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We consider some methods to extract information about the rotator cuff based on magnetic resonance images; the study aims to
define an alternativemethod of display thatmight facilitate the detection of partial tears in the supraspinatus tendon. Specifically, we
are going to use families of ellipsoidal triangular patches to cover the humerus head near the affected area. These patches are going
to be textured and displayed with the information of the magnetic resonance images using the trilinear interpolation technique.
For the generation of points to texture each patch, we propose a new method that guarantees the uniform distribution of its points
using a random statistical method. Its computational cost, defined as the average computing time to generate a fixed number of
points, is significantly lower as compared with deterministic and other standard statistical techniques.

1. Introduction and Preliminaries

The rotator cuff is a group of muscles and tendons connected
to the humerus head whose function is the mobility and
stability of the shoulder. The anatomy and physiology of
the rotator cuff is complex and it is interconnected to other
muscle groups in the shoulder.These muscle groups perform
multiple functions and are often stressed during various
activities. Disease of the rotator cuff is the most common
cause of shoulder pain and dysfunction in adults; see [1, 2].

A rotator cuff tear is a tear of one ormore of the tendons of
the four rotator cuffmuscles; these can be classified according
to their depth into full thickness and partial thickness tears;
see [1, 2]. Magnetic resonance imaging plays a major role
in helping to identify rotator cuff affections. In fact many
surgeons rely on magnetic resonance images to assist in
decision making and presurgical planning for patients with
rotator cuff pain; see [3].

In this research, we explore methodologies to extract
information about the rotator cuff from magnetic reso-
nance images; particularly we emphasize on the detection
of supraspinatus tendon partial tears. We consider special

domains on ellipsoids and in particular triangular Bézier
patches to cover the humerus head close to the affected
area; these patches are textured with the information of the
magnetic resonance images using the trilinear interpolation
technique; see [4]. To texture the patch two techniques are
considered: a deterministic method and a random method.
The random generation methodology can be chosen in a
way that it ensures a uniform distribution of points and
hence it avoids the systematic accumulation in specific areas.
Therefore, we define families of special ellipsoidal patches,
and we present an algorithm for the random generation
of points uniformly distributed on the patch (see [5]). The
computational efficiency of this algorithm, measured as the
average computing time to generate a fixed number of points,
is compared with other nonrandom generating techniques,
namely, the classical de Casteljau algorithm and the Bernstein
polynomial evaluation of triangular Bézier patches; see [6–
11].

The paper is organized as follows. In Section 2, we
describe a statistical technique to generate uniformly dis-
tributed points on patches, focusing on the case of the upper
half of an ellipsoid. In Section 3, we center our discussion on
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the sphere and the ellipsoid of revolution, and we compare
them with the case of the general ellipsoid. Finally, in
Section 5 we present the comparison of the computational
costs.

2. Random Evaluation of Uniformly
Distributed Points

In this section, we review the problem of sampling uniformly
distributed points on a parametric surface that lies on the
upper half of an ellipsoid centered at the origin with semiaxes
𝑎
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where 𝑖 = 1, 2 and |𝛼
𝑖
| ≤ 1, |𝛽

𝑖
| ≤ 𝑎

1
. We want to

generate uniformly distributed points in the image of the
domain 𝐷. This allows us to guarantee that the generated
points will not accumulate; this feature is very important for
the visualization.

That is to say, we will generate values of a random vector
𝑋 = (𝑋

1
, 𝑋
2
) such that 𝑠(𝑋) is uniformly distributed on 𝑠(𝐷).

This condition means that, given 𝐴 ∈ R2 in 𝐷 and denoting
by 𝜆 the Lebesguemeasure of dimension 2 for the surface, the
probability of 𝑠(𝑋) ∈ 𝑠(𝐴)must be equal to 𝜆(𝑠(𝐴))/𝜆(𝑠(𝐷));
see [5, 12]. Taking into account the fact that 𝑥
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The expression (2) implies that𝑋must have density with
respect to the Lebesgue measure of dimension 2, given by
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if x ∈ 𝐷 and 0 otherwise.
In this sense, if we compute the partial derivatives of
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and, given that 𝑎
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> 0, we have 1 > 𝛿
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≥ 0.

Namely, to satisfy the uniformity condition, it is necessary to
generate the random vector 𝑋 with distribution 𝑓 given by
(4).

The strategy to generate𝑋 consists in making a change of
variables to transform 𝐷 into a rectangle. Let y = (𝑦

1
, 𝑦
2
) =

𝑔(𝑥
1
, 𝑥
2
) be a variable change such that its inverse (𝑥

1
, 𝑥
2
) =

𝑔
−1
(𝑦
1
, 𝑦
2
) is

𝑥
1
= 𝑎
1
𝑦
1
, 𝑥

2
= 𝑎
2
𝑦
2
√1 − 𝑦

2

1
, in the domain

𝐷
𝑔
= {(𝑦

1
, 𝑦
2
) :

𝛽
2

𝑎
1

< 𝑦
1
<

𝛽
1

𝑎
1

, 𝛼
2
< 𝑦
2
< 𝛼
1
} .

(5)

The mapping 𝑔 is one-to-one and continuously differen-
tiable so, using the change of variables theorem, we find that
the density of the vector 𝑌 = (𝑌
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Note that the problem of generating 𝑋 can be solved by
generating the random vector 𝑌 and then pulling back by 𝑔.

Next, to generate the random vector 𝑌 for a spherical
patch or for a patch of an ellipsoid of revolution, we will
consider a simplified technique.This is what we will do in the
next section and we will compare it with the general ellipsoid.

3. Patch Evaluation: Sphere and Ellipsoid
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The independence condition allows for the generation of
𝑌 using the inverse transform method; see [5]. We consider
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3.2. Ellipsoid of Revolution. For an ellipsoid of revolution we
have 𝑎

2
= 𝑎
3
and 𝛿
2
= 0; hence the joint density of 𝑌 on𝐷

𝑔
is

𝑓
𝑔
(y) = 𝜅𝑎

1
𝑎
2
√1 − 𝛿

1
𝑦
2

1
√

1

(1 − 𝑦
2

2
)

. (9)
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statistically independent; therefore it is again possible to use
the inverse transform method to generate the random vector
𝑌.
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The function 𝜙 is strictly monotone on the interval
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−1 has no closed analytic expression but
it can be approximated numerically. We would like the
approximation to be independent of the shape parameter 𝛿

1
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for 𝑢 ∈ (0, 1) and 𝑟
𝑖
as above. In this sense, to generate 𝑍, we

could draw a random number𝑈with uniform density on the
interval 𝐼 = (𝜙(𝑟

2
; 1), 𝜙(𝑟

1
; 1)) and then evaluate 𝜙−1(𝑈; 1).

3.2.1. Approximation of 𝜙−1. To generate the random variable
𝑍, we approximate the function 𝜙−1(𝑢; 1) with a cubic spline.
More precisely, let 𝑠

0
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1

< ⋅ ⋅ ⋅ < 𝑠
𝑛−1

be a partition
of 𝐼, we compute 𝜙(𝑠

𝑘
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do monotone piecewise cubic Hermite interpolation of the
data set {𝜙(𝑠

𝑘
; 1), 𝑠
𝑘
}
𝑛−1

𝑘=0
according to the method described

in [17]. There, the authors derive the necessary and sufficient
conditions for a cubic Hermite interpolator to be piecewise
monotone and develop an algorithm to build it for a mono-
tone data set. InMATLAB, for example, we can domonotone
interpolation with the function pchip.

For the sake of completeness, next we review two general
methods to sample random variables with arbitrary distri-
butions. We will compare these with the special techniques
presented here for the ellipsoid of revolution.

3.2.2. Acceptance-Rejection Method. The acceptance-rejec-
tion method is one of the most useful general methods
for sampling from general distributions. It can be applied
to both discrete and continuous distributions and even to
multidimensional distributions although its efficiency rapidly
decreases as the dimension increases [5].

We want to simulate a random variable 𝑋 with density
given by 𝑓(𝑥). Let us suppose that we have a method to
sample a random variable 𝑌 with density 𝑔(𝑦). In addition,
let us assume that it is possible to bound the ratio 𝑓(𝑥)/𝑔(𝑥)
by a constant 𝑐 > 0; 𝑐 = sup

𝑥
{𝑓(𝑥)/𝑔(𝑥)}.

The acceptance-rejection method is based on the follow-
ing algorithm [5].

(1) Generate𝑋 with density 𝑔(𝑥).
(2) Generate 𝑈 with uniform density on the interval

(0, 1).
(3) If 𝑈 ≤ 𝑓(𝑥)/(𝑐𝑔(𝑥)) output𝑋; else return to step (2).
This is to say, generate 𝑋 with density 𝑔(𝑥) and accept

it with probability 𝑓(𝑥)/(𝑐𝑔(𝑥)); else reject 𝑋 and try again.
The efficiency of the acceptance-rejection method is defined
as 𝑃(𝑈 ≤ 𝑓(𝑋)/(𝑐𝑔(𝑋))), and it is 1/𝑐; see [5].
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3.2.3. Hastings Algorithm. The Hastings algorithm is a pop-
ular technique to simulate random variables with densities
difficult to handle. Given a particular probability density 𝜋(x)
defined on a region 𝑆 and an arbitrary probability density
𝑞(x | y) that depends on (x, y) ∈ 𝑆 × 𝑆, a sketch of Hastings’
algorithm (see [18]) is as follows.



4 Computational and Mathematical Methods in Medicine

(1) Select an initial point𝑋
0
∈ 𝑆.

(2) On the 𝑡 iteration do the following.

(a) Generate𝑋 of the density 𝑞(x | xt−1).
(b) Compute
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, 𝑋

) .

(15)

(3) Repeat step (2) until equilibrium is reached.

In other words, in the iteration 𝑡, the Hastings sampler
chooses a sample 𝑋

 of the instrumental density 𝑞; this
density could depend on the last sampled variable 𝑋

𝑡−1
. The

algorithm decides to accept the new random variable 𝑋


according to (15).
The Hastings algorithm induces a Markov chain whose

stationary distribution has density 𝜋(x), regardless of the
choice of the instrumental density 𝑞. In practice, 𝑞 is chosen
as being easy to sample and close to the density 𝜋(x).

3.3. General Ellipsoid. We can apply Hastings or acceptance-
rejection method to each of the components of a vector but
this leads to the computation of elliptic integrals which is
computationally very expensive.

Alternatively using Hastings on the random vector is less
costly but exceeds by a factor much greater the deterministic
evaluation using the classical methods of de Casteljau and
Bézier.

4. Surfaces in Medical Visualization

Medical imaging is the set of techniques and procedures used
to create digital images of parts of the human body for clinical
purposes ormedical research.Digital images are composed of
individual pixels, to which discrete brightness or color values
are assigned. They can be efficiently processed, objectively
evaluated, and made available at many places at the same
time by means of appropriate communication networks and
protocols, such as Picture Archiving and Communication
Systems (PACS) and the Digital Imaging and Communica-
tions in Medicine (DICOM) protocol, respectively.

In fact, DICOM is a standard for handling, storing,
printing, and transmitting information in medical imaging;
see [19].

Since the discovery of X-rays byWilhelm Conrad Rötgen
in 1895, medical images have become a major component of
diagnostics, treatment planning and procedures, and follow-
up studies; therein lies its importance in healthcare. Medical
images are acquired using a variety of techniques and devices,
including conventional radiography, computed tomography
(CT), magnetic resonance imaging (MRI), ultrasound, and

nuclear medicine. As stated in the preliminaries we will focus
on rotator cuff MRI.

The usual technique for the visualization of rotator cuff
tears is by inspection of a sequence of parallel sections. We
propose an alternative technique.We look at a curved surface
along the humerus near the suspected area of the tear. This
exhibits the full tear extension in a single view which is
positioned in a natural way with respect to the humerus head.
We choose the curved surface fitting the humerus head to be a
patch of sphere or ellipsoid of revolution.These are estimated
using standard least squares techniques.

For the visualization of the tear we need to texturize it
with the MRI data, that is, to evaluate (To evaluate the patch
means to find the coordinates of all its points.) the patch and
assign a gray level to each point.

In the next section we look at various evaluation tech-
niques, deterministic and random, and present comparison
tables of their relative central processing unit (CPU) perfor-
mance.

5. Comparison of Various Surface
Evaluation Techniques

To generate the points of the patch we have several options.
For the sake of comparison we will consider both a sphere
octant and an ellipsoid of revolution octant. As mentioned
in the introduction the patch evaluation methods are of two
types: deterministic and random.

In the case of a patch on the sphere a uniform distribution
of points can be generated using the inverse transform
method. On the other hand, if the surface is an ellipsoid of
revolution we generate its points by combining the method
of inverse transform in one dimension with methods such as
the method based on the approximation of 𝜙−1, acceptance
and rejection, and Hastings algorithm.

From the deterministic point of view, we will use the
representation of the octant as a triangular Bézier patch; see
[6].

A triangular Bézier patch of degree 𝑛 with control net-
work bi ∈ E3 and associated weights 𝑤i ∈ R is a parametric
surface b𝑛0(u) ∈ E3. The parameter u = (𝑢, V, 𝑤) represents
the barycentric coordinates of a point in a triangular patch
and the multi-index i = (𝑖

1
, 𝑖
2
, 𝑖
3
) is related with a particular

location in a triangular array of degree 𝑛. The triangular
Bézier patch can be evaluated by means of either the de
Casteljau algorithm or the Bernstein representation.

The de Casteljau algorithm is a recursive procedure to
compute a point on the triangular patch as follows (see [6]):

b𝑟i (u)

=

𝑢𝑤i+e1b
𝑟−1

i+e1 (u) + V𝑤i+e2b
𝑟−1

i+e2 (u) + 𝑤𝑤i+e3b
𝑟−1

i+e3 (u)
𝑤
𝑟

i
,

(16)
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Table 1: Average computing time to generate 𝑛 points on the octant
of a sphere (seconds).

Method 𝑛 = 1035 𝑛 = 10011 𝑛 = 50086
Inverse transform 0.000168 0.000987 0.003989
Bernstein representation 0.003485 0.026029 0.125881
De Casteljau algorithm 0.002890 0.043633 0.212243

where e1, e2, and e3 are the unit canonical vectors:

𝑤
𝑟

i (u) = 𝑢𝑤i+e1 (u) + V𝑤i+e2 (u) + 𝑤𝑤i+e3 (u) ,

𝑟 = 1, . . . , 𝑛; |i| = 𝑛 − 𝑟; b0i = bi.
(17)

Then b𝑛0(u) is the position of the point corresponding to u.
The second deterministic method uses homogeneous

Bernstein polynomials 𝐵𝑛i (see [6]):

b𝑛 (u) = b𝑛0 (u) =
∑
|i|=𝑛 𝑤ibi𝐵𝑛i (u)
∑
|i|=𝑛 𝑤i𝐵

𝑛

i (u)
, (18)

where bi are the control points and 𝑤i are the weights.
De Casteljau and Bézier patch evaluation are the two

standard techniques to compute points of a triangular patch.
The Bézier evaluation is given by an analytic formula and the
algorithm of de Casteljau is iterative but has some poten-
tially useful side products such as the computation of the
surface curvature. Nevertheless, none of these deterministic
algorithms guarantees a uniform distribution of points on the
patch.

The random technique is based on methodologies that
provide asymptotically uniform distribution of points on the
patch. In practical terms this means that as the resolution is
increased the information is retrieved more faithfully on the
whole patch.

Table 1 illustrates the CPU performance of the algorithms
in a standard personal computer (PC) for the generation
of 𝑛 points on an octant of a sphere (The sphere octant
is realized in a rational Bézier patch of degree 4.). Our
experiments show that, regardless of the number of points
generated, the algorithm based on the inverse transform
technique is faster than the deterministic algorithms. Further,
the efficiency ratio for the random method with respect to
the deterministic methods increases as the number of points
generated increases.

For the ellipsoid, the comparison is given in Table 2.
Our results suggest that, regardless of the number of points
generated, the algorithm based on an approximation of
the inverse transform technique is faster than the other
algorithms both deterministic and random. In addition, the
efficiency ratio for the discussed method with respect to the
other methods increases as the number of points generated
increases.

6. Conclusions

Visualization of medical data along curved surface patches
is potentially a useful tool in medical research and clinical

Table 2: Average computing time to generate 𝑛 points on the octant
of an ellipsoid of revolution (seconds).

Method 𝑛 = 1035 𝑛 = 10011 𝑛 = 50086
𝜙
−1 approximation 0.001318 0.003352 0.010890

Acceptance-rejection 0.013956 0.125176 0.636031
Hastings 0.406324 2.225163 10.38507
Bernstein representation 0.003517 0.026096 0.126542
De Casteljau algorithm 0.002904 0.044050 0.212913

praxis. We consider the specific application in the case
of the rotator cuff. We propose a family of patches fitted
to the humerus head and texturing methods which are
highly competitive with the standard Bernstein-de Casteljau
deterministic algorithms.
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Geometric Design, vol. 4, no. 4, pp. 329–332, 1987.

[12] R. L. Smith, “Efficient Monte Carlo procedures for generating
points uniformly distributed over bounded regions,”Operations
Research, vol. 32, no. 6, pp. 1296–1308, 1984.

[13] M. Taylor, Measure Theory and Integration, Americal Mathe-
matical Society, 2006.

[14] P. Billingsley, Probability andMeasure, JohnWiley & Sons, New
York, NY, USA, 1995.

[15] R. Hogg, A. Craig, and J.McKean, Introduction toMathematical
Statistics, Pearson Education, 2005.

[16] S. Nadarajah and S. Kotz, “Programs for computing truncated
distributions,” Journal of Statistical Software, vol. 16, pp. 1–8,
2006.

[17] F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic
interpolation,” SIAM Journal on Numerical Analysis, vol. 17, no.
2, pp. 238–246, 1980.

[18] R. A. Levine, Z. Yu,W. G. Hanley, and J. J. Nitao, “Implementing
componentwise Hastings algorithms,” Computational Statistics
& Data Analysis, vol. 48, no. 2, pp. 363–389, 2005.

[19] T. M. Deserno, Ed., Biomedical Image Processing, Springer, 2011.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


