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The present work is an attempt for emergent universe scenario with modified Chaplygin gas. The universe is chosen as spatially
flat FRW space-time with modified Chaplygin gas as the only cosmic substratum. It is found that emergent scenario is possible for
some specific (unrealistic) choice of the parameters in the equation of state for modified Chaplygin gas.

1. Introduction

The origin of the universe is a controversial issue in cos-
mology. It may start from the big bang singularity or there
are proposals for nonsingular model of the universe. The
inability of Einstein’s general theory of relativity at zero
volume leads to the well known big bang singularity in
standard cosmology. To overrule this initial discomfortable
situation various cosmological scenarios have been proposed
and are classified as bouncing universes or the emergent
universes. Here, we will choose the second option which
results from searching for singularity-free inflationary sce-
nario in the background of classical general relativity. In a
word, emergent universe is a model universe, ever existing
with almost static behavior in the infinite past (𝑡 → −∞)

(gradually evolves into inflationary stage) and having no
time-like singularity. Also, the modern and extended version
of the original Lemaitre-Eddington universe can be identified
as the emergent universe scenario.

Long back in 1967, Harrison [1] showed a model of the
closed universe containing radiation, which approaches the
state of an Einstein static model asymptotically (i.e., 𝑡 →

−∞). This kind of model was again reinvestigated after a
long gap by Ellis and collaborators [2, 3]. Although they
were not able to obtain exact solutions, they presented closed
universes with a minimally coupled scalar field 𝜙 having
typical self-interacting potential and possibly some ordinary

matter with equation of state 𝑝 = 𝑤𝜌, (−1/3 ≤ 𝑤 ≤ 1),
whose behavior similar to that of an emergent universe
was highlighted. Then, in starobinsky model, Mukherjee et
al. [4] derived solutions for flat FRW space-time having
emergent character in infinite past. Subsequently, Mukherjee
and associates [5] presented a general framework for an
emergent universe model with an ad hoc equation of state
connecting the pressure and density, having exotic nature
in some cases. These models are interesting as they can be
cited as specific examples of nonsingular (i.e., geometrically
complete) inflationary universes. Also, it is worthmentioning
here that entropy considerations favour the Einstein static
model as the initial state for our universe [6, 7]. Thereafter, a
series of works [8–16] have been done to formulate emergent
universe in different gravity models and also for various
types of matter. Very recently, emergent scenario has been
formulatedwith some interesting physical aspects.The idea of
quantum tunneling [17] has been used for the decay of a scalar
field having initial static state as false vacuum to a state of true
vacuum. Secondly, a model of an emergent universe has been
formulated in the background of nonequilibrium thermody-
namical prescription with dissipation due to particle creation
mechanism [18]. Very recently, Paul and Majumdar [19] have
formulated emergent universe with interacting fields. Finally,
Pavon et al. [20, 21] have studied the emergent scenario
from thermodynamical view point. They have examined the
validity of the generalized second law of thermodynamics
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during the transition from a generic initial Einstein static
phase to the inflationary phase and also during the transition
from inflationary era to the standard radiation dominated
era.

2. Chaplygin Gas and Possible Solution

Mixed exotic fluid known as modified Chaplygin gas [21] has
the equation of state [22, 23]

𝑝 = 𝐴𝜌 −
𝐵

𝜌𝑛
, 0 < 𝑛 ≤ 1. (1)

This equation of state shows barotropic perfect fluid
𝑝 = 𝐴𝜌, at very early phase (when the scale factor 𝑎(𝑡) is
vanishingly small), while it approaches Λ𝐶𝐷𝑀 model when
the scale factor is infinitely large. It shows a mixture at all
stages. Note that at some intermediate stage the pressure
vanishes and the matter content is equivalent to pure dust.
Further, this typical model is equivalent to a self-interacting
scalar field from field theoretic point of view. It should be
noted that the Chaplygin gas was introduced in the context of
aerodynamics. In the present paper, we will examine whether
emergent scenario is possible for FRWmodel of the universe
with matter content as modified Chaplygin gas (MCG).

For homogeneous and isotropic flat FRW model of the
universe, the Einstein field equations are (choosing 8𝜋𝐺 = 1)

3𝐻
2

= 𝜌,

2𝐻̇ = − (𝜌 + 𝑝) ,
(2)

with energy conservation relation:

𝜌̇ + 3𝐻 (𝜌 + 𝑝) = 0. (3)

Using (1) in (3), one can integrate 𝜌 as

𝜌 = [
𝐵

1 + 𝐴
+

𝑐

𝑎3𝜇
]
1/(𝑛+1)

, (4)

with 𝑐 > 0, a constant of integration.
Now, using this 𝜌 in the first Friedmann equation in (2),

one can integrate to obtain cosmic time as a function of the
scale factor as

√3

2
(1 + 𝐴) 𝑐

𝛼

(𝑡 − 𝑡
0
)

= 𝑎
3(1+𝐴)/2

2
𝐹
1
[𝛼, 𝛼, 1 + 𝛼, −

𝐵

𝐶 (1 + 𝐴)
𝑎
3(1+𝐴)/2𝛼

] ,

(5)

where 𝛼 = 1/2(1 + 𝑛) and
2
𝐹
1
is the usual hypergeometric

function.

3. Asymptotic Analysis and Equivalent Two
Fluid Systems

We will now analyze the two asymptotic cases.

(i) When the Scale Factor “𝑎” Is Very Small. For small “𝑎”, 𝜌
can be approximated from (4) and 𝑝 can be approximated
from (1) as follows:

𝜌 ≅ (
𝜌
0

𝐴 + 1
)
1/(𝑛+1)

𝑎
−3(𝐴+1)

+
𝐵

(𝑛 + 1) (𝐴 + 1)
1/(𝑛+1)

𝜌
(𝑛/(𝑛+1))

0

𝑎
3(1+𝐴)𝑛

≡ 𝜌
1𝑖
+ 𝜌
2𝑖
,

𝑝 ≅
𝐴𝜌
1/(𝑛+1)

0

(𝐴 + 1)
1/(𝑛+1)

𝑎3(𝐴+1)

−
𝐵 [1 + 𝑛 (𝐴 + 1)]

(𝑛 + 1) (𝐴 + 1)
1/(𝑛+1)

𝜌
𝑛/(𝑛+1)

0

𝑎
3𝑛(1+𝐴)

≡ 𝑝
1𝑖
+ 𝑝
2𝑖
.

(6)

(ii) When the Scale Factor “𝑎” Has Infinitely Large Value.
Similarly, for large “𝑎”, 𝜌 and 𝑝 are approximated from (4)
and (1), respectively, as follows:

𝜌 ≅ (
𝐵

𝐴 + 1
)
1/(𝑛+1)

+
𝜌
0

(𝑛 + 1) 𝐵
(

𝐵

𝐴 + 1
)
1/(𝑛+1)

𝑎
−3𝜇

≡ 𝜌
1𝑓
+ 𝜌
2𝑓
,

𝑝 ≅ −
1

(𝐴 + 1)
1/(𝑛+1)

+
𝑛 + (𝑛 + 1)𝐴

(𝐴 + 1)
1/(𝑛+1)

𝜌
0

(𝑛 + 1) 𝐵
𝑎
−3𝜇

≡ 𝑝
1𝑓
+ 𝑝
2𝑓
.

(7)

Thus, in the asymptotic limits, the components of energy
density and pressure can be expressed as sum of two nonin-
teracting barotropic fluids having equation of states:

𝑤
1𝑖
= 𝐴,

𝑤
2𝑖
= − [1 + 𝑛 (𝐴 + 1)] ,

𝑤
1𝑓
= −𝐵
−(1/(𝑛+1))

,

𝑤
2𝑓
=
𝑛 + (𝑛 + 1)𝐴

𝐵(1/(𝑛+1))
.

(8)

Thus, MCG can be considered in the asymptotic limits
as two barotropic fluids of constant equation of state of
which one is exotic in nature. However, one can consider that
the two fluids in question (in the asymptotic limit) may be
interacting with separate equation of state as

̇𝜌
1𝑖
+ 3 (𝜌

1𝑖
+ 𝑝
1𝑖
)𝐻 = 𝑄

𝑖
,

̇𝜌
2𝑖
+ 3 (𝜌

2𝑖
+ 𝑝
2𝑖
)𝐻 = −𝑄

𝑖
,

̇𝜌
1𝑓
+ 3 (𝜌

1𝑓
+ 𝑝
1𝑓
)𝐻 = 𝑄

𝑓
,

̇𝜌
2𝑓
+ 3 (𝜌

2𝑓
+ 𝑝
2𝑓
)𝐻 = −𝑄

𝑓
,

(9)

where 𝑄
𝑖
and 𝑄

𝑓
represent the interaction term.
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𝑄
𝑖
> 0 indicates a flow of energy from fluid 2 (having

energy density 𝜌
2𝑖
) to fluid 1 (having energy density 𝜌

1𝑖
)

and similarly for 𝑄
𝑓

also. Further, one can rewrite the
conservation equations (9) as

̇𝜌
1𝑖
+ 3𝐻(1 + 𝑤

eff
1𝑖
) 𝜌
1𝑖
= 0,

̇𝜌
2𝑖
+ 3𝐻(1 + 𝑤

eff
2𝑖
) 𝜌
2𝑖
= 0,

̇𝜌
1𝑓
+ 3𝐻(1 + 𝑤

eff
1𝑓
) 𝜌
1𝑓
= 0,

̇𝜌
2𝑓
+ 3𝐻(1 + 𝑤

eff
2𝑓
) 𝜌
2𝑓
= 0,

(10)

with

𝑤
eff
1𝑖
= 𝑤
1𝑖
−

𝑄
𝑖

3𝐻𝜌
1𝑖

,

𝑤
eff
2𝑖
= 𝑤
2𝑖
+

𝑄
𝑖

3𝐻𝜌
2𝑖

,

𝑤
eff
1𝑓
= 𝑤
1𝑓
−

𝑄
𝑓

3𝐻𝜌
1𝑓

,

𝑤
eff
2𝑓
= 𝑤
2𝑓
+

𝑄
𝑓

3𝐻𝜌
2𝑓

.

(11)

The above conservation equations show that the fluids
may be considered as noninteracting at the cost of variable
equation of state.

4. Emergent Scenario and
Thermodynamical Analysis

One should note that in integrating (3) to have (4) we assume
that𝐴 ̸= −1. Now, we will discuss the situation when𝐴 = −1.

The expression for energy density now becomes

𝜌 = [3 (𝑛 + 1) 𝐵 ln( 𝑎

𝑎
0

)]

1/(𝑛+1)

, (12)

which from the first Friedmann equation gives

𝑎 = 𝑎
0
exp [𝑏

0
(𝑡 − 𝑡
0
)
(1/(1−𝛼))

] ,

𝑏
0
= (

√3

2
𝐵 (2𝑛 + 1))

(1/(1−𝛼))

.

(13)

From the solutions (5) and (13), we see (Figures 1 and 2)
that 𝑎 → 0 as 𝑡 → −∞, so it is not possible to have emergent
scenario with the usual modified Chaplygin gas. However, if
we choose −1 < 𝑛 < −1/2, then 𝛼 > 1 and we have from
solution (13) 𝑎 → 𝑎

0
as 𝑡 → −∞ (see Figure 3). Hence, it is

possible to have emergent scenario with this revised form of
MCG.

Wewill now discuss the thermodynamics of the emergent
scenario with this revised form of MCG as the cosmic
substratum.
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Figure 1: The Figure represents the scale factor 𝑎(𝑡) against 𝑡 for
𝐴 ̸= −1.
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Figure 2:The Figure shows the graphical representation of the scale
factor 𝑎(𝑡) against 𝑡 for 𝐴 = −1.

Assuming the validity of the first law of thermodynamics
at the horizon (having area radius 𝑅

ℎ
), we have the Clausius

relation:

−𝑑𝐸
ℎ
= 𝑇
ℎ
𝑑𝑆
ℎ
, (14)

where 𝑇
ℎ
is the temperature of the horizon and 𝑠

ℎ
is the

entropy of the horizon. In the above, 𝐸
ℎ
is the amount of
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Figure 3:The Figure shows the graphical representation of the scale
factor 𝑎(𝑡) against 𝑡 for 𝐴 = −1.

energy crossing the horizon during time 𝑑𝑡 and is given by
[24–26]

−𝑑𝐸
ℎ
= 4𝜋𝑅

3

ℎ
𝐻(𝜌 + 𝑝) 𝑑𝑡. (15)

So, using (15) in (14), we have the rate of change of the
horizon entropy as

𝑑𝑆
ℎ

𝑑𝑡
=
4𝜋𝑅
3

ℎ
𝐻(𝜌 + 𝑝)

𝑇
ℎ

. (16)

To obtain the entropy of the inside fluid, we start with the
Gibbs equation [26, 27]

𝑇
ℎ
𝑑𝑆
𝑓
= 𝑑𝐸
𝑓
+ 𝑝𝑑𝑉, (17)

where 𝑆
𝑓
is the entropy of the fluid bounded by the horizon

and 𝐸
𝐹
is the energy of the matter distribution. Here, for

thermodynamical equilibrium, the temperature of the fluid
is taken as that of the horizon, that is, 𝑇

ℎ
.

Now, using 𝑉 = 4𝜋𝑅3
ℎ
/3, 𝐸
𝑓

= (4𝜋𝑅3
ℎ
/3)𝜌, and the

Friedmann equations, the entropy variation of the fluid is
given by

𝑑𝑆
𝑓

𝑑𝑡
=
4𝜋𝑅
2

ℎ

𝑇
ℎ

(𝜌 + 𝑝) ( ̇𝑅
ℎ
− 𝐻𝑅
ℎ
) . (18)

Thus, combining (16) and (18), the variation of the total
entropy (𝑆

𝑇
) is given by

𝑑𝑆
𝑇

𝑑𝑡
=
𝑑

𝑑𝑡
(𝑆
ℎ
+ 𝑆
𝑓
) =

4𝜋𝑅2
ℎ

𝑇
ℎ

(𝜌 + 𝑝) ̇𝑅
ℎ
. (19)

Case 1 (apparent horizon). The area radius for apparent
horizon is given by

𝑅
𝐴
=
1

𝐻
, (20)

so that

𝑅̇
𝐴
= −

𝐻̇

𝐻2
=
4𝜋𝐺 (𝜌 + 𝑝)

𝐻2
. (21)

Hence,

𝑑𝑆
𝑇

𝑑𝑡
=
(4𝜋)
2

𝐺 (𝜌 + 𝑝)
2

𝑇
𝐴
𝐻4

> 0. (22)

Thus, generalised second law of thermodynamics (GSLT) is
always true at the apparent horizon.

Case 2 (event horizon). The area radius for event horizon is
given by

𝑅
𝐸
= 𝑎∫
∞

𝑡

𝑑𝑡

𝑎
. (23)

The above improper integral converges for accelerating
phase of the FRW model. Hence, in the present scenario, it
is very much relevant. From the above definition

𝑅̇
𝐸
= 𝐻𝑅

𝐸
− 1, (24)

so from (19)

𝑑𝑆
𝑇

𝑑𝑡
=
(4𝜋) 𝑅

2

𝐸
(𝜌 + 𝑝)

𝑇
𝐸

(𝐻𝑅
𝐸
− 1)

=
(4𝜋) 𝑅

2

𝐸
𝐻

𝑇
𝐸

[(𝐴 + 1) 𝜌 −
𝐵

𝜌𝑛
] (𝑅
𝐸
− 𝑅
𝐴
)

=
(4𝜋) 𝑅

2

𝐸
𝐻

𝑇
𝐸

𝑐 (1 + 𝑎)

𝑎3𝜇 ⋅ 𝜌𝑛
(𝑅
𝐸
− 𝑅
𝐴
) .

(25)

Hence, the validity of GSLT is possible if 𝑅
𝐸
> 𝑅
𝐴
(as

𝛼 > 1). In the above, temperature is chosen as the hawking
temperature on the horizon as [28, 29]

𝑇
𝐴
=

1

2𝜋𝑅
𝐴

,

𝑇
𝐸
=

𝑅
𝐸

2𝜋𝑅2
𝐴

.

(26)

Additional Points

In the present work, we have examined the cosmology of the
emergent scenario for modified Chaplygin gas as the cosmic
fluid. It is found that for both the solutions (with 𝐴 ̸= −1

and 𝐴 = −1) the model does not exhibit emergent scenario
at early epochs. So, one can conclude that it is not possible to
have emergent scenario withMCG.However, if 𝑛 is chosen to
be negative, that is, −1 < 𝑛 < −1/2, then 𝑎 → 𝑎

0
as 𝑡 → −∞;

that is, initial big bang singularity is avoided.
Finally, thermodynamical analysis of the emergent sce-

nario has been presented.
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