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We obtain inequalities involving numerical radius of a matrix A ∈ Mn(C). Using this result, we
find upper bounds for zeros of a given polynomial. We also give a method to estimate the spectral
radius of a given matrix A ∈ Mn(C) up to the desired degree of accuracy.

1. Introduction

Suppose A ∈ Mn(C). Let W(A), σ(A) denote respectively the numerical range, spectrum
of A and w(A), rσ(A) denote respectively the numerical radius, spectral radius of A, that is,

W(A) = {〈Ax, x〉 : ‖x‖ = 1},
w(A) = sup{|λ| : λ ∈ W(A)},
σ(A) =

{
λ : λ is an eigenvalue of A

}
,

rσ(A) = sup{|λ| : λ ∈ σ(A)}.

(1.1)

It is well known that

(i) ‖A‖/2 ≤ w(A) ≤ ‖A‖.
Kittaneh [1] improved on the second inequality to prove that.

(ii) w(A) ≤ 1/2‖A‖ + 1/2‖A2‖1/2.
Clearly, (1/2)‖A‖ + (1/2)‖A2‖1/2 ≤ ‖A‖ so that inequality (ii) is sharper than the

second inequality of (i).
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Let p(z) = zn + an−1zn−1 + · · ·a1z + a0 be a monic polynomial where a0, a1, . . . , an−1 are
complex numbers and let

C
(
p
)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−an−1 −an−2 · · −a1 −a0

1 0 · · 0 0
0 1 · · 0 0
0 0 · · 0 0
· · · · · ·
· · · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1.2)

be the Frobenius companion matrix of the polynomial p(z). Then, it is well known that zeros
of p are exactly the eigenvalues of C(p). Considering C(p) as an element of Mn(C), we see
that if z is root of the polynomial equation p(z) = 0, then

|z| ≤ w
(
C
(
p
))
, |z| ≤ rσ

(
C
(
p
))
. (1.3)

Based on inequality (ii), Kittaneh [1] obtained an estimation for w(C(p)) which gives an
upper bound for zeros of the polynomial p(z).

In Section 1 we find numerical radius of some special class of matrices and use the
results obtained to give a better estimation of bounds for zeros of a polynomial.

2. On Numerical Radius of a Matrix

We first obtain bounds for numerical radius of a matrix in Mn(C) and use it to obtain
numerical radius for some special class of matrices.

Theorem 2.1. Suppose T ∈ Mn(C) and

T =
(
A B
C D

)
, (2.1)

where A ∈ Mr(C), B ∈ Mr,n−r(C), C ∈ Mn−r,r(C) and D ∈ Mn−r(C). Then,

(i) w(T) ≤ (1/2)[w(A) +w(D) +
√
(w(A) −w(D))2 + (‖B‖ + ‖C‖)2] and

(ii) ‖T‖2 ≤ (1/2)(‖A‖2 + ‖B‖2 + ‖C‖2 + ‖D‖2) +

(1/2)
√
(‖A‖2 + ‖C‖2 − ‖B‖2 − ‖D‖2)2 + 4(‖A‖‖B‖ + ‖C‖‖D‖)2.

Proof. (i) Let Z ∈ C
n and

Z =
(
X
Y

)
, (2.2)

where X ∈ C
r and Y ∈ C

n−r with ‖Z‖ = 1.
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Then,

〈TZ,Z〉 =
〈(

AX + BY
CX +DY

)
,

(
X
Y

)〉
= 〈AX,X〉 + 〈BY,X〉 + 〈CX, Y〉 + 〈DY, Y〉 (2.3)

and so

|〈TZ,Z〉| ≤ |〈AX,X〉| + |〈DY, Y〉| + ‖B‖‖X‖‖Y‖ + ‖C‖‖X‖‖Y‖. (2.4)

Therefore, we have

w(T) ≤ sup
‖X‖2+‖Y‖2=1

[
w(A)‖X‖2 +w(D)‖Y‖2 + (‖B‖ + ‖C‖)‖X‖‖Y‖

]
,

= sup
θ∈[0,2π]

[
w(A)cos2θ +w(D)sin2θ + (‖B‖ + ‖C‖) cos θ sin θ

]
,

≤ 1
2

[
w(A) +w(D) +

√
(w(A) −w(D))2 + (‖B‖ + ‖C‖)2

]
.

(2.5)

This completes the first part of the proof.
(ii) Proceeding as in (i) we can prove the second part. This completes the proof of the

theorem.

Remark 2.2. As an application of (i) in Theorem 2.1, ‖T‖ has another estimation by ‖T‖2 =
‖T ∗T‖ = w(T ∗T) as follows:

‖T‖2 ≤ 1
2

[
w(A∗A + C∗C) +w(B∗B +D∗D)

+
√
(w(A∗A + C∗C) −w(B∗B +D∗D))2 + 4‖A∗B + C∗D‖2

]
.

(2.6)

Furuta [2] obtained numerical radius for a bounded linear operator T of the above form with
A = aIr , B = bA, C = cA∗, D = dIn−r , and a, b, c, d ∈ R

+. If we consider A = aIr , D =
dIn−r , C = 0n−r,r where a, d ∈ R, then we can exactly calculate w(T) and ‖T‖ as proved in the
next theorem.

Theorem 2.3. Suppose B ∈ Mr,n−r(C) and

T =
(

aIr B
On−r,r dIn−r

)
. (2.7)

Then

(i) w(T) = (1/2)(|a + d| +
√
(a − d)2 + ‖B‖2) and

(ii) ‖T‖ = (1/
√
2)

√

(a2 + d2 + ‖B‖2) +
√
(a2 − d2 − ‖B‖2)2 + 4a2‖B‖2.
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Proof. (i) Following the method employed in the previous theorem, we can show that

w(T) ≤ 1
2

(
|a + d| +

√
(a − d)2 + ‖B‖2

)
. (2.8)

We only need to show that there exists z0, ‖z0‖ = 1 such that |〈Tz0, z0〉| equals the quantity
in the RHS.

Suppose B attains its norm at y with ‖y‖ = 1.
Let z = (By ky)t where k is a scalar. Then, ‖z‖2 = ‖B‖2 + |k|2. Now

〈Tz, z〉 =
〈(

aIr B
On−r,r dIn−r

)(
By

ky

)
,

(
By

ky

)〉
(2.9)

so that

∣∣∣∣∣
〈Tz, z〉 · 1

‖z‖2

∣∣∣∣∣
=

∣∣∣(a + k)‖B‖2 + dk2
∣∣∣

‖B‖2 + k2
. (2.10)

Thus for all scalar k, we get

w(T) ≥

∣∣∣(a + k)‖B‖2 + dk2
∣∣∣

‖B‖2 + k2
. (2.11)

Case 1 (d + a ≥ 0). Define a function φ : R
+ → R by

φ(k) =
(a + k)‖B‖2 + dk2

‖B‖2 + k2
. (2.12)

Then using elementary calculus, we can show that φ(k) attains its maximum at k0 = (d − a) +√
(d − a)2 + ‖B‖2 so that for z0 = (1/

√
‖By‖2 + k0‖y‖2)(By k0y)

t we get

|〈Tz0, z0〉| = 1
2

(
a + d +

√
(a − d)2 + ‖B‖2

)
. (2.13)

Thus, we get

w(T) =
1
2

(
|a + d| +

√
(a − d)2 + ‖B‖2

)
. (2.14)
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Case 2 (d + a ≤ 0). As before we can show that there exists k0 = (d − a) −
√
(d − a)2 + ‖B‖2 so

that for z0 = (1/
√
‖By‖2 + k0‖y‖2)(By k0y)

t we get

|〈Tz0, z0〉| = 1
2

(
|a + d| +

√
(a − d)2 + ‖B‖2

)
. (2.15)

Thus in all cases, we get

w(T) =
1
2

(
|a + d| +

√
(a − d)2 + ‖B‖2

)
. (2.16)

This completes the proof of (i).
(ii) The proof is similar to the earlier one.
This completes the proof of the theorem.

Using Theorem 2.3, we can find numerical radius of an idempotent matrixA, that is, a
matrix for which A2 = A and also for a matrix for which A2 = I.

Corollary 2.4. Suppose A ∈ Mn(C) with A2 = A. Then

w(A) =
‖A‖
2

+
1
2
. (2.17)

Proof. By Schur’s theorem,A is unitarily equivalent to an upper triangular matrix. So without
loss of generality, we can assume that

A =
(

Ir Br,n−r
On−r,r 0n−r

)
, (2.18)

where Ir is the identity matrix, Br,n−r is any matrix. Using the last theorem, we get

w(A) =
‖A‖
2

+
1
2
. (2.19)

Corollary 2.5. Suppose A ∈ Mn(C) and A2 = I. Then

w(A) =
1
2

(
‖A‖ + 1

‖A‖
)
. (2.20)
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Proof. A can be expressed as

A =
(

Ir Br,n−r
On−r,r −In−r

)
, (2.21)

where Ir is the identity matrix, Br,n−r is any matrix. By Theorem 2.3, we have

‖A‖ =

√

1 +
1
2
‖B‖2 + 1

2
‖B‖

√
4 + ‖B‖2,

w(A) =
1
2

√(
4 + ‖B‖2

)
.

(2.22)

Therefore

‖A‖2 = 1 +
1
2
‖B‖2 + 1

2
‖B‖

√
4 + ‖B‖2,

1

‖A‖2
=

1

1 + (1/2)‖B‖2 + (1/2)‖B‖
√
4 + ‖B‖2

= 1 +
1
2
‖B‖2 − 1

2
‖B‖

√
4 + ‖B‖2.

(2.23)

By adding, we get

‖A‖2 + 1

‖A‖2
= 2 + ‖B‖2

=⇒
(
‖A‖ + 1

‖A‖
)2

= 4 + ‖B‖2

=⇒ w(A) =
1
2

(
‖A‖ + 1

‖A‖
)
.

(2.24)

Corollary 2.6. Suppose A ∈ Mn(C) with A2n = I. Then

w(A) ≥
(
1
2

(
‖An‖ + 1

‖An‖
))1/n

. (2.25)

Proof. It follows from the fact that (An)2 = I and w(A)n ≥ w(An).
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3. Bounds for Zeros of Polynomials

Let p(z) = zn+an−1zn−1+ · · ·a1z+a0 be a monic polynomial where a0, a1, . . . , an−1 are complex
numbers and let

C
(
p
)
=

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

−an−1 −an−2 · · −a1 −a0

1 0 · · 0 0
0 1 · · 0 0
0 0 · · 0 0
· · · · · ·
· · · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

(3.1)

be the Frobenius companion matrix of the polynomial p(z). Then, it is well known that zeros
of p are exactly the eigenvalues of C(p). Considering C(p) as a linear operator on Cn, we see
that if z is root of the polynomial equation p(z) = 0 then

|z| ≤ w
(
C
(
p
))

as σ
(
C
(
p
)) ⊂ W

(
C
(
p
))
, (3.2)

where σ(C(p)) is the spectrum of operator C(p). Estimation of the roots of zeros of the
polynomial p(z) has been done by many mathematicians over the years, some of them are
mentioned below. Let λ be a root of the polynomial equation p(z) = 0.

(i) Carmichael and Mason [3] proved that

|λ| ≤
[
1 + |a0|2 + |a1|2 + · · · + |an−1|2

]1/2
. (3.3)

(ii) Montel [4, 5] proved that

|λ| ≤ |a0| + |a0 − a1| + · · · + |an−2 − an−1| + |an−1 + 1|,
|λ| ≤ (n − 1) + |a0| + |a1| + · · · + |an−1|.

(3.4)

(iii) Cauchy [3] proved that

|λ| ≤ 1 +max{|a0|, |a1|, . . . , |an−1|}. (3.5)

(iv) Fujii and Kubo [6, 7] proved that

|λ| ≤ cos
π

n + 1
+
1
2

⎡

⎣

(
n−2∑

i=0
|ai|2

)1/2

+ |an−1|
⎤

⎦. (3.6)

(v) Alpin et al. [8] proved that

|λ| ≤ max
1≤k≤n

[(1 + |an−1|)(1 + |an−2|) · · · (1 + |an−k|)]1/k. (3.7)



8 International Journal of Mathematics and Mathematical Sciences

(vi) Kittaneh [1] proved that

|λ| ≤ 1
2

[∥
∥C
(
p
)∥∥ +

∥
∥
∥C
(
p
)2∥∥
∥
1/2
]
. (3.8)

We develop an inequality involving numerical radius with the help of which we estimate
the zeros of the polynomial p. We show with examples that our estimation is better than the
estimations mentioned above.

Theorem 3.1. If λ is a zero of the polynomial p(z), then

|λ| ≤
∣
∣∣
∣
an−1
n

∣
∣∣
∣ +

1
2

⎡

⎢
⎢
⎢
⎣
cos

π

n
+

√√
√
√
√
√cos2

π

n
+

⎛

⎝1 +

√√
√
√

n−2∑

r=0
|αr |2

⎞

⎠

2
⎤

⎥
⎥
⎥
⎦
, (3.9)

where αr =
∑n−r

k=0 nCk(−an−1/n)
kan−k, r = 0, 1, 2, . . . , n − 2.

Proof. Putting z = ξ +h in the polynomial equation p(z) = zn +anz
n−1 + · · ·a2z+a1 = 0, we get

(ξ + h)n + an−1(ξ + h)n−1 + · · · + a1(ξ + h) + a0 = 0. (3.10)

Substituting h = −an−1/n, we get

ξn + αn−2ξn−2 + αn−3ξn−3 + · · · + α1ξ + α0 = 0, (3.11)

where αr =
∑n−r

k=0 nCK(−an−1/n)
kan−k, r = 0, 1, 2, . . . , n − 2.

Let C(ξ) be the Frobenius companion matrix of the polynomial q(ξ) = ξn + αn−2ξn−2 +
αn−3ξn−3 + · · · + α1ξ + α0.

Then C(ξ) =
(
A B
C D

)
, where A = (0)1, B = (−αn−2,−αn−3, . . . ,−α0)1,n−1

C =

⎛

⎜⎜⎜⎜⎜
⎝

1
0
·
·
0

⎞

⎟⎟⎟⎟⎟
⎠

n−1,1

, D =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 · · 0
1 0 · · 0
· · · · 0
· · · · 0
0 0 · 1 0

⎞

⎟⎟⎟⎟⎟
⎠

n−1,n−1

. (3.12)

Using Theorem 2.1, we get

w(C(ξ)) ≤ 1
2

[
w(A) +w(D) +

√
(w(A) −w(D))2 + (‖B‖ + ‖C‖)2

]

=⇒ w(C(ξ)) ≤ 1
2

⎡

⎢⎢⎢
⎣
cos

π

n
+

√√√√√
√cos2

π

n
+

⎛

⎝1 +

√√√
√

n−2∑

r=0
|αr |2

⎞

⎠

2
⎤

⎥⎥⎥
⎦
.

(3.13)
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This shows that if ξ0 is a zero of the polynomial q(ξ), then

|ξ0| ≤ 1
2

⎡

⎢
⎢
⎢
⎣
cos

π

n
+

√√
√
√
√
√cos2

π

n
+

⎛

⎝1 +

√√
√
√

n−2∑

r=0
|αr |2

⎞

⎠

2
⎤

⎥
⎥
⎥
⎦
. (3.14)

Thus if λ is a zero of the polynomial p(z), then

|λ| ≤
∣
∣
∣
∣
an−1
n

∣
∣
∣
∣ +

1
2

⎡

⎢
⎢
⎢
⎣
cos

π

n
+

√√
√
√
√
√cos2

π

n
+

⎛

⎝1 +

√√
√
√

n−2∑

r=0
|αr |2

⎞

⎠

2
⎤

⎥
⎥
⎥
⎦
. (3.15)

This completes the proof of the theorem.

Example 3.2. Consider the polynomial equation p(z) = z3 − 3z2 + 2z = 0. Then the bounds
estimated by different mathematicians are as shown in Table 1.

But our estimation shows that if λ is a zero of the polynomial then |λ| ≤ 2.280776406
which is much better than all the estimations mentioned above.

The companion matrix of the polynomial after removing the second term can be
written as

⎛

⎝
0 1 0
1 0 0
0 1 0

⎞

⎠ =
(
A2,2 B2,1

C1,1 D1,1

)
. (3.16)

Then using the above theorems, it is easy to show that |λ| ≤ 2.207 which is even better
estimation.

Example 3.3. Consider the polynomial equation p(z) = z5 − 8z4 + 25z3 − 38z2 + 28z − 8 = 0.
Then, the bounds estimated by different mathematicians are as shown in Table 2.

But our estimation shows that if λ is a zero of the polynomial then |λ| ≤ 2.703669110
which is much better than all the estimations mentioned above.

Theorem 3.4. Let p(z) = zn+an−1zn−1+ · · ·a1z+a0 having αi (i = 1, 2, . . . , n) as zeros and for each
m ∈ N, pm(z) = zn +a(m)

n−1z
n−1 + · · ·a(m)

2 z+a(m)
1 z+a(m)

0 is a polynomial having α2m
i (i = 1, 2, . . . , n)

as zeros. If λ is a zero of the polynomial p(z), then for all m

|λ| ≤

⎛

⎜⎜
⎝

1
2

⎡

⎢⎢
⎣

∣∣∣a(m)
n−1
∣∣∣ + cos

(
π

n

)
+

√√√√
√
(∣∣∣a(m)

n−1
∣∣∣ − cos

(
π

n

))2

+

⎛

⎝1 +

√√√
√

n∑

k=2

∣∣∣a(m)
n−k
∣∣∣
2

⎞

⎠

2
⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

1/2m

.

(3.17)
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Table 1

Carmichael and Mason 3.741657387
Montel 7
Cauchy 4
Fujii and Kubo 4.0098824
Yuri, Chien and Yeh 3.464101615
Kittaneh 3.44572894

Table 2

Carmichael and Mason 54.60769176
Montel 215
Cauchy 39
Fujii and Kubo 32.16529279
Yuri, Chien and Yeh 9

Proof. We first prove the lemma which shows that the coefficients of pm(z) can be expressed
in terms of coefficients of p(z).

Lemma 3.5. Suppose p(z) = zn+an−1zn−1+· · ·a1z+a0 is a monic polynomial, where a0, a1, . . . , an−1
are complex numbers and αi, (i = 1, 2, . . . , n) are the zeros of this polynomial. If p1(z) = zn +
a
(1)
n−1z

n−1+· · ·a(1)
1 z+a(1)

0 is the polynomial having α2
i (i = 1, 2, . . . , n) as zeros, then for r = 1, 2, . . . , n:

a
(1)
r = (−1)2n−r

(

a2
r + 2

n−r∑

k=1

(−1)kar+kar−k

)

, where an = 1, an+k = an−k = 0. (3.18)

Proof. We have

det
(
z2I − C

(
p
)2) = det

(
zI − C

(
p
))

det
(
zI + C

(
p
))

=⇒ p1
(
z2
)
= p(z)p(−z)

=⇒ z2n + a
(1)
n−1z

2(n−1) + · · ·a(1)
1 z2 + a

(1)
0

= (−1)n
(
zn + an−1zn−1 + · · ·a1z + a0

)

×
(
zn − an−1zn−1 + · · · + (−1)n−1a1z + (−1)na0

)
.

(3.19)

Comparing the coefficient of z2r , we get for r = 1, 2, . . . n:

a
(1)
r = (−1)2n−r

(

a2
r + 2

n−r∑

k=1

(−1)kar+kar−k

)

, where an = 1, an+k = an−k = 0. (3.20)

This completes the proof of lemma.
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The companion matrix of the monic polynomial pm(z) is

C
(
pm
)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−a(m)
n−1 −a(m)

n−2 · · −a(m)
1 −a(m)

0
1 0 · · 0 0
0 1 · · 0 0
0 0 · · 0 0
· · · · · ·
0 0 · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.21)

We have

w
(
C
(
pm
)) ≥ rσ

(
C
(
pm
))

= rσ
(
C
(
p
))2m

. (3.22)

So

rσ
(
C
(
p
)) ≤ (w(C(pm

)))1/2m
. (3.23)

Using Theorem 2.1, we get

w
(
C
(
pm
)) ≤ 1

2

⎡

⎢⎢
⎣

∣∣∣a(m)
n−1
∣∣∣ + cos

(
π

n

)
+

√√√√
√
(∣∣∣a(m)

n−1
∣∣∣ − cos

(
π

n

))2

+

⎛

⎝1 +

√√√
√

n∑

k=2

∣∣∣a(m)
n−k
∣∣∣
2

⎞

⎠

2
⎤

⎥⎥
⎦.

(3.24)

Thus if λ is a zero of the polynomial p(z), then

|λ| ≤

⎛

⎜⎜
⎝

1
2

⎡

⎢⎢
⎣

∣∣∣a(m)
n−1
∣∣∣ + cos

(
π

n

)
+

√√√√
√
(∣∣∣a(m)

n−1
∣∣∣ − cos

(
π

n

))2

+

⎛

⎝1 +

√√√
√

n∑

k=2

∣∣∣a(m)
n−k
∣∣∣
2

⎞

⎠

2
⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

1/2m

.

(3.25)

This completes the proof of the theorem.
We next prove the theorem.

Theorem 3.6. Suppose p(z) = zn+an−1zn−1+· · ·a1z+a0 is a monic polynomial and αi are the roots of
this equation i = 1, 2, . . . , n, where a0, a1, . . . , an−1 are complex numbers with |α1| > 1 > |α2| > · · · >
|αn|. If the equation having roots α2m

i for i = 1, 2, . . . , n is pm(z) = zn + a
(m)
n−1z

n−1 + · · ·a(m)
1 z + a

(m)
0 ,

then there existsm0 ∈ N such that

(1) |a(m)
n−k| ≤ |a(m)

n−1| whenever m ≥ m0 and for k = 2, 3, . . . , n;

(2) [w(Cm(p))]
1/2m converges to rσ[C(p)].
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Proof. (1) We prove this for k = 2 and the rest are similar.
First observe that

∣
∣
∣a(m)

n−1
∣
∣
∣ =

∣
∣
∣
∣
∣

n∑

k=1

α2m
k

∣
∣
∣
∣
∣
≥ |α1|2

m −
n∑

k=2

|αk|2
m

,

∣
∣
∣a(m)

n−2
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

n∑

j /= k=1

α2m
j α2m

k

∣
∣
∣
∣
∣
∣
≤ |α1|2

m

(
n∑

k=2

|αk|2
m

)

+
n∑

j /= k=2

∣
∣αj

∣
∣2m |αk|2

m

.

(3.26)

Now in order to have

∣
∣
∣a(m)

n−2
∣
∣
∣ ≤

∣
∣
∣a(m)

n−1
∣
∣
∣. (3.27)

We get

|α1|2
m −

n∑

k=2

|αk|2
m ≥ |α1|2

m

(
n∑

k=2

|αk|2
m

)

+
n∑

j /= k=2

∣∣αj

∣∣2m |αk|2
m

, (3.28)

that is,

|α1|2
m ≥

(
1 + |α1|2

m
)[ n∑

k=2

|αk|2
m

]

+
n∑

j /= k=2

∣∣αj

∣∣2m |αk|2
m

, (3.29)

that is,

|α1|2
m

1 + |α1|2m
≥
∑n

k=2 |αk|2
m

1 + |α1|2m
+

∑n
j /= k=2

∣∣αj

∣∣2m |αk|2
m

1 + |α1|2m
. (3.30)

Clearly, this inequality holds good as the left-hand side converges to 1, but the right-hand
side converges to 0.

(2)We have

w
(
Cm

(
p
)) ≤ 1

2

⎡

⎢⎢
⎣

∣∣∣a(m)
n−1
∣∣∣ + cos

(
π

n

)
+

√√√√
√
(∣∣∣a(m)

n−1
∣∣∣ − cos

(
π

n

))2

+

⎛

⎝1 +

√√√
√

n∑

k=2

∣∣∣a(m)
n−k
∣∣∣
2

⎞

⎠

2
⎤

⎥⎥
⎦,

(3.31)

that is,

w
(
Cm

(
p
)) ≤ 1

2

⎡

⎣
∣∣∣a(m)

n−1
∣∣∣ + 1 +

√(∣∣∣a(m)
n−1
∣∣∣
2
+ (1 +

√
n − 2

∣∣∣a(m)
n−1
∣∣∣
)2
⎤

⎦, (3.32)
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that is,

w
(
Cm

(
p
)) ≤ 1

2

⎡

⎣
∣
∣
∣a(m)

n−1
∣
∣
∣ +
∣
∣
∣a(m)

n−1
∣
∣
∣ +

√(∣
∣
∣a(m)

n−1
∣
∣
∣
2
+ (
∣
∣
∣a(m)

n−1
∣
∣
∣ +

√
n − 2

∣
∣
∣a(m)

n−1
∣
∣
∣
)2
⎤

⎦. (3.33)

So we get

w
(
Cm

(
p
)) ≤ K

∣
∣
∣a(m)

n−1
∣
∣
∣ ≤ K

∣
∣
∣
∣
∣

n∑

i=1

α2m
i

∣
∣
∣
∣
∣
≤ K|α1|2

m

(

1 +
n∑

i=2

∣
∣
∣
∣
αi

α1

∣
∣
∣
∣

2m
)

. (3.34)

Now

(
rσ
(
C
(
p
)))2m = rσ

(
Cm

(
p
)) ≤ w

(
Cm

(
p
)) ≤ K|α1|2

m

(

1 +
n∑

i=2

∣∣∣∣
αi

α1

∣∣∣∣

2m
)

. (3.35)

Therefore,

rσ
(
C
(
p
)) ≤ [w(Cm

(
p
))]1/2m ≤ |α1|

(

K

(

1 +
n∑

i=2

∣∣∣∣
αi

α1

∣∣∣∣

2m
))1/2m

. (3.36)

As the terms inside the bracket on the RHS converges to 1, we get the desired result.
This completes the proof of the theorem.

Application. As an application we can exactly find the spectral radius of a given matrix.
Consider a given matrix A of order n.

Step 1. We first find the characteristic polynomial q(z) = zn + bn−1zn−1 + · · · b1z + b0. Suppose
αi, i = 1, 2, . . . , r are the distinct roots of q(z) = 0 with |α1| > |α2| > · · · > |αr |.

Step 2. Find p(z) = q(z)/gcd[q(z), q′(z)] = zr + ar−1zr−1 + · · ·a1z + a0. Then, roots of q(z) = 0
are αi, i = 1, 2, . . . , r without multiplicity. Let pm(z) = zn + a

(m)
n−1z

n−1 + · · ·a(m)
1 z + a

(m)
0 be the

polynomial having α2m
i for i = 1, 2, . . . , r as its zeros.

Step 3. Since |α2| < |α1|, taking ε < (1/4)(|α1| − |α2|), we can see that |α2| < |α1 − 2ε. Again
using a result of [9], we get |a(m)

n−1|1/2
m
converging to |α1|. So for this ε there exists an m0 ∈ N

such that |α1| − ε < |a(m)
n−1|1/2

m
< |α1| + ε for all m ≥ m0. Therefore,

|α2| + ε < |α1| − ε <
∣∣∣a(m)

n−1
∣∣∣
1/2m

< |α1| + ε ∀m ≥ m0. (3.37)
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Table 3

No. of iterations a
(m)
4 a

(m)
3 a

(m)
2 a

(m)
1 a

(m)
0 rσC((q(z)))

0 −1 0 0 0 −2−5 2.85
1 −1 0 −2−4 0 −2−10 2.40
2 −1 −2−3 −2−9 −2−13 −2−20 2.20
3 −1.25 31 × 2−12 13 × 2−19 3 × 2−28 −2−40 2.11
4 1.547363281 0.000119 0 0 0 2.07
5 2.394094544 0 0 0 0 2.05

Step 4. Let t = |a(m0)
n−1 |

1/2m0

− ε.
Find s(z) = zr +

∑r
k=1(ar−k/tk)zr−k = zr + cr−1zr−1 + · · · c1z + c0. If the roots of s(z) = 0

are βi, then βi = αi/t, i = 1, 2, . . . , r and

∣∣β1
∣∣ =

∣∣∣
α1

t

∣∣∣ > 1 >
∣∣∣
α2

t

∣∣∣ =
∣∣β2
∣∣ >

∣∣β3
∣∣ > · · · > ∣∣βr

∣∣. (3.38)

Then, s(z) satisfies all the criterion of Theorem 3.6.

Step 5. The required sequence is xm = t[w(Cm(s))]
1/2m, which converges to the spectral

radius of matrix A.

Example 3.7. Consider the 5th-degree polynomial q(z) = z5 + 2z4 + 1.
By Rouche’s theorem, it is easy to see that all the roots except one are enclosed by the

simple closed curve |z| = 2.
Consider s(z) = z5 + z4 + (1/25) and then iterating the coefficints of Q(z) we get the

following.
The highest absolute value of the zeros of the polynomial is 2.055 and by 5th iteration

we get 2.05. Continuing the above process, we can find the highest absolute value of the
zeros of the polynomial up to the desired degree of accuracy. The previous best result for this
is known to be 2.414 given by Alpin [8]. The iterations are shown in Table 3.
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