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NULL DISTRIBUTION OF MULTIPLE CORRELATION COEFFICIENT
UNDER MIXTURE NORMAL MODEL

HYDAR ALI and DAYA K. NAGAR
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The multiple correlation coefficient is used in a large variety of statistical tests and regres-
sion problems. In this article, we derive the null distribution of the square of the sample
multiple correlation coefficient, R2, when a sample is drawn from a mixture of two multi-
variate Gaussian populations. The moments of 1−R2 and inverse Mellin transform have
been used to derive the density of R2.

2000 Mathematics Subject Classification: 62H10, 62H15.

1. Introduction. Suppose that x(p×1),µ(p×1), and Σ(p×p) > 0 are partitioned as

x=
(
x1

x(2)

)
,µ=

(
µ1
µ(2)

)
, andΣ=

(
σ11 σ′21
σ21 Σ22

)
, where x(2) = (x2, . . . ,xp)′ andµ(2) = (µ2, . . . ,µp)′

are (p−1)×1 and Σ22 is (p−1)×(p−1), so that Var(x1)= σ11, Cov(x(2))= Σ22, and

σ12 is the (p−1)×1 vector of covariances between x1 and x2, . . . ,xp . The multiple

correlation coefficient between x1 and x(2), denoted by R̄1·2···p , is defined as

R̄1·2···p =
(σ′21Σ

−1
22σ21

σ11

)1/2
. (1.1)

Let A be the sample sum of squares and products matrix formed from N indepen-

dent observations on x. Partition A as A=
(
a11 a′21
a21 A22

)
, where A22 is (p−1)×(p−1). The

sample multiple correlation coefficient between x1 and x(2) is defined by

R =
(

a′21A
−1
22 a21

a11

)1/2
. (1.2)

It is well known that, when the underlying population is normal, the random matrix A
has Wishart distribution with n=N−1 degrees of freedom and parameter matrix Σ.

Further, R̄1·2···p = 0 if and only if x1 is independent of x(2) = (x2, . . . ,xp). Furthermore,

when the population multiple correlation coefficient R̄1·2···p is zero, the distribution

of R2 is beta with parameters (1/2)(p−1) and (1/2)(N−p).
In practice, it is often the case that the random variables are not normally dis-

tributed. When such is the case, how would the departure from the normality affect

the conventional inference procedure? Specifically, one may wonder what would be

the sampling distributions of some commonly used statistics? For providing some

answers to the above questions, Srivastava and Awan [9] and Tan [11] derived the

distribution of the sample sum of squares and products matrix when sampling from

a mixture of two multivariate normal distributions. The normal mixture is defined as

follows:

f(x)= εNp
(
µ1,Σ;x

)+(1−ε)Np(µ2,Σ;x
)
, x∈Rp, (1.3)
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where

Np(µ,Σ;x)

= (2π)−(1/2)p det(Σ)−1/2 exp
{
− 1

2
(x−µ)′Σ−1(x−µ)

}
, x∈Rp, µ∈Rp, Σ> 0,

(1.4)

and 1− ε is known as the degree of contamination. This model is very common in

medical, biological, and agricultural experiments (Titterington et al. [12]). For results

on the distribution theory and robustness studies of certain test statistics when sam-

pling from a mixture normal model, see Srivastava [8], Srivastava and Awan [9, 10],

Kabe and Gupta [5], Amey and Gupta [2], and Nagar and Castañeda [7].

Srivastava [8], using certain transformations, derived the null distribution of multi-

ple correlation coefficient when sampling from a mixture of two multivariate normal

distributions (see also Gupta and Kabe [3]). Amey [1] integrated the joint density of

a11, a21, and A22 suitably to derive the density of R2 and studied its robustness.

In this article, we derive the null distribution of R2 when sampling from a mixture of

two multivariate normal distributions. First, we derive the hth null moment of 1−R2.

Then, by using the inverse Mellin transform, the density of 1−R2 is obtained from

which the density of R2 is deduced.

Note that R2 is a function of the elements of sample sum of squares and products

matrix A. Therefore, in our derivation, we use the distribution of A when sampling

from the above model. Srivastava and Awan [9] and Tan [11] have shown that the

density ofA, when sampling from (1.3), is a binomial sum of linear noncentral Wishart

densities:

f(A)=
N∑
γ=0

(
N
γ

)
εγ(1−ε)N−γWp

(
n,Σ,c2

γΣ−1νν′;A
)
, (1.5)

where n=N−1, c2
γ = γ(N−γ)/N, and ν = (µ1−µ2). Here Wp(n,Σ,c2

γΣ−1νν′;A) rep-

resents the noncentral Wishart density with n degrees of freedom and noncentrality

parameter matrix c2
γΣ−1νν′ defined by

Kp(n,Σ,ν)etr
(
− 1

2
Σ−1A

)
det(A)(1/2)(n−p−1)

0F
(p)
1

(
1
2
n;

1
4
c2
γΣ−1AΣ−1νν′

)
, (1.6)

where

Kp(n,Σ,ν)=
{

2(1/2)pnΓp
(

1
2
n
)

det(Σ)(1/2)n
}−1

etr
(
− 1

2
c2
γΣ−1νν′

)
(1.7)

and Γm(a)=π(1/4)m(m−1)∏m
j=1 Γ(a−(1/2)(j−1)).

2. Null moments of 1−R2. In this section, we derive moments of 1−R2 when

R̄1·2···p = 0 (or equivalently σ21 = 0). Let Σ0 =
(σ11 0′

0 Σ22

)
and U = 1−R2. Since a11 is

scalar, then

U = 1−R2 = 1− a′21A
−1
22 a21

a11
= det(A)
a11 det

(
A22

) . (2.1)
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The hth null moment of U is given by

E
(
Uh
)= N∑

γ=0

(
N
γ

)
εγ(1−ε)N−γEγ

(
Uh
)
, (2.2)

Eγ
(
Uh
)=Kp(n,Σ0,ν

)∫
A>0

etr
(
− 1

2
Σ−1

0 A
)
a−h11 det

(
A22

)−h

×det(A)(1/2)(n−p−1)+h
0F

(p)
1

(
1
2
n;

1
4
c2
γΣ

−1
0 AΣ−1

0 νν′
)
dA.

(2.3)

Replacing a−h11 and det(A22)−h by their integral representations, namely

a−h11 =
1

2hΓ(h)

∫∞
0

exp
(
− 1

2
a11y1

)
yh−1

1 dy1, Re(h) > 0,

det
(
A22

)−h = 1
2(p−1)hΓp−1(h)

∫
Y22>0

etr
(
− 1

2
A22Y22

)

×det
(
Y22

)h−(1/2)(p−1+1) dY22, Re(h) >
1
2
(p−2),

(2.4)

respectively, in (2.3) and integrating A, the moment expression is rewritten as

Eγ
(
Uh
)= 2(1/2)npKp

(
n,Σ0,ν

)
Γp
(
(1/2)n+h)

Γ(h)Γp−1(h)

×
∫∞

0
yh−1

1

∫
Y22>0

det
(
Y22

)h−(1/2)p
det

(
Σ−1

0 +Y )−(1/2)n−h

×1F
(p)
1

(
1
2
n+h;

1
2
n;

1
2
c2
γΣ

−1
0

(
Σ−1

0 +Y )−1Σ−1
0 νν′

)
dy1dY22,

(2.5)

where Y = (y1 0
0 Y22

)
and 1F

(p)
1 is the confluent hypergeometric function of matrix argu-

ment (Gupta and Nagar [4]). Since rank(Σ−1
0 (Σ−1

0 +Y)−1Σ−1
0 νν′)= 1, the only nonzero

characteristic root of the matrix Σ−1
0 (Σ−1

0 +Y)−1Σ−1
0 νν′ is tr((Σ−1

0 +Y)−1Σ−1
0 νν′Σ−1

0 )
and therefore,

1F
(p)
1

(
1
2
n+h;

1
2
n;

1
2
c2
γΣ

−1
0

(
Σ−1

0 +Y )−1Σ−1
0 νν′

)

= 1F1

(
1
2
n+h;

1
2
n;

1
2
c2
γ tr

((
Σ−1

0 +Y )−1Σ−1
0 νν′Σ−1

0

))
,

(2.6)

where 1F1 is the confluent hypergeometric function of scalar argument (see [6]). Substi-

tuting (2.6) in (2.5) and expanding 1F1 in series form, the moment expression simplifies

to

Eγ
(
Uh
)= 2(1/2)npKp

(
n,Σ0,ν

)
Γp
(
(1/2)n+h)

Γ(h)Γp−1(h)

∞∑
t=0

(c2
γ

2

)t ((1/2)n+h)t(
(1/2)n

)
tt!

×
∫∞

0
yh−1

1

∫
Y22>0

det
(
Y22

)h−(1/2)p
det

(
Σ−1

0 +Y )−(1/2)n−h

×[ν′Σ−1
0

(
Σ−1

0 +Y )−1Σ−1
0 ν

]tdy1dY22,

(2.7)
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where (a)r = a(a+1)···(a+r −1) and (a)0 = 1. Noting that Σ0 is a block diagonal

matrix, we obtain

[
ν′Σ−1

0

(
Σ−1

0 +Y )−1Σ−1
0 ν

]t
= [ν2

1σ
−1
11

(
1+σ11y1

)−1+ν′2Σ−1
22

(
Σ−1

22 +Y2
)−1Σ−1

22ν2
]t

=
∑

k+�=t

t!
k!�!

{
ν2

1σ
−1
11

(
1+σ11y1

)−1}k{ν′2Σ−1
22

(
Σ−1

22 +Y22
)−1Σ−1

22ν2
}�,

det
(
Σ−1

0 +Y )= (σ11
)−1(

1+σ11y1
)
det

(
Σ22

)−1
det

(
Ip−1+Σ22Y22

)
.

(2.8)

Now substituting (2.8) in (2.7), we have

Eγ
(
Uh
)= 2(1/2)npKp

(
n,Σ0,ν

)
Γp((1/2)n+h)

det(Σ0)(1/2)n+hΓ(h)Γp−1(h)

×
∞∑
t=0

(c2
γ

2

)t ((1/2)n+h)t(
(1/2)n

)
t

∑
k+�=t

1
k!�!

( ν2
1

σ11

)k

×
∫∞

0
yh−1

1

(
1+σ11y1

)−((1/2)n+h+k)dy1

×
∫
Y22>0

det
(
Y22

)h−(1/2)p
det

(
Ip−1+Σ22Y22

)−(1/2)n−h

×{ν′2Σ−1
22

(
Σ−1

22 +Y22
)−1Σ−1

22ν2
}�dY22.

(2.9)

Substituting Z = (Ip−1+Σ1/2
22 Y22Σ

1/2
22 )−1, the integral involving Y22 is evaluated as

∫
Y22>0

det
(
Y22

)h−(1/2)p
det

(
Ip−1+Σ22Y22

)−(1/2)n−h{ν′2Σ−1
22

(
Σ−1

22 +Y22
)−1Σ−1

22ν2
}�dY22

= det
(
Σ22

)−h∫
0<Z<Ip−1

det(Z)(1/2)(n−p)

×det
(
Ip−1−Z

)h−(1/2)p(ν′2Σ−1/2
22 ZΣ−1/2

22 ν2
)�dZ

= det
(
Σ22

)−h( ∂
∂η

)�
η=0

∫
0<Z<Ip−1

det(Z)(1/2)(n−p)det
(
Ip−1−Z

)h−(1/2)p

×etr
(
ην′2Σ

−1/2
22 ZΣ−1/2

22 ν2
)
dZ

= det
(
Σ22

)−h Γp−1
(
(1/2)n

)
Γp−1(h)

Γp−1
(
(1/2)n+h)

(
∂
∂η

)�
η=0

1F
(p−1)
1

(
1
2
n;

1
2
n+h;ηΣ−1

22ν2ν′2
)

= det
(
Σ22

)−h Γp−1
(
(1/2)n

)
Γp−1(h)

Γp−1
(
(1/2)n+h)

(
(1/2)n

)
�(

(1/2)n+h)�
(
ν′2Σ

−1
22ν2

)�,
(2.10)

where 1F
(p−1)
1 is the confluent hypergeometric function of matrix argument (see [4]).
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Collecting terms containing y1 and integrating, we obtain∫∞
0
yh−1

1

(
1+σ11y1

)−((1/2)n+h+k)dy1 = σ−h11
Γ
(
(1/2)n

)
Γ(h)

Γ
(
(1/2)n+h)

(
(1/2)n

)
k(

(1/2)n+h)k . (2.11)

Substituting (2.10), (2.11), and (1.7) in (2.9) and simplifying the resulting expression

using results on gamma function, we get

Eγ
(
Uh
)= exp

(
− 1

2
c2
γν

′Σ−1
0 ν

)
Γ
(
(1/2)n

)
Γ
[
(1/2)(n−p+1)

] ∞∑
t=0

∑
�+k=t

(c2
γ

2

)t ((1/2)n)k((1/2)n)�(
(1/2)n

)
t

×
(
ν2

1/σ11
)k(ν′2Σ−1

22ν2
)�

k!�!
Γ
[
(1/2)(n−p+1)+h]Γ((1/2)n+t+h)
Γ
(
(1/2)n+k+h)Γ((1/2)n+�+h)

= exp
(
− 1

2
c2
γν

′Σ−1
0 ν

)
Γ
(
(1/2)n

)
Γ
[
(1/2)(n−p+1)+h]

Γ
(
(1/2)n+h)Γ[(1/2)(n−p+1)

] ∞∑
k=0

(c2
γ

2

)k

×
(
ν2

1/σ11
)k

k!
2F2

(
1
2
n+h+k, 1

2
n;

1
2
n+k, 1

2
n+h;

1
2
c2
γν

′
2Σ

−1
22ν2

)
,

(2.12)

where 2F2 is the generalized hypergeometric function of scalar argument (see [6]).

3. Distribution of R2 under mixture normal model. The density function f(u) of

U = 1−R2 is obtained by taking the inverse Mellin transform of E(Uh) as

f(u)=
N∑
γ=0

(
N
γ

)
εγ(1−ε)N−γfγ(u) (3.1)

with

fγ(u)= (2πι)−1
∫
C
Eγ
(
Uh
)
u−h−1dh, 0<u< 1, (3.2)

where ι=√−1 and C is a suitable contour. Substituting (2.12) in (3.2), we obtain

fγ(u)= exp
(
− 1

2
c2
γν

′Σ−1
0 ν

)
Γ
(
(1/2)n

)
Γ
[
(1/2)(p−1)

]
Γ
[
(1/2)(n−p+1)

] ∞∑
t=0

∑
k+�=t

(c2
γ

2

)t

×
(
(1/2)n

)
k
(
(1/2)n

)
�(

(1/2)n
)
t

(
ν2

1/σ11
)�(ν′2Σ−1

22ν2
)k

k!�!
u(1/2)n+k+�−1(1−u)(1/2)(p−3)

×2F1

(
1
2
(p−1)+k, 1

2
(p−1)+�;

1
2
(p−1);1−u

)
, 0<u< 1,

(3.3)

where 2F1 is the Gauss hypergeometric function (see [6]). To obtain (3.3) we have used

the result∫ 1

0
u(1/2)n+h+k+�−1(1−u)(1/2)(p−3)

2F1

(
1
2
(p−1)+k, 1

2
(p−1)+�;

1
2
(p−1);1−u

)
du

= Γ
[
(1/2)(p−1)

]
Γ
[
(1/2)(n−p+1)+h]Γ((1/2)n+t+h)

Γ
(
(1/2)n+k+h)Γ((1/2)n+�+h) .

(3.4)
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The density of R2 = 1−U is now derived from the density of U as

g
(
R2)= N∑

γ=0

(
N
γ

)
εγ(1−ε)N−γgγ

(
R2), (3.5)

where

gγ
(
R2)= exp

(
− 1

2
c2
γν

′Σ−1
0 ν

)
Γ
(
(1/2)n

)
Γ
[
(1/2)(p−1)

]
Γ
[
(1/2)(n−p+1)

] ∞∑
t=0

∑
k+�=t

(c2
γ

2

)t

×
(
(1/2)n

)
k
(
(1/2)n

)
�(

(1/2)n
)
t

(
ν2

1/σ11
)�(ν′2Σ−1

22ν2
)k

k!�!

×(1−R2)(1/2)n+k+�−1(R2)(1/2)(p−3)

×2F1

(
1
2
(p−1)+k, 1

2
(p−1)+�;

1
2
(p−1);R2

)
, 0<R2 < 1.

(3.6)

By using the result 2F1(a,b;c;z)= (1−z)c−a−b2F1(c−a,c−b;c;z), the above density

can be rewritten as

gγ
(
R2)= exp

(
− 1

2
c2
γν

′Σ−1
0 ν

)
Γ
(
(1/2)n

)
Γ
[
(1/2)(p−1)

]
Γ
[
(1/2)(n−p+1)

]

×(R2)(1/2)(p−3)(
1−R2)(1/2)(n−p−1)

∞∑
t=0

∑
k+�=t

(c2
γ

2

)t ((1/2)n)k((1/2)n)�(
(1/2)n

)
t

×
(
ν2

1/σ11
)�(ν′2Σ−1

22ν2
)k

k!�!
2F1

(
−k,−�;

1
2
(p−1);R2

)
, 0<R2 < 1.

(3.7)

It is interesting to note that if ν= 0, then the density g(R2) reduces to

g
(
R2)= Γ

(
(1/2)n

)
Γ
[
(1/2)(p−1)

]
Γ
[
(1/2)(n−p+1)

]
×(R2)(1/2)(p−3)(

1−R2)(1/2)(n−p−1), 0<R2 < 1.

(3.8)
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