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For the purpose of achieving more effective prediction of the absolute gas emission quantity, this paper puts forward a new model
based on the hidden recurrent feedback Elman. The recursive part of classic Elman cannot be adjusted because it is fixed. To a
certain extent, this drawback affects the approximation ability of the Elman, so this paper adds the correction factors in recursive
part and uses the error feedback to determine the parameters. The stability of the recursive modified Elman neural network is
proved in the sense of Lyapunov stability theory, and the optimal learning rate is given. With the historical data of mine actual
monitoring to experiment and analysis, the results show that the recursive modified Elman neural network model can effectively
predict the gas emission and improve the accuracy and efficiency of prediction compared with the classic Elman prediction model.

1. Introduction

In the daily management of mine safety, an effective method
of prevention and control ofmine gas disasters is the scientific
analysis of the gas emission data provided by the monitoring
system [1]. The gas is one of the most important factors
threatening the safety production of mine [2]. Most recent
work mainly focuses on different methods for improving the
prediction performance of the absolute gas emission quantity,
such as Grey theory [3], principal component regression
analysis method [4], partial least squares support vector
machine [5], virtual state variables and Kalman filter [6], BP
neural network [7], and RBF neural network [8].

In recent years, intelligent computing methods have been
rapidly developed in dynamic system identification [9, 10],
time series prediction [11, 12], and other fields. In fact,
there are many factors influencing the absolute gas emission
quantity, such as coal seam gas content, burying depth, and
coal seam thickness [13, 14]. That means the gas emission
prediction model is a multidimensional complex dynamic
system, and it is difficult to accurately predict gas emission
quantity, since recurrent neural network is a highly nonlinear
dynamical system that exhibits complex behaviors and good
ability of processing dynamic information [15]. As is well

known, the recurrent neural network has wide applications in
various areas [16, 17]. It is expected that recurrent neural net-
work possesses better performance than feedforward neural
network (such as BP and RBF) in modeling and predicting
gas emission quantity. In particular, Elman neural network
(ENN) has been proved successful in gas emission prediction
[18, 19]. Some works on improving the performance of
gas emission prediction using ENN can be found in, for
example, [20–22]. However, a common drawback of the
above gas emission predictionmodels based on classic Elman
neural network is that the recursive part of the hidden layer
cannot be adjusted because it is fixed. This drawback affects
the nonlinear approximation ability of classic Elman neural
network.

From the above observation, this paper proposes a novel
strategy of adding correction factors in recursive part of
ENN, resulting in a new model called recursive modified
Elman neural network (RMENN). The stability and con-
vergence of RMENN model are theoretically proved, and
some meaningful results are obtained in this paper. In
practice, through the analysis of the main factors affecting
coal gas emission, this paper puts forward the gas emission
prediction model based on recursive modified Elman neural
network.
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Figure 1: Topology of the RMENN.

The rest of this paper is organized as follows. The
establishment of RMENN model is described in Section 2.
The learning algorithms of RMENN model are described
in Section 3. The performance analysis and flowchart of
RMENN model are described in Section 4. Experiment
analysis results on the gas emission prediction are pre-
sented in Section 5. Finally, the paper is concluded in
Section 6.

2. Establishment of RMENN Model

As discussed in Section 1, we aim to propose a specific
architecture to overcome the aforementioned drawback of
a fixed structure and improve the nonlinear approximation
ability of ENN. In Figure 1, this paper adds correction factors
in the context layer and the output layer to adjust the values
of the recursive parts. Let 𝑢(𝑘) ∈ 𝑅𝑟 and 𝑦(𝑘) ∈ 𝑅𝑚
denote the network input and output vectors at the discrete
time 𝑘, respectively. Let 𝑤1 ∈ 𝑅𝑛×𝑛, 𝑤2 ∈ 𝑅𝑛×𝑟, 𝑤3 ∈𝑅𝑚×𝑛, 𝑤4 ∈ 𝑅𝑛×𝑚 denote weight matrices of context-
hidden, input-hidden, hidden-output, and output-hidden,
respectively. Let 𝑥𝑐(𝑘) ∈ 𝑅𝑛 and 𝑥(𝑘) ∈ 𝑅𝑛 denote the output
vectors of the context layer and the hidden layer at the discrete
time 𝑘, respectively. Let 𝛽𝑥(𝑘 − 1) be the correction part of
the hidden context layer. Let 𝛾𝑦(𝑘 − 1) be the correction part
of the output context layer. 𝑓(⋅) and 𝑔(⋅) are the activation
functions, respectively. In a general way, 𝑓(⋅) is the sigmoid
function and 𝑔(⋅) is the linear function. Let 𝑦𝑐(𝑘) ∈ 𝑅𝑚 be the
output vector of the output context layer at the discrete time𝑘.

With this feature, the new model called RMENN is able
to improve update power of the classic ENN and exhibit rapid
convergence and high prediction accuracy. The relationship
between input and output of RMENN can be expressed as

𝑥 (𝑘) = 𝑓 (𝑤1𝑥𝑐 (𝑘) + 𝑤2𝑢 (𝑘 − 1) + 𝑤4𝑦𝑐 (𝑘))
𝑥𝑐 (𝑘) = 𝛼𝑥𝑐 (𝑘 − 1) + 𝛽𝑥 (𝑘 − 1)
𝑦𝑐 (𝑘) = 𝛾𝑦𝑐 (𝑘 − 1) + 𝜑𝑦 (𝑘 − 1)
𝑦 (𝑘) = 𝑔 (𝑤3𝑥 (𝑘)) ,

(1)

where 𝛼, 𝛽 (0 ≤ 𝛼 < 1, 0 < 𝛽 ≤ 1) are, respectively, feedback
factor and correction factor of the context layer. 𝛾, 𝜑 (0 ≤ 𝛾 <1, 0 ≤ 𝜑 ≤ 1) are, respectively, feedback factor and correction
factor of the output layer. In particular, when 𝛼 = 0, 𝛽 =1, 𝛾 = 0, 𝜑 = 0, the special model is the classic Elman neural
network [11].

The topology of the RMENN is shown in Figure 1.

3. Learning Algorithm for RMENN

The main objective of learning algorithm is to minimize a
predefined energy function by adaptively adjusting the vector
of network parameters based on a given set of input-output
pairs. The particular energy function used in the RMENN is
as follows:

𝑒 (𝑘) = 12 (𝑦𝑞𝑤 (𝑘) − 𝑦 (𝑘))𝑇 (𝑦𝑞𝑤 (𝑘) − 𝑦 (𝑘)) , (2)

where 𝑦𝑞𝑤(𝑘) ∈ 𝑅𝑚 is the desired output associated with the
input pattern and 𝑦(𝑘) ∈ 𝑅𝑚 is the inferred output at the
discrete time 𝑘.

The weights of the RMENN are updated by the negative
gradient of the energy function; those are
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Δ𝑤3𝑖𝑗 = 𝜂3 (𝑘) 𝛿𝑜𝑖 𝑥𝑗 (𝑘) ,
𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛; (3)

Δ𝑤2𝑗𝑞 = 𝜂2 (𝑘) 𝛿ℎ𝑗𝑢𝑞 (𝑘 − 1) ,
𝑗 = 1, 2, . . . , 𝑛; 𝑞 = 1, 2, . . . , 𝑟; (4)

Δ𝑤1𝑗𝑙 = 𝜂1 (𝑘) 𝑚∑
𝑖=1

(𝛿𝑜𝑖𝑤3𝑖𝑗) 𝜕𝑥𝑗 (𝑘)𝜕𝑤1
𝑗𝑙

,
𝑗 = 1, 2, . . . , 𝑛; 𝑙 = 1, 2, . . . , 𝑛;

(5)

Δ𝑤4𝑗𝑠 = 𝜂4 (𝑘) 𝑚∑
𝑖=1

(𝛿𝑜𝑖𝑤3𝑖𝑗) 𝜕𝑥𝑗 (𝑘)𝜕𝑤4𝑗𝑠 ,
𝑠 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛,

(6)

where 𝜂1(𝑘), 𝜂2(𝑘), 𝜂3(𝑘), 𝜂4(𝑘) are the learning rate of𝑤1, 𝑤2, 𝑤3, 𝑤4, respectively. With the learning-rate param-
eters 𝜂1(𝑘), 𝜂2(𝑘), 𝜂3(𝑘), 𝜂4(𝑘), the terms 𝛿𝑜𝑖 and 𝛿ℎ𝑗 are
calculated as follows:

𝛿𝑜𝑖 = 𝑦𝑞𝑤,𝑖 (𝑘) − 𝑦𝑖 (𝑘)
𝛿ℎ𝑗 =

𝑚∑
𝑖=1

(𝛿𝑜𝑖𝑤3𝑖𝑗) 𝑓𝑗 (⋅) , (7)

where 𝜕𝑥𝑗(𝑘)/𝜕𝑤1𝑗𝑙 and 𝜕𝑥𝑗(𝑘)/𝜕𝑤4𝑗𝑠 are calculated as follows:
𝜕𝑥𝑗 (𝑘)𝜕𝑤1
𝑗𝑙

= 𝛼𝜕𝑥𝑗 (𝑘 − 1)
𝜕𝑤1
𝑗𝑙

+ 𝛽𝑓𝑗 (⋅) 𝑥𝑙 (𝑘 − 1) (8)

𝜕𝑥𝑗 (𝑘)𝜕𝑤4𝑗𝑠 = 𝛾𝜕𝑥𝑗 (𝑘 − 1)
𝜕𝑤4𝑗𝑠 + 𝜑𝑓𝑗 (⋅) 𝑦𝑠 (𝑘 − 1) . (9)

4. Performance Analysis

4.1. Convergence and Stability. The appropriate learning rate
can make the learning algorithm converge at a faster speed.
According to the Lyapunov stability theory, 𝜂1(𝑘), 𝜂4(𝑘) can
be detailedly proved, and the proof of 𝜂2(𝑘), 𝜂3(𝑘) is similar
to 𝜂1(𝑘), 𝜂4(𝑘).
Theorem 1. Let the weights of RMENN be updated by (3)–(9).

(1) If 0 < 𝜂1(𝑘) < 32(1 − 𝛼)2𝛽−2(𝑛2(max𝑖𝑗𝑤3𝑖𝑗(𝑘))2)−1,
the iterative learning process of 𝑤1 is a stable and convergent
process by (5).

(2) If 0 < 𝜂2(𝑘) < 8(𝑛𝑟|max𝑘𝑢𝑘(𝑘)||max𝑖𝑗𝑤3𝑖𝑗(𝑘)|)−1,
the iterative learning process of 𝑤2 is a stable and convergent
process by (4).

(3) If 0 < 𝜂3(𝑘) < 2/𝑛, the iterative learning process of 𝑤3
is a stable and convergent process by (3).

(4) If 0 < 𝜂4(𝑘) < 32(1 − 𝛾)2(𝑚𝑛)−1(𝜑𝑀(max𝑖𝑗𝑤3𝑖𝑗(𝑘)))−2,
the iterative learning process of 𝑤4 is a stable and convergent
process by (6).

Proof. (1) Let the energy function be described by (2).

Since

Δ𝑒 (𝑘) = 𝑒 (𝑘 + 1) − 𝑒 (𝑘) = 12
𝑚∑
𝑖=1

[𝑒2𝑖 (𝑘 + 1) − 𝑒2𝑖 (𝑘)] , (10)

where

𝑒𝑖 (𝑘 + 1) = 𝑒𝑖 (𝑘) + 𝑛∑
𝑗=1

𝜕𝑒𝑖 (𝑘)𝜕𝑤1𝑖𝑗 Δ𝑤1𝑖𝑗
= 𝑒𝑖 (𝑘) − 𝑛∑

𝑗=1

𝜕𝑦𝑖 (𝑘)𝜕𝑤1𝑖𝑗 Δ𝑤1𝑖𝑗,
(11)

then

Δ𝑒 (𝑘) = 12
𝑚∑
𝑖=1

𝑒2𝑖 (𝑘)

⋅ ((1 − 𝜂1 (𝑘) (𝜕𝑦𝑖 (𝑘)𝜕𝑤1 )𝑇 (𝜕𝑦𝑖 (𝑘)𝜕𝑤1 ))2 − 1) = 12
⋅ 𝑚∑
𝑖=1

𝑒2𝑖 (𝑘)((1 − 𝜂1 (𝑘) 
𝜕𝑦𝑖 (𝑘)𝜕𝑤1


2)2 − 1) ,

(12)

where 𝑤1 is a 𝑛 × 𝑛 matrix and ‖ ⋅ ‖ is 2-norm.
Since


𝜕𝑦𝑖 (𝑘)𝜕𝑤1
𝑗𝑙

 =

𝜕𝑦𝑖 (𝑘)𝜕𝑥𝑗 (𝑘)

𝜕𝑥𝑗 (𝑘)𝜕𝑤1
𝑗𝑙

 =
𝑤3𝑖𝑗 (𝑘)


𝜕𝑥𝑗 (𝑘)𝜕𝑤1
𝑗𝑙

 ,
𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑛; 𝑙 = 1, 2, . . . , 𝑛,

(13)

according to (8) with the initial condition

𝜕𝑥𝑗 (0)𝜕𝑤1
𝑗𝑙

= 0, 𝑗 = 1, 2, . . . , 𝑛; 𝑙 = 1, 2, . . . , 𝑛, (14)

we can get the following equation:

𝜕𝑥𝑗 (𝑘)𝜕𝑤1
𝑗𝑙

≈ 𝛽 𝑘∑
𝑡=1

𝛼𝑡−1𝑓𝑗 (𝑘 − 𝑡 + 1) 𝑥𝑙 (𝑘 − 𝑡 + 1) ,
𝑗 = 1, 2, . . . , 𝑛; 𝑙 = 1, 2, . . . , 𝑛,

(15)

Since 0 < 𝑓𝑗 (⋅) ≤ 1/4, 0 ≤ 𝛼 < 1, 0 < 𝛽 ≤ 1, 0 < 𝑥𝑙(𝑘 − 𝑡 +1) < 1, we can get the following conclusions:


𝜕𝑥𝑗 (𝑘)𝜕𝑤1
𝑗𝑙

 ≤ 𝛽 𝑘∑
𝑡=1

𝛼𝑡−1 𝑓𝑗 (𝑘 − 𝑡 + 1) 𝑥𝑙 (𝑘 − 𝑡 + 1)
< 𝛽4 (1 − 𝛼) ,

𝑗 = 1, 2, . . . , 𝑛; 𝑙 = 1, 2, . . . , 𝑛.
(16)
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Therefore
𝜕𝑦𝑖 (𝑘)𝜕𝑤1
𝑗𝑙

 =
𝑤3𝑖𝑗 (𝑘)


𝜕𝑥𝑗 (𝑘)𝜕𝑤1
𝑗𝑙


< 𝛽4 (1 − 𝛼)

max
𝑖,𝑗

𝑤3𝑖𝑗 (𝑘) ,
𝑗 = 1, 2, . . . , 𝑛; 𝑙 = 1, 2, . . . , 𝑛;


𝜕𝑦 (𝑘)𝜕𝑤1

 < 𝑛𝛽4 (1 − 𝛼)
max
𝑖,𝑗

𝑤3𝑖𝑗 (𝑘) .

(17)

Since 0 < 𝜂1(𝑘) < 32(1−𝛼)2/𝑛2𝛽2(max𝑖,𝑗𝑤3𝑖𝑗(𝑘))2, for 𝑒(𝑘) ≥ 0
and Δ𝑒(𝑘) = 𝑒(𝑘 + 1) − 𝑒(𝑘) < 0, we can ensure that Δ𝑤1𝑗𝑙 is a
stable and convergent process.

Proof (4) It is similar to the proof (1).
Since

Δ𝑒 = 12
𝑚∑
𝑖=1

𝑒2𝑖 (𝑘)((1 − 𝜂4 (𝑘) 
𝜕𝑦𝑖 (𝑘)𝜕𝑤4


2)2 − 1) (18)

according to (9) with the initial condition

𝜕𝑥𝑗 (0)𝜕𝑤4𝑗𝑠 = 0, 𝑗 = 1, 2, . . . , 𝑛; 𝑠 = 1, 2, . . . , 𝑛, (19)

we can get the following equation:

𝜕𝑥𝑗 (𝑘)𝜕𝑤4𝑗𝑠 ≈ 𝜑 𝑘∑
𝑡=1

𝛾𝑡−1𝑓𝑗 (𝑘 − 𝑡 + 1) 𝑦𝑠 (𝑘 − 𝑡 + 1) ,
𝑗 = 1, 2, . . . , 𝑛; 𝑠 = 1, 2, . . . , 𝑛.

(20)

Let 𝑀 = max𝑘|𝑦𝑠(𝑘)|.
Then 0 ≤ 𝛾 < 1 and |𝜕𝑥𝑗(𝑘)/𝜕𝑤4𝑗𝑠| < 𝜑𝑀/4(1 − 𝛾).
Hence,


𝜕𝑦𝑖 (𝑘)𝜕𝑤4𝑗𝑠

 =
𝑤3𝑖𝑗 (𝑘)


𝜕𝑥𝑗 (𝑘)𝜕𝑤4𝑗𝑠


< 𝜑𝑀

4 (1 − 𝛾)
max
𝑖,𝑗

𝑤3𝑖𝑗 (𝑘) ,

𝜕𝑦 (𝑘)𝜕𝑤4

 < 𝜑𝑀√𝑚𝑛
4 (1 − 𝛾)

max
𝑖,𝑗

𝑤3𝑖𝑗 (𝑘) .
(21)

Since 0 < 𝜂4(𝑘) < 32(1 − 𝛾)2(𝑚𝑛)−1(𝜑𝑀(max𝑖𝑗𝑤3𝑖𝑗(𝑘)))−2, for𝑒(𝑘) ≥ 0 and Δ𝑒(𝑘) < 0, we can ensure that Δ𝑤4𝑗𝑠 is a stable
and convergent process.

The proof of 𝜂2(𝑘), 𝜂3(𝑘) is similar to 𝜂1(𝑘), 𝜂4(𝑘).
The proof of theorem is completed.

4.2. Adaptive Learning Rate of RMENN. As explained before,
we can get the optimal learning rate as follows.

Let 1 − 𝜂1(𝑘)‖𝜕𝑦𝑖(𝑘)/𝜕𝑤1‖2 = 0, Δ𝑒(𝑘) is the minimum
negative value, and the convergence speed of RMENN is the
fastest.

Let ‖𝜕𝑦(𝑘)/𝜕𝑤1‖ ≈ (𝑛𝛽/4(1−𝛼))|max𝑖,𝑗𝑤3𝑖𝑗(𝑘)|; we can get
the optimal learning rate as follows:

𝜂∗1 (𝑘) = 16 (1 − 𝛼)2 (𝑛𝛽(max
𝑖,𝑗

𝑤3𝑖𝑗 (𝑘)))−2 . (22)

Similarly,

𝜂∗2 (𝑘) = 4 (𝑛𝑟 max
𝑘

𝑢𝑘 (𝑘)
max
𝑖𝑗

𝑤3𝑖𝑗 (𝑘))
−1

𝜂∗3 (𝑘) = 1𝑛
𝜂∗4 (𝑘) = 16 (1 − 𝛾)2 (𝑚𝑛)−1 (𝜑𝑀(max

𝑖𝑗
𝑤3𝑖𝑗 (𝑘)))−2 ,

(23)

where 𝜂∗1 (𝑘), 𝜂∗2 (𝑘), 𝜂∗3 (𝑘), 𝜂∗4 (𝑘) are the optimal adaptive
learning rate of 𝑤1, 𝑤2, 𝑤3, 𝑤4, respectively.

The training algorithm procedures of RMENN are shown
in Figure 2.

5. Model Test

5.1. Data Selection and Preliminary Analysis. China is the
larger coal consumer among the developing countries.
China’s secure producing situation of the coalmine is very
grim, especially the accident of gas disasters, which would
result in a large quantity of casualties and property losses, and
has absorbed high attention of the government. The precise
prediction of gas emission is important for the mineral
production safety in China. Gas emission prediction model
based on small sample has always been a significant subject
in coal mine gas study field [1].

This paper selects Kailuan mining group money mining
camp inMay 2007 toDecember 2008working face of absolute
gas emission quantity [23]. The main factors are shown in
Table 1 such as coal seam gas content (𝑥1), burying depth
(𝑥2), coal seam thickness (𝑥3), coal seam dip angle (𝑥4),
mining height (𝑥5), daily work progress (𝑥6), working face
length (𝑥7), production rate (𝑥8), adjacent layer gas content
(𝑥9), adjacent layer thickness (𝑥10), adjacent layer spacing
(𝑥11), mining intensity (𝑥12), interlayer lithology (𝑥13), and
gas emission quantity (𝑦).

In order to reduce the influence of the different dimen-
sion, the experimental data are conducted by generating
a value between lower and upper limits of each factor by
using the formula 𝑥∗ = (𝑥 − 𝑥min)/(𝑥max − 𝑥min). 𝑥 is
the experimental data as shown in Table 1. 𝑥min and 𝑥max
describe the lower limit and upper limit of the experimental
data, respectively. Let 𝑥∗ be the standardized data. Then this
formula 𝑥 = (𝑥max − 𝑥min)𝑥∗ + 𝑥min is used to restore data.
In particular, we use the first 16 data for training and the
remaining 4 for validation. Through some experiments, the
topological structure of the classic ENN is optimal in the
form of the 13-16-1. So the RMENN has the same topological
structure to compare with ENN, and let 𝛼 = 0.4, 𝛽 =0.6, 𝛾 = 0.1, 𝜑 = 0.3. The training error is set to 0.01.
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Figure 2: Training algorithm procedures of RMENN.

5.2. Training Results. After 50 times independent simula-
tions, we compare the training effects of the two models.
From the point of view of training error traces, Figures
3(a)–3(c) show that the RMENN has stronger update power
than the classic ENN. However, the classic ENN obviously
lacks update power; even it is not sufficiently close to the
target error as shown in Figure 3(c). It is because the fact that
recursive parts of the classic ENN cannot be adjusted, but the
recursive parts of RMENN can be adjusted and the learning
rate can be dynamically adjusted to improve update power.

From the point of view learning speed, the RMENN has
superior convergence speed than the classic ENN. When it
averagely reach 348 epochs, the training error of the RMENN
meets the requirement, but the classic ENN do not meet the
requirements in the best training error traces as shown in
Figure 3(a) (mean square error of the classic ENN is 0.010193).

Figure 4 shows the state of relative error distribution
in the training process. The maximum relative error, the
minimum relative error, and the average relative error of the
RMENNare 10.04%, 0.87%, and 3.54%, respectively.However
the maximum relative error, the minimum relative error, and
the average relative error of the classic ENNare 15.09%, 2.14%,
and 5.21%, respectively. It demonstrates that the RMENN has
higher training accuracy than the classic ENN.

Figure 5 shows that the RMENN has superior average
approximation effect than the classic ENN in 50 times
independent simulations.

5.3. Comparison of Model Prediction Ability. The mean
squared error (MSE), median absolute error (MAE), and

mean absolute percentage error (MAPE) are used as the indi-
cators to measure the prediction precision. These indicators
are defined as follows:

MSE = 1𝑇
𝑇∑
𝑘=1

(𝑦𝑘 − 𝑦𝑘)2

MAE = 1𝑇
𝑇∑
𝑘=1

𝑦𝑘 − 𝑦𝑘
MAPE = 1𝑇

𝑇∑
𝑘=1


𝑦𝑘 − 𝑦𝑘𝑦𝑘

 × 100%,

(24)

where 𝑦𝑘 and 𝑦𝑘 denote the real and predicted values at time𝑘, respectively.
Table 2 shows the state of relative error distribution in

the prediction process. The maximum relative error, the
minimum relative error, and the average relative error of the
RMENN are 5.48%, 0.32%, and 3.43%, respectively. However
the maximum relative error, the minimum relative error, and
the average relative error of the classic ENN are 9.12%, 2.48%,
and 5.50%, respectively. The relative errors of the RMENN
appearmore smaller.Themean squared error (MSE), median
absolute error (MAE), and mean absolute percentage error
(MAPE) of the RMENN are 0.0620, 0.2181, and 3.43%,
respectively.Themean squared error (MSE),median absolute
error (MAE), and mean absolute percentage error (MAPE)
of the classic ENN are 0.1280, 0.3385, and 5.50%, respec-
tively. It demonstrates that the proposed RMENN model
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Figure 3: Comparison of convergence from the classic ENN and the RMENN.

Table 2: Results of the error analysis based on MSE, MAE, and MAPE.

Number Actual data ENN RMENN
Output results Relative error/% Output results Relative error/%

(17) 8.04 7.5926 5.56 7.7611 3.47
(18) 7.56 7.9246 4.82 7.8958 4.44
(19) 5.82 5.6757 2.48 5.8015 0.32
(20) 4.36 4.7576 9.12 4.5990 5.48

MSE (m3⋅min−1) 0.1280 0.0620
MAE (m3⋅min−1) 0.3385 0.2181

MAPE (%) 5.50 3.43
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Figure 5:The contrast of gas emission average prediction in 50 times
independent simulations.

has the better performance as evaluated by MSE, MAE, and
MAPE.

To comprehensively evaluate the performance and dif-
ferences significant of the two prediction models, Diebold-
Mariano (DM) test and three loss functions are adopted,
including MSE, MAE, and MAPE. DM test is a comparison
test that focuses on the predictive accuracy and can be used to
evaluate the prediction performance of the proposed hybrid
model and other comparing models. The details of DM test
are given as follows:

DM = ∑𝑇𝑖=1 (Loss (𝜀1𝑖 ) − Loss (𝜀2𝑖 )) /𝑇
√𝑆2/𝑇 , (25)

Table 3: DM values based on MSE, MAE, and MAPE.

MSE MAE MAPE
DM 2.1383∗ 3.2718∗∗∗ 2.6912∗∗

∗ is 5% significance level;∗∗ is 1% significance level;∗∗∗ is 0.5% significance
level.

where Loss(⋅) is the loss function. 𝜀1𝑖 and 𝜀2𝑖 are the prediction
errors from two models. 𝑆2 is an estimator of the variance of
Loss(𝜀1𝑖 ) − Loss(𝜀2𝑖 ). The hypothesis test is defined as

𝐻0: 𝐸 (Loss (𝜀1𝑖 ) − Loss (𝜀2𝑖 )) = 0;
𝐻1: 𝐸 (Loss (𝜀1𝑖 ) − Loss (𝜀2𝑖 )) ̸= 0; (26)

the null hypothesis is that the two models have the same
accuracy. Under the null hypothesis, the test statistics DM are
asymptotically 𝑁(0, 1) distributed. If |𝐷𝑀| > 𝑧𝛼/2, the null
hypothesis will be rejected, the two models are significantly
different.

Table 3 shows that the DM value as evaluated by MSE is
larger than the upper limit at the 5% significance level. The
DM value as evaluated by MAE is larger than the upper limit
at the 0.5% significance level. The DM value as evaluated by
MAPE is larger than the upper limit at the 1% significance
level.

In order to further verify the validity of the RMENN
model, four sets of sample data are randomly selected for
validation and other data are selected for training. Table 4
shows the error analysis of prediction results. The relative
error of the ENN is larger than that of the RMENN except the
tenth sample, and the errors of the ENNbased onMSE,MAE,
andMAPE are larger than that of the RMENN. Table 5 shows
that the DM value as evaluated by MSE is not larger than the
upper limit at the 10% significance level. The DM values as
evaluated byMAEandMAPEare larger than the upper limits.
Overall conclusions based on all the tests indicate that the
RMENNmodel is significantly better than the ENN model.

6. Conclusion

In this paper, we analyze the drawback of the classic ENN.
A novel type of network architecture called RMENN has
been proposed for gas emission prediction. In theory, the
convergence and stability of learning algorithm of RMENN
are proved, and the approximate optimal learning rate is
given. In practice, experiment analysis results on the gas
emission prediction have demonstrated that RMENN has
better performance in convergence rate and prediction accu-
racy than the class ENN, at the cost of slightly heavier
structure (correction factors). Therefore, the RMENN has
certain application value and the prospect.
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Table 4: Results of the error analysis based on MSE, MAE, and MAPE.

Number Actual data ENN RMENN
Output results Relative error/% Output results Relative error/%

(2) 3.56 3.6555 2.68 3.6006 1.14
(3) 3.67 3.8832 5.81 3.7566 2.36
(10) 5.62 5.4835 2.43 5.4687 2.69
(13) 7.68 7.9757 3.85 7.7862 1.38

MSE (m3⋅min−1) 0.0402 0.0108
MAE (m3⋅min−1) 0.1852 0.0962

MAPE (%) 0.0369 0.0189

Table 5: DM values based on MSE, MAE, and MAPE.

MSE MAE MAPE
DM 1.4139 1.7445∗ 1.9719∗∗

∗ is 10% significance level; ∗∗ is 5% significance level.
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