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The environmental/economic dynamic scheduling for microgrids (MGs) is a complex multiobjective optimization problem, which
usually has dynamic system parameters and constraints. In this paper, a biobjective optimization model of MG scheduling is
established. And various types of microsources (like the conventional sources, various types of renewable sources, etc.), electricity
markets, and dynamic constraints are considered.A recently proposedMOEA/D-M2Mframework is improved (I-MOEA/D-M2M)
to solve the real-world MG scheduling problems. In order to deal with the constraints, the processes of solutions sorting and
selecting in the original MOEA/D-M2M are revised. In addition, a self-adaptive decomposition strategy and a modified allocation
method of individuals are introduced to enhance the capability of dealing with uncertainties, as well as reduce unnecessary
computational work in practice and meet the time requirements for the dynamic optimization tasks. Thereafter, the proposed
I-MOEA/D-M2M is applied to the independent MG scheduling problems, taking into account the load demand variation and the
electricity price changes. The simulation results by MATLAB show that the proposed method can achieve better distributed fronts
in much less running time than the typical multiobjective evolutionary algorithms (MOEAs) like the improved strength Pareto
evolutionary algorithm (SPEA2) and the nondominated sorting genetic algorithm II (NSGAII). Finally, I-MOEA/D-M2M is used
to solve a 24-hour MG dynamic operation scheduling problem and obtains satisfactory results.

1. Introduction

Theenergy shortages and environmental pollution have given
an impetus to the development of the microgrids (MGs),
which are more flexible, energy saving, and environmentally
friendly [1–4]. A microgrid system usually contains not only
the conventional sources but also various types of renewable
sources, such as photovoltaics, wind power, gas turbines, and
microturbines [5, 6]. Usually, battery banks are also needed
to balance the effects of the volatility of renewable energy. To
reduce the cost and emission simultaneously, one of the key
strategies is to optimize the output power of the distributed
generators (DGs) and the distributed storage (DS) units by
using multiobjective optimization approaches, known asMG
environmental/economic scheduling. For the engineering
application, there are mainly two kinds of MG operation
scheduling modes, namely, static mode and dynamic mode.
And the dynamicmode can adapt to the complicated changes
in the real-world MG systems better than the static one.

However, the multiobjective optimization problems (MOPs)
of MG dynamic scheduling always have dynamic system
parameters, time-varying constraints, andmore uncertainties
to deal with.

Several studies have been made on the improvement
of the nonlinear optimization methods, such as dual and
quadratic programming [7], and their application on MOPs
of scheduling for all kinds of power systems. However, these
methods cannot handle nonconvex objective functions [8].
In recent years, many efforts have been made on the develop-
ment of multiobjective evolutionary algorithms (MOEAs) in
dealing with theMG scheduling problems. In [9], an adaptive
modified particle swarm optimization (AMPSO) framework
was proposed. The application on a day-ahead environmen-
tal/economic scheduling problem forMGsystem showed that
the approach performed better in convergence and popula-
tion diversity than the standard PSO did. In [10], a heuristics-
based ant colony optimization (ACO) method was proposed
and applied on a multiobjective scheduling problem for MG.
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The development of the basic ACO had enhanced the
capability of handling complex constraints. Besides, MOEAs
are widely used in other power systems scheduling prob-
lems, which have similarities with MG systems. In [11, 12],
the strength Pareto evolutionary algorithm (SPEA) based
approaches were presented and used to solve the environ-
mental/economic power dispatch problem for traditional
power system and hybrid power system, which includes wind
and solar thermal energies.The results show that themethods
could solve the MOPs efficiently, obtain well distributed
results, and have good population diversities. In [13], the
nondominated sorting genetic algorithm II (NSGAII) was
improved to solve a biobjective dynamic scheduling problem
for a hydrothermal power generation system, which could
adequately track Pareto-optimal frontiers online. However,
some necessary practical constraints considering time change
have not been involved.

It is evident from a growing number of researches on
MG scheduling MOPs that these problems, especially the
dynamic problems, offer serious challenges to theMOEAs for
the following reasons:

(1) AnMG system usually contains various types of com-
ponents, which have diverse model functions of fuel
cost, maintenance cost, emission, and so forth. Thus,
the search space of the MOP is usually nonlinear,
nonconvex, and nondifferentiable [14].

(2) In a real-world MG dynamic scheduling problem,
there are always dynamic changes in system param-
eters (like the electricity prices) and constraints (such
as the load demand), as a result of which the search
space varies with time and the optimization algorithm
may not always work well.

(3) In a dynamic procedure, the operators and the
decision-makers usually cannot evaluate the quality
of the results in a very short period of time without
professional optimization knowledge.

(4) The dispatch sequences are dependent on their varia-
tion in previous time steps. That is to say, the selected
solution will certainly be affected by the former
results, and hence the errors between different opti-
mization methods would be accumulated.

(5) In engineering problems, the intermediate trade-off
solutions in the Pareto front are what the decision-
makers really care about. However, in a dynamic
scheduling MOP, since the search spaces using differ-
ent MOEAs may not be the same every time and the
true Pareto front is always unknown, it is difficult to
compare the selected intermediate solutions directly.

Considering the above challenges, the optimization
approaches in handling theMOPs ofMGdynamic scheduling
should obtain the set of solutions as close to the true Pareto
front as possible every time, which means the robustness of
the algorithm performance is highly required under uncer-
tainties. However, the algorithm robustness and the causes of
failure in solving these MOPs have not been further studied.
Meanwhile, the optimization methods need to be simple and

self-adaptive to meet the frequent changes of the system
parameters.

In the remainder of this paper, the system models and
objective functions are introduced in Section 2. The MOEA/
D-M2M algorithm is described and improved in Section 3.
Thereafter, the improved algorithm is applied to several
practical scenarios to study the effects of different parameters
and the algorithm performance by comparing the results
with the other two typical MOEAs in Section 4. Finally, the
conclusions of the study are presented. The Appendix con-
tains the parameters used in this paper.

2. Problem Statement

2.1. System Description. MG systems can have various struc-
tures. In this paper, the MG consists of three photovoltaic
(PV) arrays, three wind turbines (WTs), two microturbines
(MTs), two fuel cells (FCs), and a battery (BAT) bank.Assume
that the output power of PVs and WTs is uncontrollable and
has neither cost nor emission. On the other hand, the MTs
and FCs generate power with natural gas as fuel and exhaust
emissions, while the output power can be controlled by oper-
ators. Battery banks are electrochemical devices that store
energy when the DGs generate more power than the load
demand and supply the load when the power from DGs and
the main grid fails to meet the load.

2.2. System Components Models

2.2.1. Uncontrollable DGs. In this MG system, three 10 kW
PVs and three 10 kWWTs are considered, of which the output
power at time 𝑡 can be calculated as follows:

𝑃PV𝑡 = 𝐼STC𝐺AC (1 + 𝑘 (𝑇
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where 𝐼STC is the standard test condition (STC) coefficient;
𝐺AC is the incident irradiance; 𝑘 is the temperature coefficient
of power;𝑇

𝑐
and𝑇

𝜏
are the cell temperature and the reference

temperature, respectively; 𝑃
𝑟
is the rated power; 𝑉ci and 𝑉co

are the cut-in and cut-out wind speed, respectively; 𝑉
𝑟
and

𝑉t are the rated and actual wind speed at time 𝑡, respectively;
𝑎
𝑤
, 𝑏
𝑤
, 𝑐
𝑤
, and 𝑑

𝑤
are the parameters depending on the wind

turbine types. The values of all the parameters above can be
found elsewhere [15].

2.2.2. Controllable DGs. In this paper, two MTs (65 kW
Capstone C65) and two FCs (40 kW IFC PC-29) are used as
controllable DGs in the MG system.Their fuel cost models at
time 𝑡 can be expressed below, and the parameter settings of
each DG are taken from [15]. Hence,

𝐶
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1
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, (2)
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where 𝑃
𝑖𝑡
is the output power of 𝑖th DG at time 𝑡; 𝐶ng is the

natural gas price to supply the DGs; LHVng is the fuel lower
heating rate; 𝜂

𝑖𝑡
is the efficiency of the DGs at time 𝑡.

The efficiency curves of MT and FC can be found from
manufacturers.Thus, the efficiency functions for the control-
lable DGs are obtained using curve-fitting methods, which
are shown below:
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(3)

where 𝜂
𝑖𝑡
is the efficiency at time 𝑡. If 𝑖 = 1 or 2, 𝜂

𝑖𝑡
is the

efficiency of theMTs; otherwise, it is the efficiency of the FCs.
The coefficient values in the models are different depending
on the types of DGs, which are shown in Table 3.

2.2.3. Distributed Storage Units. The state of charge (SOC) of
the battery bank can be described by calculating the dis-
charge/charge power of the battery, as expressed below:

SOC = SOCmax − 𝑃
−
+ 𝑃
+
, (4)

where SOCmax is the maximum state of charge and 𝑃
−
and 𝑃
+

are the discharge and charge power, respectively.

2.3. Optimization Problem. MGdynamic optimal scheduling
is to optimize the output power of every distributed energy
resource (DER) to meet the load demand as well as satisfy a
series of dynamic constraints through thewhole optimization
process, while taking into account the economic and environ-
mental effect of the MG system. In this section, the proposed
objective functions and constraints are discussed.

2.3.1. The Proposed Objective Functions. One of the main
goals of MG dynamic optimal scheduling is to minimize the
economic cost at time 𝑡, such as fuel cost, maintenance cost,
depreciation cost, and the electricity exchange cost with the
main grid, which can be described below:

min 𝐶
𝑡
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𝑁
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(5)

where 𝑁 is the amount of all the DERs in the MG; P is the
decision variable vector; 𝐶

𝐺,𝑖𝑡
(𝑃
𝑖𝑡
) is the fuel cost of 𝑖th DER

at time 𝑡; OM
𝑖𝑡
(𝑃
𝑖𝑡
) is themaintenance cost of 𝑖th DER at time

𝑡;𝐶DP,𝑖𝑡(𝑃𝑖𝑡) is the depreciation cost of 𝑖thDER at time 𝑡;𝑃Grid,𝑡
is the power exchanged with the grid at time 𝑡; 𝐶Grid,𝑡(𝑃Grid,𝑡)
is the cost of purchased power at time 𝑡 if 𝑃Grid,𝑡 > 0 or the
income of sold power at time 𝑡 if 𝑃Grid,𝑡 < 0.

The maintenance cost and depreciation cost at time 𝑡

are described as follows, respectively. And all the parameter
settings in the functions can be found in Table 3. Hence,

OM
𝑖𝑡
(𝑃
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) = 𝐾OM𝑖𝑃𝑖𝑡,
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(6)

where 𝐾OM𝑖 , ADCC
𝑖
, 𝑃
𝑟,𝑖
, and cf

𝑖
are the maintenance cost

factor, the average depreciation cost, the maximum output
power, and the capacity factor of the 𝑖th DER in the MG,
respectively.

In addition to the economic costminimization, this paper
mainly takes into account the carbon emission minimization
as another optimization objective, as expressed below:

min 𝐸
𝑡
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𝑀
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2
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where𝑀 is the amount of all the controllable DGs; the values
of emission factors 𝛼

𝑖
, 𝛽
𝑖
, and 𝛾

𝑖
can be found in Table 3.

2.3.2. Constraints Description

Power Balance Constraint. All the output power, including the
power exchanged with the main grid, should meet the load
demand (𝑃

𝐿
(𝑡)) at time 𝑡, which can be expressed as

𝑀

∑

𝑖=1

𝑃
𝑖𝑡
+ (𝑃PV𝑡 + 𝑃WT𝑡 + 𝑃BT𝑡) − 𝑃

𝐿
(𝑡) = 0. (8)

Rated Power Constraints. All the DGs have power generation
limits, which can be described as

𝑃
min
𝑖

≤ 𝑃
𝑖𝑡
≤ 𝑃

max
𝑖

, (9)

where 𝑃min
𝑖

is theminimum power output of 𝑖th DG, which is
set to be zero in this paper, and 𝑃

max
𝑖

is the maximum power
output of the 𝑖th DG.

State of Charge Constraints. The battery bank cannot be
overcharged or overused, so the limits of the state of charge
(SOC) of the battery bank are as follows:

SOCmin ≤ SOC
𝑡
≤ SOCmax, (10)

where SOCmin and SOCmax are the minimum and maximum
state of charge, which are set to be 30 kW and 100 kW,
respectively.

Power Exchange Constraint. In this paper, the power
exchanged between the MG system and the main grid has
constraints as described below:

𝑃Grid,− ≤ 𝑃Grid,𝑡 ≤ 𝑃Grid,+, (11)

where 𝑃Grid,− and 𝑃Grid,+ are the two bounds of exchange
power. In this paper, 𝑃Grid,− and 𝑃Grid,+ are set to be −50 kW
and 50 kW, respectively.



4 Mathematical Problems in Engineering

Ramp Rate Constraint.The increase/decrease of output power
of controllable DGs in unit time is called ramp rate, which
reflects the performance of the DGs. This constraint can be
expressed as

𝑅down,𝑖 ⋅ Δ𝑡 ≤ 𝑃
𝑖𝑡
− 𝑃
𝑖,𝑡−1

≤ 𝑅up,𝑖 ⋅ Δ𝑡, (12)

where 𝑅down,𝑖 and 𝑅up,𝑖 are ramp-down and ramp-up rate of
the output power of the 𝑖th DG, respectively. The values of
them are shown in Table 3. Δ𝑡 is the time of the process.

Charge/Discharge Rate Constraint. In this paper, the maxi-
mumallowable charge/discharge current is 20%of the battery
bank capacity, as shown below:

𝑃BAT,+ ≤
(0.2 × 𝑉sys × 𝑈BAT)

Δ𝑡
,

𝑃BAT,− ≤
(0.2 × 𝑉sys × 𝑈BAT)

Δ𝑡
,

(13)

where𝑉sys is the system voltage at the DC bus and𝑈BAT is the
battery bank capacity in AH.The value settings can be found
in [15].

3. The I-MOEA/D-M2M Algorithm

In this section, the original MOEA/D-M2M is briefly
described, which is applied in this paper as the basic opti-
mization framework. Then, the algorithm is modified and
extended to improve the performance in dealing with real-
world MOPs.

3.1. Description of MOEA/D-M2M. MOEA/D-M2M, intro-
duced by Liu et al. [16] in 2014, is a variant of MOEA/D
(MOEA based on decomposition). However, unlike MOEA/
D using aggregation methods, MOEA/D-M2M decomposes
a MOP into a set of simple sub-MOPs and solves them in one
single run, which can be called “multiple tomultiple (M2M).”
This algorithm framework is designed for someMOPs which
render it difficult for otherMOEAs to achieve a good diversity
of population. The procedure of the algorithm can be found
in [16] and is reproduced in Figure 1.

The major advantages of MOEA/D-M2M include the
following [16, 17]:

(1) MOEA/D-M2M transforms a MOP into several sub-
MOPs, which is still an equivalent optimization
process, whereas the original MOEA/D makes an
approximate transformation.

(2) Compared with SPEA2, NSGAII, MOEA/D, and so
forth, MOEA/D-M2M “protects” every subpopula-
tion by decomposition and solves every subproblem
using multiobjective optimization approaches, which
balances the diversity and convergence simultane-
ously at each generation.

(3) The optimization process requires much less manual
operation.Theoperators only need to set the direction
vectors at the very beginning instead of adjusting

various complex parameters, which means the algo-
rithm is more adaptive for the MG dynamic schedul-
ing problem with dynamic system parameters and
constraints.

(4) The algorithm can be customized with elements
from other MOEAs, according to different real-world
MOPs. The Pareto-based MOEAs can be applied in
the subproblems to handle specific difficulties with
some prior knowledge, which can improve the accu-
racy and efficiency in the whole optimization proce-
dure.

3.2. Improvement ofMOEA/D-M2M. TheoriginalMOEA/D-
M2M solved the modified ZDT and DTLZ test instances
[16, 18] well, in which there are no constraints and both the
search space and the objective space are [0, 1]

𝑛. However,
a real-world MOP, such as the MG dynamic scheduling
problem, with some equality and inequality constraints can
be generally formulated as follows:

min 𝐹
𝑡
(𝑥) = (𝑓

1,𝑡
(𝑥) , . . . , 𝑓

𝑚,𝑡
(𝑥))

subject to 𝑔
𝑘,𝑡
(𝑥) = 0, 𝑘 = 1, . . . , 𝐾

ℎ
𝑙,𝑡
(𝑥) ≤ 0, 𝑙 = 1, . . . , 𝐿,

(14)

where 𝑓
1,𝑡
(𝑥), . . . , 𝑓

𝑚,𝑡
(𝑥) are objective functions at time 𝑡; 𝑥

is the decision vector at time 𝑡; 𝑔
𝑘,𝑡
(𝑥) and ℎ

𝑙,𝑡
(𝑥) are equality

and inequality constraints at time 𝑡, respectively. The real-
world MOPs as described in (14) often have various con-
straints, dynamic variable bounds with the change of time,
and uncertain objective spaces. Thus, the algorithm needs to
be modified to meet the practical requirements. Also, some
other changes are needed to improve the performance of
MOEA/D-M2M.

3.2.1. Constraints Handling. The constraint-handling
method, presented by Deb et al. [19], is introduced in this
paper during the process of sorting and selection. According
to this method, a solution 𝑖 has a better nondomination rank
than solution 𝑗, if

(1) solution 𝑖 is feasible while solution 𝑗 is not;
(2) both of them are feasible and solution 𝑖 dominates

solution 𝑗;
(3) both of them are infeasible and solution 𝑖 violates the

overall constraint less.

This constrained-domination principle guarantees that all
the feasible solutions have priority to be selected, and the
computational complexity of the original algorithm does not
change [19].

3.2.2. Self-Adaptive Decomposition Strategy. In [16], the
objective space and the Pareto fronts of the test MOPs are
always [0, 1]

𝑛; hence, the starting point of the direction
vectors can be fixed as the original point. However, in the
real-world MOPs with constraints, usually the bounds of the
Pareto fronts are unknown and may vary with time. There-
fore, to achieve a more precise result and reduce unnecessary
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Figure 1: Flowchart of MOEA/D-M2M.

computational work in practice, it is important to revise the
decomposition strategy.

In this paper, the self-adaptive decomposition strategy
is formulated based on the change of starting point in
each generation. In the decomposition procedure at the first

generation, the minimum values for each objective 𝑓
1,1,min,

. . . , 𝑓
𝑚,1,min, which are calculated using all the feasible solu-

tions in the current population, form the first starting point
𝑂
1
(𝑓
1,1,min, . . . , 𝑓𝑚,1,min) for the decision variables. For the 𝑗th

generation, the selected minimum values 𝑓
1,𝑗,min, . . . , 𝑓𝑚,𝑗,min
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Table 1: The ℎ-values, extreme solutions, and CPU time using the three algorithms under different load demands.

Load demand (kW) I-MOEA/D-M2M SPEA2 NSGAII

50
ℎ-value Best 278.5705 278.3354 276.4289

Mean 278.5012 274.0246 272.5123

Extreme solutions For obj11 (2.1137, 0.7416) (2.1145, 0.7451) (2.4410, 0.2894)
For obj2 (4.7214, 0.0012) (4.6002, 0.0013) (7.5578, 0.0015)

100
ℎ-value Best 261.0048 260.8247 257.4370

Mean 260.9123 257.2458 252.4999

Extreme solutions For obj1 (3.8618, 0.7431) (3.8788, 0.7358) (4.1293, 0.3158)
For obj2 (6.9167, 0.0013) (6.9822, 0.0015) (8.2485, 0.0018)

150
ℎ-value Best 204.6214 201.2211 195.5587

Mean 202.2548 196.6741 187.5855

Extreme solutions For obj1 (9.1871, 0.9048) (9.3121, 0.8863) (9.2865, 0.8563)
For obj2 (13.4595, 0.1249) (13.2509, 0.1386) (13.2488, 0.2360)

Average CPU time (s) 49.1254 292.5186 78.3404
1The terms obj1 and obj2 represent to the two optimization objectives, respectively.

for each objective in the current population are compared
with the associated values of 𝑂

𝑗−1
at the (𝑗 − 1)th genera-

tion, respectively, and the smaller ones are picked to form
𝑂
𝑗
(𝑓
󸀠

1,𝑗,min, . . . , 𝑓
󸀠

𝑚,𝑗,min). In this way, the algorithm can focus
on the effective search space and avoid being trapped into
the useless or infeasible regions, which will improve the effi-
ciency in dealing with the constrained real-worldMOPs with
uncertain Pareto fronts.

3.2.3. Allocation of Individuals. When allocating individuals
after decomposition, the remaining 𝑆 − |𝑃

𝑘
| solutions are

randomly chosen from the combined population 𝑄 if |𝑃
𝑘
| <

𝑆, according to Figure 1, whereas it is better to select the
solutions which have small acute angles with the direction
vector in the objective space, since they can conduct to a
better front for the subregionΩ

𝑘
.Thus, themethod to allocate

the remaining individuals in this situation can bemodified as
the following steps.

Step 1. Choose two subregions nearest toΩ
𝑘
. If the amount of

feasible individuals in the two subregions is sufficient, select
the 𝑆 − |𝑃

𝑘
| ones and add them to 𝑃

𝑘
; otherwise, select all the

feasible individuals and then move to Step 2.

Step 2. Choose twomore subregions nearest toΩ
𝑘
, and select

the rest of the needed individuals from them. If the quantity
of feasible individuals is still insufficient, repeat this step. If
all the feasible individuals out ofΩ

𝑘
are selected and the total

number is still less than 𝑆, move to Step 3.

Step 3. Select the rest of the individuals from the infeasible
ones by comparing their overall constraint and add them to
𝑃
𝑘
.

4. Simulation Results and Discussion

In this section, the MG optimization model described in the
previous section is applied in three scenarios, considering
the load demand variation, the electricity price change, and

a 24-hour dynamic optimization process. In each scenario,
three MOEAs including I-MOEA/D-M2M, NSGAII, and
SPEA2 [20] are used and their optimization results are com-
pared. The population size is 100 and the maximum genera-
tion number is 500 for each algorithm. For SPEA2, the archive
size is 100. And, for I-MOEA/D-M2M, 𝐾 = 𝑆 = 10. The
simulated binary crossover [21, 22] and polynomial mutation
methods are applied in the three algorithms with the same
control parameters in [19]. And both NSGAII and SPEA2
use the same constraint-handling strategy as I-MOEA/D-
M2M does. The reference point of the hypervolume values
is (30, 10) based on plenty of experimental results. All the
experiments are accomplished using MATLAB 2013, on a PC
with an Intel Core i3 (3.30GHz) processor under Windows 7
using 6GB of RAM.

4.1. Scenario One. In Scenario One, the load demand vari-
ation is considered as the primary factor to affect the opti-
mization results. In this case, the other system parameters,
like the environmental parameters, the electricity price, and
so forth, are fixed, which are shown in Table 4.The ramp rate
constraint is not applied here since the optimization proce-
dures are independent.

Figures 2(a)–2(i) show the optimization results under
different load demands using I-MOEA/D-M2M, SPEA2, and
NSGAII, respectively. The red points represent the popula-
tion in the last generation, and the black ones are the feasible
nondominated solutions. The comparisons of hypervolume
values (ℎ-values), feasible extreme solutions, and average
CPU time are presented in Table 1.

It is clear from Figures 2(a), 2(d), and 2(g) that the results
achieved by I-MOEA/D-M2M are always well distributed.
According to Table 1, the best and mean ℎ-values have
very small difference when using I-MOEA/D-M2M, which
means the algorithm can converge to the Pareto fronts in less
iteration.The extreme solutions for each objective are the best
compared with those using the other two algorithms. There-
fore, this algorithm is more robust and can provide more
diverse trade-off solutions for the decision-makers under
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Figure 2: Columns from left to right: (1) the optimization results using I-MOEA/D-M2M; (2) the optimization results using SPEA2; (3) the
optimization results using NSGAII. Rows: (1) the optimization results under 50 kW load demand; (2) the optimization results under 100 kW
load demand; (3) the optimization results under 150 kW load demand.

various load demands. And since it needs much less CPU
time, I-MOEA/D-M2M is more suitable for MG dynamic
scheduling problems.

For SPEA2, when the load is 50 kW, the population is
distributed uniformly. The best ℎ-value is similar to that
obtained by I-MOEA/D-M2M, but the mean value is much
smaller. The minimum cost and minimum emission do not

have much difference compared with those obtained by I-
MOEA/D-M2M. For instance, the minimum cost is 2.1147$,
which is only 0.038% more than the I-MOEA/D-M2M
optimized solution.With the load increasing, SPEA2 loses the
population diversity gradually (shown in Figures 2(b), 2(e),
and 2(h)). It can be seen fromFigure 2(h) that part of the pop-
ulation gets trapped into the infeasible region using SPEA2
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Figure 3:The feasible solutions obtained by NSGAII under 100 kW
load demand.

when the load is 150 kW. On the other hand, the ℎ-values and
the minimum cost and minimum emission are smaller than
those using I-MOEA/D-M2M, and the difference between
them increases with the load. Also, it should be noted that
SPEA2 costs much more time (292.5186 s) than the other two
methods do.Although it performs better thanNSGAIIwithin
500 generations, SPEA2 is not a good choice in dealing with
this MG dynamic MOP.

For NSGAII, the change is similar to that using SPEA2,
while the ℎ-values and the obtained extreme solutions are
worse. It can be seen from Figures 2(c), 2(f), and 2(i) that
the amount of the feasible nondominated solutions reduces
with the load increasing, and some of the solutions always
aggregate in a small region. For example, when the load
demand is 100 kW, 45%of the population have similar costs in
the objective space, which are between 4.1624$ and 4.2843$.
In this paper, this region is called Region A. To analyze
this, all the feasible solutions in Figure 2(f) are shown in
Figure 3 by parallel coordinates. It is obvious that only the
third and the fourth variables (i.e., output of FC1 and FC2) of
the red solutions have different values, while others remain
unchanged as their boundary values. Hence, it is easier to find
nondominated solutions in RegionA since only two variables
need to be changed. As a result, NSGAII may get trapped
into the regions like this, as convergence takes precedence
over population diversity in its search strategy. The iterative
processes of NSGAII and I-MOEA/D-M2M are shown in
Figure 4, which describe how the population varies with
generations.

It can be seen from Figure 4(a) that, at the 600th gener-
ation, more than half of the population stays in Region A by
using NSGAII, and only a few solutions have the cost values
higher than 4.2843$ in the objective space. In this paper,
the region is called Region B, where the cost value is higher
than 4.2843$. After 400 generations, the majority of the
population extends to Region B and is distributed uniformly,
and there are only a few solutions which have the cost values

lower than 4.1624$ in the objective space.The region is called
Region C, where the cost value is lower than 4.1624$. When
the generation reaches 2000, there are more solutions in
Region C and the whole front is similar to that obtained
by I-MOEA/D-M2M. Although NSGAII can also achieve a
good result finally, it costs more running time. Furthermore,
when the load changes, it is difficult to decide how many
generations the algorithm needs to get satisfying results, like
the case in Figure 2(i). With the load demand constraints
changing, the feasible search space varies frequently and
uncertainly, and NSGAII cannot guarantee to find the Pareto
front every time, since it may get trapped into some regions
like Region A. SPEA2 cannot deal with these problems either
(shown in Figure 2(h)) because they both adopt the con-
vergence first and diversity second selection strategy [16],
although SPEA2 performs better than NSGAII.

In contrast, I-MOEA/D-M2M can get a well distributed
front within just 100 generations due to its decomposition
strategy, and the results at 300th generation are almost the
same as those at 500th generation, which means the algo-
rithm is much faster in handling these MOPs. By using the
self-adaptive decomposition strategy, I-MOEA/D-M2M can
avoid searching the useless regions and pay more attention
to population diversity. So, whatever the load demand is, I-
MOEA/D-M2M can always quickly obtain the feasible trade-
off solutions.

4.2. Scenario Two. In Scenario Two, the effect of electricity
price change is studied. The environmental parameters are
held constant as shown in Table 4, and the load demand is
150 kW. The ramp rate constraint is still not applied here as
Scenario One. The electricity prices settings are shown in
Table 5. Figure 5 shows the optimization results in three cases
using I-MOEA/D-M2M, SPEA2, and NSGAII, respectively.

It is evident that I-MOEA/D-M2M performs well in
all the three cases, the solutions obtained are distributed
uniformly in the objective space, and it can be seen from
Figures 5(a), 5(d), and 5(g) that the fronts are quite different
in the three MOPs. For SPEA2, when the electricity purchase
price drops to 0.12$/kWh, the quality of the results is better
than that in Case One since all the nondominated solutions
are feasible, and the front is similar to that using I-MOEA/D-
M2M, whereas the amount of the feasible nondominated
solutions reduces when the electricity sale price increases to
0.13$/kWh, and nearly half of the solutions are infeasible.
For NSGAII, no matter how the electricity prices change, it
only finds part of the Pareto front within 500 generations,
according to Figures 5(c), 5(f), and 5(i). And there are a large
number of infeasible or dominated solutions left. In con-
clusion, I-MOEA/D-M2M can adapt to the MG MOP with
electricity prices varying, while the quality of results using
SPEA2 is based on the combination of electricity purchase
and sale prices, and NSGAII may need far more than 500
generations to get similar Pareto fronts to I-MOEA/D-M2M.

4.3. Scenario Three. With the above independent optimiza-
tion runs and analyses of the algorithms performance, it is
time to demonstrate the use of the proposed optimization
methodology to a complex 24-hour MG dynamic operation
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Figure 4:The iterative processes of NSGAII and I-MOEA/D-M2M under 100 kW load demand. Rows: (1) the optimization results after 600,
1000, and 2000 generations using NSGAII; (2) the optimization results after 100, 300, and 500 generations using I-MOEA/D-M2M.

scheduling problem involving economic and environmental
considerations. The load demand in a typical day is shown
in Figure 6, and the environmental data for wind speed,
irradiance, and air temperature can be found in [15]. Besides,
the time-varying electricity prices are considered, shown in
Table 6.

The pseudoweight vector method [23, 24] is introduced
in this paper to select the solutions based on the decision-
makers’ preference. After the optimization process in each
hour, the pseudoweight 𝜔

𝑖
for the 𝑖th objective for every

solution is calculated using the following equation:

𝜔
𝑖
=

(𝑓
max
𝑖

− 𝑓
𝑖
) / (𝑓

max
𝑖

− 𝑓
min
𝑖

)

∑
𝑀

𝑗=1
((𝑓

max
𝑗

− 𝑓
𝑗
) / (𝑓

max
𝑗

− 𝑓
min
𝑗

))

, (15)

where 𝑓max
𝑖

and𝑓min
𝑖

are the maximum andminimum values
for the 𝑖th objective in the obtained results, respectively; 𝑓

𝑖
is

the value of the 𝑖th objective function for every solution; 𝑀
is the number of the optimization objectives. Thereafter, the
following decision function can be applied:

Min 𝑑
𝑛
=
󵄨󵄨󵄨󵄨
𝜔
𝑛
− 𝜔
∗󵄨󵄨󵄨󵄨
, (16)

where 𝑑
𝑛
and 𝜔

𝑛
are the decision function value and the

pseudoweight vector for the 𝑛th solution in the final popu-
lation and 𝜔

∗ is the weight vector set by the decision-maker.
The solution with the minimum decision function value will
be selected, which is satisfied by the decision-maker. In this
paper, three cases are studied, of which the 𝜔

∗ values are
(1, 0), (0, 1), and (0.5, 0.5), respectively. The optimization
results by I-MOEA/D-M2M are shown in Figure 7.

Figure 7(a) shows the optimization results for the 24-
hourMG dynamic operation scheduling problemwhen 𝜔∗ =
(1, 0), which means the solution with the minimum cost in
the objective space is selected in each hour.The power output
curves of PVs and WTs are not shown here since they are
used first in each case and can be calculated by the forecast
environmental data. It can be seen that, for the two MTs,
MT1 is used first and MT2 starts to work only if MT1 outputs
full power under the relative constraints. For the two FCs,
similarly, FC1 always generates more power than FC2, while
sometimes FC2 starts running even though FC1 does not
reach the full power under its constraints. The differences
can be explained by computing the average prices of power
generated by the DGs using (2). For the BAT, to avoid
frequent charging and discharging, it will be charged when
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Figure 5: Columns from left to right: (1) the optimization results using I-MOEA/D-M2M; (2) the optimization results using SPEA2; (3)
the optimization results using NSGAII. Rows: (1) the optimization results in Case One; (2) the optimization results in Case Two; (3) the
optimization results in Case Three.

the state is 30 kW (SOCmin) and will not discharge until it
reaches 100 kW (SOCmax). Since there is no need to provide
more power than the load demand by the other DGs in the
MG in this paper, the BAT is mainly charged using the free
power obtained by uncontrollableDGs.As a result, the output
curve of BATdoes not changemuch in the three cases. For the
power exchanged with the main grid, the value depends on
the electricity price and the average prices of output power of

the controllable DGs. For instance, it can be calculated by (5)
that no matter how much power the DGs output the average
prices are always higher than the electricity purchase price in
valley period (00:00–07:00). Thus, it is more economical to
buy power from the grid before using the components in the
MG.

Figure 7(b) shows the optimization results when 𝜔
∗

=

(1, 0), whichmeansminimizing the emission level is themost
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Figure 6: Variation of load demand in 24 hours.

−30

−20

−10

0

10

20

30

40

50

60

70

Po
w

er
 (k

W
)

MT1
MT2
FC1

FC2
BAT
Power exchanged with grid

2 4 6 8 10 12 14 16 18 20 22 240
Time (h)

(a)

−20

−10

0

10

20

30

40

50
Po

w
er

 (k
W

)

2 4 6 8 10 12 14 16 18 20 22 240 
Time (h)

MT1
MT2
FC1

FC2
BAT
Power exchanged with grid

(b)

MT1
MT2
FC1

FC2
BAT
Power exchanged with grid

Y: 10.18
X: 19

−20

−10

0

10

20

30

40

50

60

Po
w

er
 (k

W
)

2 4 6 8 10 12 14 16 18 20 22 240
Time (h)

(c)

Figure 7: Optimization results using I-MOEA/D-M2M in the three cases of the 24-hour MG dynamic operation scheduling problem.
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Table 2: The total cost and emission obtained by the three algorithms in different cases.

Case One Case Two Case Three
Cost ($) Emission (kg) Cost ($) Emission (kg) Cost ($) Emission (kg)

Results
I-MOEA/D-M2M 323.8993 45.0830 370.3897 19.5747 339.7723 24.6929

SPEA2 337.6289 45.1581 373.3720 22.6218 343.6473 23.9759
NSGAII 354.7322 48.3517 388.6219 27.0249 359.3728 31.3728

Table 3: Parameter settings of the MG system components.

Parameters MT FC BAT PV WT
𝑖 1 2 3 4 5 6–8 9–11
𝐾OM𝑖 ($/kWh) 7.58 × 10−3 9.35 × 10−3 16.12 × 10−3 17.74 × 10−3 7.3 × 10−3 0 0
ADCC

𝑖
($) 342.82 342.82 1222.2 1222.2 22.84 1259.8 623.41

cf
𝑖
(%) 54.99 54.99 36.73 36.73 32.67 29.34 22.13

𝑎
𝑖

0.752 0.0692 −0.0023 −0.0026 — — —
𝑏
𝑖

−0.3095 −0.2904 0.6735 0.5821 — — —
𝑐
𝑖

0.4174 0.3752 — — — — —
𝑑
𝑖

0.1068 0.1090 — — — — —
𝛼
𝑖
(kg/kW) 4.09 × 10−4 2.54 × 10−4 5.33 × 10−4 4.87 × 10−4 — — —

𝛽
𝑖
(kg/kW) −5.55 × 10−4 −6.05 × 10−4 −3.55 × 10−4 −4.23 × 10−4 — — —

𝛾
𝑖
(kg/kW) 6.49 × 10−4 5.64 × 10−4 3.38 × 10−4 2.46 × 10−4 — — —

Ramp rate (kW/min) 0.33 0.33 0.25 0.25 — — —

Table 4: Parameter settings of the environmental factors and the electricity price.

Wind speed (m/s) Irradiance (W/m2) Air temperature (∘C) Electricity sale price ($/kWh) Electricity purchase price ($/kWh)
5.5 400 21 0.15 0.11

concerned objective. Interestingly, the output curves of the
twoMTs have the same varying tendency under different load
demands, while MT2 supplies a little more power (less than
5 kW) than MT1 does every time. For the FCs, the situation
is similar. This is quite different from Case One but can also
be explained by (7). For the power exchanged with the main
grid, the value is always the maximum since it is assumed to
produce no harmful emission in this paper.

Figure 7(c) shows the optimization results when 𝜔
∗

=

(0.5, 0.5), which consider trade-offs between cost and emis-
sion. It can be seen that the curves of the power output by
the DGs and the power exchanged with the main grid change
irregularly with time, which cannot be derived mathemati-
cally by the MG models in Section 2. However, in practical
engineering problems, the intermediate solutions like those
in Case Three are the ones the decision-makers really care
about. Therefore, the extreme solutions obtained in Case
One and Case Two are of important reference significance
for evaluating the performance of the optimization method.
With the above simulations, it is clear that I-MOEA/D-M2M
does better in searching the extreme solutions than the other
two algorithms. Table 2 shows the total cost and emission
obtained by the three algorithms with different 𝜔∗ values. It
can be seen that the results using I-MOEA/D-M2M have got
the minimum total cost in Case One and total emission in
Case Two compared with those using the other algorithms.
Particularly, in Case Two, the minimum emission solution

Table 5: Parameter settings of the electricity prices.

Case One Case Two Case Three
Electricity sale
price ($/kWh) 0.11 0.11 0.13

Electricity
purchase price
($/kWh)

0.15 0.12 0.15

using I-MOEA/D-M2M incurs a total emission of 19.5747 kg,
which is 13.47% and 27.57% better than the SPEA2 and
NSGAII optimized solutions, respectively. In CaseThree, the
cost and emission levels by I-MOEA/D-M2M are lower than
those by NSGAII. But the emission by I-MOEA/D-M2M is
more than that by SPEA2. According to Case One and Case
Two, the former result is still the first choice compared with
the latter, since I-MOEA/D-M2M can approximate the true
Pareto front better than SPEA2 and reflect the decision-
makers’ preference more precisely.

5. Conclusion

In this paper, an improvedMOEA/D-M2M algorithm is pro-
posed for solving the dynamic MG environmental/economic
scheduling problem. In this I-MOEA/D-M2M framework,
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Table 6: The electricity price settings in 24 hours.

Period Time (h) Price ($/kW)
Sale Purchase

Peak period 10:00–15:00
18:00–21:00 0.11 0.15

Normal period
07:00–10:00
15:00–18:00
21:00–23:00

0.06 0.08

Valley period 00:00–07:00
23:00-24:00 0.02 0.03

a constraint-handling method is suggested during the pro-
cess of sorting and selection. Meanwhile, the self-adaptive
decomposition and the individuals’ allocation strategies are
employed to enhance the capability of dealing with uncer-
tainties and make the algorithm more efficient. And then
I-MOEA/D-M2M is applied to a series of independent
static MG environmental/economic scheduling problems.
The results are compared with those obtained by SPEA2
and NSGAII in terms of hypervolume values, extreme solu-
tions, and CPU time. It is evident that I-MOEA/D-M2M
can achieve a well distributed front every time with much
less time, while the other two algorithms cannot guarantee
the quality of the solutions set and take more time. The
optimization processes in solving the two problems are
studied and the shortcomings of the two typical MOEAs
are pointed out, which also illustrates that the I-MOEA/D-
M2M framework can adapt to the search space changes well.
Finally, the feasibility of the I-MOEA/D-M2M is verified by
the simulations of a complex 24-hourMGdynamic operation
scheduling problem. Further studies are still necessary on
more realistic MG models and the effects of other dynamic
parameters.

Appendix

Parameters Settings

See Tables 3–6.
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