities as
the joint probability. In general, since BNs are special case
of BKBs, exact belief updating is NP-hard [32], and even
an approximation of the posterior is NP-hard [33]. How-
ever, the emergence detection or general classification task
does not require general belief updating. It is possible to
design a polynomial time approximation algorithm for our
purposes.

𝑃SI𝑠 (Tar = 𝑡) = ∏
𝑞𝑖∈{𝑎|head𝐾(𝑎)∈𝑅𝑠}

Pr (𝑞𝑖)
⋅ ∏
𝑞∈{𝑏|tail𝐾(𝑏)∈𝐸𝑠&&head𝐾(𝑏)∈𝑡∪𝐸𝑠}

Pr (𝑞) , (C.1)

test (SI𝑠) = (∑
𝑡∈Tar

𝑃SI𝑠 (Tar = 𝑡) = 0?true : false;) . (C.2)

Sampling-based approximation method such as impor-
tance sampling, MCMC, and Gibb sampling has been widely
applied in BN updating [34, 35]. However, we cannot directly
apply an existing approximation method to FBKB. First,
a FBKB is not a BN, because it may include cycles and
have different parent sets for the same variable. Cycles
are introduced when fusing two fragments with conflict-
ing causality graphs: expert one believes that variable 𝑉1
causes 𝑉2 but expert two believes in the opposite. Extant
BN approximation methods do not consider these. Second,
sampling methods such as importance sampling perform
poorly on low frequency samples or extreme CPT entries,

while emergence is a rare event which has low frequency.
Third, in a fused BKB, a source fusion node is a special
kind of node, which represents source reliability beyond
an ordinary prior probability. Extant approximation method
cannot distinguish them from normal feature variables and
therefore cannot fit our special purpose.Therefore, we need to
design an approximationmethod for running belief updating
and for emergence detection.

Pr (𝑡) = ∑
SI∈SI𝑉

𝑃SI (Tar = 𝑡) . (C.3)

The approximation algorithm is shown in Algorithm 4.
The algorithm works as follows. First, assuming 𝑅 is the set
of source fusion components, we compute the number of
combinations of source fusion I-nodes, UB, in lines (2) and
(3). Next, we begin to sample min(𝑆num,UB) valid inferences
from BKB 𝐾. In experiments, sample number 𝑆num is set to𝐶 ∗ |SV|, where 𝐶 is a constant ranging from 1 to 5. From
line (5) to line (9), we create a random vector𝑄𝑠 for sample 𝑠,
where𝑄𝑠 consists of state indices of all components in𝑅, kept
in a fixed order. If it has not been visited before, we continue
processing it from line (10) to line (19). We instantiate all
components in 𝑅 based on𝑄𝑠, denoted as I-nodes set 𝑅𝑠, and
all feature components based on evidence set Evid, denoted
as I-nodes set 𝐸𝑠, in lines (11) and (12). In line (13), we do
belief updating on this sample inference SI𝑠 based on (C.1).

Next, we classify this sample inference as a valid or invalid
inference in line (14) based on (C.2) and place its source
fusion I-nodes index 𝑄𝑠 into corresponding pools, namely,
VP(valid pool) and IP(invalid pool), as shown from line (14)
to line (18). After we sample 𝑆num valid inferences or reach
the sampling upper bound min(UB, 10 ∗ 𝑆num), we compute
each target state probability by aggregating over inferences
related to VP, which is denoted as valid inference set SI𝑉,
through function (C.3) in line (22).

Complexity 21

(1) Evidence set Evid, target variable/component Tar, and sample number 𝑆num is given
(2) Let 𝑅 = {𝑆𝑅𝛼 |𝑆𝑅𝛼 is a source fusion component}
(3) Let 𝑠 = 0, UB = ∑𝐶∈𝑅 𝑞(𝐶), VP = 𝜙, IP = 𝜙, 𝑃𝑡𝑚 = 0, 𝑡𝑚 = 𝜙
(4) While (𝑠 < 𝑆num)&&(|VP| + |IP| < min(UB, 10 ∗ 𝑆num))
(5) Index vector 𝑄𝑠 = 𝜙
(6) For each 𝑟 ∈ 𝑅
(7) Pick a random number 𝑗 ∈ [1, 𝑞(𝑟)]
(8) Append state index 𝑗 of component 𝑟 to 𝑄𝑠
(9) End for
(10) If (𝑄𝑠 ∉ VP)&&(𝑄𝑠 ∉ IP)
(11) Set evidence on feature variables based on Evid, denoted as 𝐸𝑠
(12) Set evidence on variables in 𝑅 based on 𝑄𝑠, denoted as 𝑅𝑠
(13) Do belief updating for sample inference SI𝑠
(14) If test(SI𝑠) == true
(15) Add 𝑄𝑠 to VP, 𝑠 = 𝑠 + 1
(16) else
(17) Add 𝑄𝑠 to IP
(18) End if
(19) End if
(20) End
(21) For each state 𝑡 ∈ Tar
(22) Compute joint probability Pr(𝑡)
(23) If Pr(𝑡) > 𝑃𝑡𝑚
(24) Let 𝑃𝑡𝑚 = Pr(𝑡), 𝑡𝑚 = 𝑡
(25) End if
(26) End for
(27) Output each Pr(𝑡), 𝑡 ∈ Tar, and report 𝑡𝑚 as predicted state of Tar

Algorithm 4: BKB updating by sampling method.

This sampling upper bound is set up for the follow-
ing reason: since there are a combinatorial number of
inferences in worst case, we must sample a large por-
tion of them before we can get enough valid inferences.
This will result in exponential time complexity. We avoid
this by setting up a cap on total number of inferences
at 10 ∗ 𝑆num, which guarantees a worst-case polynomial
time complexity and still maintains decent relative accuracy
according to experiments below. The outputs are the tar-
get states with the largest aggregated probability and each
state’s aggregated probability, in line (27). This sampling
approach provides equal sampling frequency for each infer-
ence, so that emergence inferences with low probabilities
will have a chance of being sampled together with nonemer-
gence inferences with high probabilities, thus overcoming
the shortcomings of importance sampling for emergence
detection.

Now we consider the correctness of our proposed sam-
plingmethod.Consider a binary classification problemwhere
all feature variables are observed and where the exact infer-
encing algorithm predicts 𝑃(class = Yes) > 𝑃(class =
No). An individual inference will provide probabilities for
both class states. We call an inference positive if it computes𝑃(Yes) > 𝑃(No), Δ = 𝑃(Yes) − 𝑃(No). Otherwise, we call it
negative and the difference is Δ󸀠 = 𝑃(No) − 𝑃(Yes). Assume
the number of consistent inferences is 𝑠 and the number
of inconsistent ones is 𝑡. Since exact inferencing algorithm
predicts that 𝑃(Yes) wins, it follows that 𝑃(Yes) − 𝑃(No) =

∑𝑠𝑖=1 Δ(𝑖) −∑𝑡𝑗=1 Δ󸀠(𝑗) = 𝑠Δ − 𝑡Δ󸀠 > 0, where Δ is the mean of
positive inference prediction value differences.

Based on these definitions, we consider the task where
we have 𝑠V source fusion components. Each has three
source fusion I-nodes. Exact inferencing algorithms need to
compute 3𝑠V inferences in the worst case. The percentage of
positive inferences is 𝑝 = 𝑠/(𝑠 + 𝑡). If we sample a sufficient
amount 𝑆 ≪ 3𝑠V of valid inferences, then the number of
positive inferences follows a binomial distribution ∼𝐵(𝑝, 𝑆).
The number of negative inferences follows ∼𝐵(1 − 𝑝, 𝑆). The
expected probability mass will be 𝑆𝑝Δ for positive inferences
and be 𝑆(1 − 𝑝)Δ󸀠 for negative ones. If we replace 𝑝 with𝑠/(𝑠 + 𝑡), we get a positive probability mass 𝑆(𝑠/(𝑠 + 𝑡))Δ and
a negative probability mass 𝑆(𝑡/(𝑠 + 𝑡))Δ󸀠. Since we already
know 𝑠Δ − 𝑡Δ󸀠 > 0, we conclude that sampling can give the
same prediction as an exact algorithmwith a high probability
that is positively correlated to size 𝑆.

However, the mean of sampled inferences only converges
to the real mean Δ or Δ󸀠 if sufficient samples are collected,
which is caused by the variation in the stochastic process,
but it is independent of the valid inference distribution. If we
sample inferences with replacement, the samplemean follows
a normal distribution 𝑁(𝜇, 𝜎2/𝑆), where 𝜇 and 𝜎 are mean
and standard deviation of the original inference distribution.
If we sample inferences without replacement, the sample
mean still follows a normal distribution𝑁(𝜇, 𝜎2((𝑁−𝑆)/(𝑁−1))), where 𝑁 is the total number of valid inferences, and

22 Complexity

Omega = 1

0

0.02

0.04

0.06

0.08

Ru
nn

in
g

tim
e

(s
)

500 1000 1500 2000 2500 3000 35000
|３）＆| ∗ |％ＰＣ＞|

Omega = 6

1 SV data
1 SV curve
3 SV data

3 SV curve
5 SV data
5 SV curve

0

1

2

3

Ru
nn

in
g

tim
e

(s
)

×10
4

6 80 2 104
|３）＆| ∗ |％ＰＣ＞|

Omega = 3

0

0.5

1

Ru
nn

in
g

tim
e

(s
)

×10
4

0.5 30 2 2.51 1.5
|３）＆| ∗ |％ＰＣ＞|

Figure 9: Running time comparison of approximation and exact inferencing.

the other parameters are the same as before. In practice, this
approximates a normal distribution pretty well when sample
size reaches 30, which is a theoretical number independent
of sample size given that the actual population size is much
larger than that. This number works well for large BKBs
with hundreds or more inferences. In short, this number is
much smaller than actual inference size on large BKB. On a
small BKB, however, 30 samples are too many relative to the
valid inference size. Therefore, we propose a linear sample
size 𝐶 ∗ |SV|, where 𝐶 is a constant ranging from 1 to 5.
We also set up an upper bound on total sampled inference
at 10 ∗ 𝐶 ∗ |SV|. In addition, we know that inferencing
time for one inference is a linear function of the number
of evidences in this inference (number of I-nodes set as
evidence); therefore, the time complexity of approximation
algorithm is 𝑂(SV ∗ |Evid|), 𝑟 ∈ 𝑁+, while the exact infer-
encing algorithm is 𝑂(𝑎SV ∗ |Evid|), where 𝑎 is the average
number of states for source fusion nodes. To evaluate our

algorithm’s performance with various sampling sizes, we test
its running time on original sets against an exact inferencing
algorithm under various conditions, as shown in Figure 9.
We also computed this on perturbed datasets with similar
results.

We run our approximation algorithm with 5 different
sampling rates 𝐶 ∈ [1, 5]. In this figure, 𝑥-axis is the
product of sampled inference number (SIF) and the average
number of evidences in one inference, which is |SIF| ∗|Evid|; 𝑦-axis is the average running time in second for
each case/observation. We apply a linear model to fit these
two values. The average goodness of fit measure (adjusted𝑅2) is 0.94 for different 𝐶 values in original set and 0.96
for perturbed set. Two algorithms have comparable run-
ning times on small datasets. However, as the variable
number becomes large, the advantage of our sampling
approach becomes obvious. The advantage also becomes
more obvious when the omega value increases. Therefore, it

Complexity 23

Omega = 1

0.925

0.950

0.975

1.000

re
l_

ac
c

2 3 4 51
Multiples

(a)

Omega = 3

0.925

0.950

0.975

1.000

re
l_

ac
c

2 3 4 51
Multiples

(b)

Omega = 6

2 3 4 51
Multiples

0.925

0.950

0.975

1.000

re
l_

ac
c

(c)

Figure 10: Relative accuracy.

is helpful to apply our sampling algorithm when the fused
BKB has many variables, and/or it has many overlapping
variables.

We compute the average relative accuracy over the thir-
teen datasets with three omega levels. The results are shown
in Figure 10. In general, the relative accuracy increases as we
increase sample size, but even if we sample only twice the
number of shared variables, we can already reach more than
95% relative accuracy. Therefore, for large BKBs with thou-
sands of inferences, we recommend a sample size of twice
the number of shared variable as the best choice. For small
BKBs with less than one hundred inferences, it is easier to
compute all inferences directly through brute force. Besides,
the standard error is less than 2% across all sample rates and
omega values, which indicates the stability of approximation
algorithm on various distributions of inferences.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This project was supported in part by AFOSR Grant
no. FA9550-15-1-0383, ONR/Naval Postgraduate School
Research Initiative Grant no. N00244-15-1-0046, and a DoD
STTR with Securboration, Inc.

References

[1] S. Mill and John, A System of Logic: Ratiocinative and Inductive,
1843.

[2] C. D. Broad, Scientific Thought, Routledge & Kegan Paul,
London, UK, 1923.

[3] R. L.Wears, R. I. Cook, and S. J. Perry, “Automation, interaction,
complexity, and failure: a case study,”Reliability Engineering and
System Safety, vol. 91, no. 12, pp. 1494–1501, 2006.

[4] K. R. Popper and J. C. Eccles, The Self and Its Brain, Springer,
Berlin, Germany, 1977.

[5] M. A. Bedau, “Weak Emergence,” Noûs, vol. 11, pp. 375–399,
1997.

[6] V. Grimm, E. Revilla, U. Berger et al., “Pattern-oriented mod-
eling of agent-based complex systems: Lessons from ecology,”
Science, vol. 310, no. 5750, pp. 987–991, 2005.

[7] K.-C. Ng and B. Abramson, “Probabilistic multi-knowledge-
base systems,” Applied Intelligence, vol. 4, no. 2, pp. 219–236,
1994.

[8] E. Santos Jr. and E. S. Santos, “A Framework for Building
Knowledge-Base Under Uncertainty,” Journal of Experimental
& Theoretical Artificial Intelligence, vol. 11, no. 2, pp. 265–286,
1999.

[9] E. Santos Jr., J. T. Wilkinson, and E. E. Santos, “Fusing multiple
Bayesian knowledge sources,” International Journal of Approxi-
mate Reasoning, vol. 52, no. 7, pp. 935–947, 2011.

[10] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, Elsevier, 1988.

[11] R. Kindermann and J. L. Laurie, “Markov random fields and
their applications,” Contemporary Mathematics, vol. 1, Article
ID 211739, p. 142, 1980.

[12] I. Matzkevich and B. Abramson, “The topological fusion of
bayes nets,” in Proceedings of the Eighth international conference
on Uncertainty in artificial intelligence, pp. 191–198, 1992.

[13] Y. Zhang, K. Yue, M. Yue, andW. Liu, “An Approach for Fusing
BayesianNetworks,” J. Inf. Comput. Sci, vol. 8, no. 2, pp. 194–201,
2011.

[14] A. Carvalho, “Scoring functions for learning bayesian net-
works,” Inesc-id Tec. Rep, pp. 1–48, 2009.

[15] W. Lam and F. Bacchus, “Learning Bayesian belief networks:
an approach based on the MDL principle,” Computational
Intelligence, vol. 10, no. 3, pp. 269–293, 1994.

[16] H. Bozdogan, “Model selection and Akaike’s information cri-
terion (AIC): the general theory and its analytical extensions,”
Psychometrika. A Journal of Quantitative Psychology, vol. 52, no.
3, pp. 345–370, 1987.

[17] L. M. de Campos, “A scoring function for learning Bayesian
networks based on mutual information and conditional inde-
pendence tests,” Journal of Machine Learning Research (JMLR),
vol. 7, pp. 2149–2187, 2006.

[18] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning
Bayesian Networks:The Combination of Knowledge and Statis-
tical Data,”Machine Learning, vol. 20, no. 3, pp. 197–243, 1995.

[19] W. Buntine, “Theory refinement on Bayesian networks,” in
Proceedings of the SeventhConf. Uncertain. Artif, pp. 52–60, 1991.

[20] G. F. Cooper and E. Herskovits, “A Bayesian method for
the induction of probabilistic networks from data,” Machine
Learning, vol. 9, no. 4, pp. 309–347, 1992.

[21] Y. Freund and R. E. Schapire, “A decision-theoretic generaliza-
tion of on-line learning and an application to boosting,” Journal
of Computer and System Sciences, vol. 55, no. 1, part 2, pp. 119–
139, 1997.

[22] N. Friedman,D.Geiger, andM.Goldszmidt, “BayesianNetwork
Classifiers,”Machine Learning, vol. 29, no. 2-3, pp. 131–163, 1997.

24 Complexity

[23] J. C. Platt, “Fast training of support vector machines using
sequential minimal optimization,” Adv. Kernel Methods, vol. 12,
pp. 185–208, 1999.

[24] S. L. Gortmaker, D. W. Hosmer, and S. Lemeshow, “Applied
Logistic Regression,” Contemporary Sociology, vol. 23, no. 1, p.
159, 1994.

[25] P. H. Swain and H. Hauska, “Decision tree classifier: design and
potential,” IEEE Trans Geosci Electron, vol. 15, no. 3, pp. 142–147,
1977.

[26] T. Rosen, S. E. Shimony, and J. Santos, “Reasoning with
BKBs—algorithms and complexity,” Annals of Mathematics and
Artificial Intelligence, vol. 40, no. 3-4, pp. 403–425, 2004.

[27] Bache and M. Lichman, “UCI Machine Learning Repository,”
vol. 2008, no. 14/8, 2013.

[28] E. E. Santos, E. Santos, J. Korah et al., “Modeling emergent
border-crossing behaviors during pandemics,” in Proceedings
of the SPIE Defense, Security, and Sensing, vol. 8711, p. 87110Z,
Baltimore, Maryland, USA.

[29] L. Pereira, “Introduction and background to Synchronous Unit
Testing and Model Validation in the WSCC,” in Proceedings
of the IEEE Power Engineering Society. 1999 Winter Meeting
(Cat. No.99CH36233), pp. 151–156 vol.1, New York, NY, USA,
Feburary 1999.

[30] WECC,Western interconnection (WSCC) systemdisturbances,
1996.

[31] D. H.Wolpert andW.G.Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 67–82, 1997.

[32] G. F. Cooper, “The computational complexity of probabilistic
inference using Bayesian belief networks,”Artificial Intelligence.
An International Journal, vol. 42, no. 2-3, pp. 393–405, 1990.

[33] P. Dagum and M. Luby, “Approximating probabilistic inference
in Bayesian belief networks is NP-hard,” Artificial Intelligence,
vol. 60, no. 1, pp. 141–153, 1993.

[34] H. Guo and W. Hsu, “A survey of algorithms for real-time
Bayesian network inference,” Jt. Work. Real-Time Decis. Support
Diagnosis, 2002.

[35] J. L. Beck and S.-K. Au, “Bayesian updating of structural models
and reliability using Markov chain Monte Carlo simulation,”
ASCE Journal of Engineering Mechanics, vol. 128, no. 4, pp. 380–
391, 2002.

Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

