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Domain adaptation has receivedmuch attention as amajor formof transfer learning. One issue that should be considered in domain
adaptation is the gap between source domain and target domain. In order to improve the generalization ability of domain adaption
methods, we proposed a framework for domain adaptation combining source and target data, with a new regularizer which takes
generalization bounds into account. This regularization term considers integral probability metric (IPM) as the distance between
the source domain and the target domain and thus can bound up the testing error of an existing predictor from the formula. Since
the computation of IPM only involves two distributions, this generalization term is independent with specific classifiers. With
popular learning models, the empirical risk minimization is expressed as a general convex optimization problem and thus can be
solved effectively by existing tools. Empirical studies on synthetic data for regression and real-world data for classification show the
effectiveness of this method.

1. Introduction

The generalization ability is a main concern of statistical
learning theory [1]. How to improve the predicting accuracy
under the empirical risk minimization (ERM) principle
has practical meaning since ERM-based learning process
is widely used nowadays. As one important technique to
improve generalization ability or avoid so-called overfitting,
regularization plays a crucial role to maintain the trade-off of
the empirical loss and the expected risk. Different regularizer
may acquire different performance, and the choice depends
on the specific purposes.

For traditional supervised learning,many labeled data are
needed for training a precise model. It is well-known that
annotating is both labour and time consuming with large
amounts of unlabeled data. Another underlying assumption
is that training data and testing data are separately provided
while drawn from the same distribution; thus we can use
the model trained on the former to predict labels of the
latter, while the real situations we may always confront are
that the available labeled data are from different sources and
are different from what we need to predict. In other words,
labeled data from target domain are not always accessible or

sufficient. As a consequence, the provided labeled data cannot
be trained directly to gain predictors on the target data.

As an efficient method to utilize small number of labeled
data, or even unlabeled data from other sources, domain
adaptation has obtained more attention in recent years [2–
4]. Patterns from source domain and target domain are
utilized to acquire better predictive ability on target data.
Learning from multiple source domains [5] and combining
source and target domains [6] are popular methods proposed
in recent years. Along with some successful application
related to domain adaptation, several works focused on the
learning ability on this paradigm. Specifically, [7] studies the
generalization bounds of domain adaptation, in which the
integral probabilitymetric (IPM) [8] is chosen tomeasure the
distance between the source domain and the target domain.
A natural idea is how to combine the theoretical results and
the practical algorithmdesigning, thus creatingmore efficient
learning algorithms.

In this paper, we proposed a framework for domain
adaptation combining source and target data, taking the
IPM as the regularization term. Since the IPM is defined
as the upper bound of the gap between two distributions
(source domain and target domain), the regularization term
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is independent with specific predictors. In other words,
many popular learning models can be used under such a
framework. For many cases, the empirical risk minimization
problems could be solved efficiently as convex optimization
problems in considerable times.

The remainder of this paper is organized as follows.
Section 2 reviews related works about theoretical analysis
of domain adaptation problems and a regularized domain
adaptation framework. Section 3 introduced the problem set-
up of and the derived IPM-based generalization bounds. We
propose the framework in Section 4 and report the exper-
imental results of regression and classification in Section 5.
Section 6 concludes this paper.

2. Related Works

There have been many works focused on the theoretical
analysis of domain adaptation. Generally speaking, the gen-
eralization performance is measured by the size of training
set, complexity of function class, and several constants.
Specifically for domain adaptation, one also needs tomeasure
the divergence of different distributions. For the complexity
measurement of function class, VC-dimension is widely used
in traditional learning model as well as in domain adapta-
tion [4, 6, 9]. Besides VC-dimension, the covering number
and Rademacher complexity are also used to measure the
function class in generalization bounds of domain adaptation
[5, 7]. In terms of the measurement of different distributions,
H-divergence is used in [4, 6]; the same concept is called
A-distance in [9] and derived from [10]. It was defined as
the upper bound of two probability distributions, which is
straightforward for classification. Both [5] and [7] introduce
different quantities for more general tasks including regres-
sion, while the latter further take the labeling function into
consideration.

One significant meaning of theoretical analysis is to
provide guidance of designing new algorithms. Most of the
above works give out the generalization bounds of domain
adaptation to provide important properties of learning pro-
cess for domain adaptation instead, such as convergence rate,
effectiveness, and correctness.

In terms of regularized domain adaptation, a framework
called domain adaptation machine (DAM) [11, 12] describes
a data dependent regularizer, which is based on smoothness
assumption and a relevance between source domain and
target domain. The framework is similar to our method in
someway, while the definition and optimization are different.
DAM mainly stresses domain adaptation from multiple
sources, while we care about domain adaptation combining
source (including multiple sources) and target data, which
has different empirical loss as well as regularizer. However,
the one regularizer in DAM has close connection with ours
and the details can be found in later discussion.

3. Domain Adaptation

3.1. Problem Description. In domain adaptation, the source
domain and target domain are denoted byZ(𝑆) := X(𝑆)×Y(𝑆)

and Z(𝑇) := X(𝑇) × Y(𝑇). Distributions over input space

X(𝑆) and X(𝑇) are donated by D(𝑆) and D(𝑇), respectively.
Traditional supervised learning aims to learn a function 𝑓 :

X(𝑇) → Y(𝑇) for labeling unseen samples in D(𝑇). In the
domain adaptation set-up, D(𝑇) is hard to estimate directly
with insufficient X(𝑇). With considerable amounts of X(𝑆)
andY(𝑆), the minimization empirical risk over loss function
ℓ(∘) with parameter vector 𝜃 can be expressed as follows:

min
𝜃

𝐸
(𝑆)

𝜃
𝑓 =

1

𝑁

𝑁

∑

𝑛=1

ℓ (𝜃; x(𝑆)𝑛 , 𝑦
(𝑆)

𝑛 ) , (1)

where 𝐸
(𝑆) is the expectation taken with respect to the

distributions Z(𝑆). In order to utilize more information of
target domain, available target samples should be used. Given
𝜏 ∈ [0, 1), domain adaptation combining source and target
data is defined to minimize the empirical risks [4]:

𝐸𝜏𝑓 = 𝜏𝐸
(𝑇)

𝑓 + (1 − 𝜏) 𝐸
(𝑆)
𝑓, (2)

where 𝜏 controls the trade-off between learning from source
data and target data.

3.2. Integral Probability Metric. In domain adaptation, it is
important to find a quantity measuring the difference of the
distributions between the source and the target domains.
In this paper, we use the integral probability metric (IPM)
to measure the difference between two distributions. This
quantity is defined as the distance between the source domain
Z(𝑆) and the target domain Z(𝑇), under function class F ⊂

RZ:

𝐷F (𝑆, 𝑇) := sup
𝑓∈F






𝐸
(𝑆)
𝑓 − 𝐸

(𝑇)
𝑓






. (3)

The quantity 𝐷F(𝑆, 𝑇) is aimed at measuring the difference
between the two probability distributions. If the source
domain Z(𝑆) and the target domain Z(𝑇) have the same
probability distribution, the quantity 𝐷F(𝑆, 𝑇) is equal to
zero.

Assuming there are 𝑁𝑆 samples drawn from source
domain and𝑁𝑇 samples from target domain, the expectations
𝐸
(𝑆)
𝑓 and 𝐸

(𝑇)
𝑓 can be roughly estimated by these samples;

thus the 𝐷F(𝑆, 𝑇) can be approximated by the expectations
over given data. However, the target samples are not enough
to learn a predictor; that is, 𝑁𝑇 ≪ 𝑁𝑆; then domain
adaptation minimize the convex combination of the source
and the target empirical risk, for 𝜏 ∈ [0, 1),

𝐸𝜏𝑓 := 𝜏𝐸
(𝑇)

𝑁𝑇
𝑓 + (1 − 𝜏) 𝐸

(𝑆)

𝑁𝑆
𝑓. (4)

When 𝜏 = 0, it provides a learning process of the basic
domain adaptation with one single source.

3.3. Generalization Bounds. The generalization bounds of a
learning process need to consider three essential aspects:
complexity measure of function class, Hoeffding-type devi-
ation inequality, and symmetrization inequality.

Different from the classical VC-dimension form, Zhang
et al. [7] chose the uniform entropy number to measure the
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complexity which is derived from the concept of the covering
number [13]. The covering number is denoted byN(F, 𝜖, 𝑑),
where F is the function class, 𝑑 is a metric on F, and the
covering number of F at radius 𝜖 with respect to 𝑑 is the
minimum size of a cover of radius 𝜖. The covering number
is not suitable for domain adaptation. As a variant of the
covering number, by setting the metric ℓ

𝜏
1(𝑍), the uniform

entropy number is defined as follows:

lnN𝜏1 (F, 𝜖, 2 (𝑁𝑆 + 𝑁𝑇)) := sup
𝑍

lnN (F, 𝜖, ℓ
𝜏

1 (𝑍)) . (5)

The uniform entropy number is distribution-free and can be
chosen as the complexity measure of function class to derive
the generalization bounds for domain adaptation.

Hoeffding-type deviation inequality for domain adapta-
tion is an extension of the classical Hoeffding-type deviation
inequality which allows the random variables to take values
from different domains. It is assumed that F is a function
class consisting of bounded functions with the range [𝑎, 𝑏]. A
function 𝐹𝜏 is defined as follows:

𝐹𝜏 (𝑋
𝑁𝑇
1 , 𝑌
𝑁𝑆
1 ) := 𝜏𝑁𝑆

𝑁𝑇

∑

𝑛=1

𝑓 (𝑥𝑛)

+ (1 − 𝜏)𝑁𝑇

𝑁𝑆

∑

𝑛=1

𝑓 (𝑦𝑛) .

(6)

For any 𝜏 ∈ [0, 1) and any 𝜉 > 0,

Pr (

𝐹𝜏 (𝑍
𝑁𝑆
1 , 𝑍
𝑁𝑇
1 ) − 𝐸

(∗)
𝐹𝜏






> 𝜉)

≤ 2 exp(−

2𝜉
2

(𝑏 − 𝑎)
2
𝑁𝑆𝑁𝑇 ((1 − 𝜏)

2
𝑁𝑇 + 𝜏

2
𝑁𝑆)

) ,

(7)

where the expectation 𝐸
(∗) is taken on both the source

domain 𝑍
(𝑆) and the target domain 𝑍

(𝑇).
Symmetrization inequality for domain adaptation has a

discrepancy term (1 − 𝜏)𝐷F(𝑆, 𝑇) compared to the classical
symmetrization result under the assumption of the same
distribution. For any 𝜉 > (1 − 𝜏)𝐷F(𝑆, 𝑇), the probability of
the event

sup
𝑓∈F






𝐸
(𝑇)

𝑓 − 𝐸𝜏𝑓





> 𝜉 (8)

can be bounded by using the probability of the event

sup
𝑓∈F






𝐸


𝜏𝑓 − 𝐸𝜏𝑓





>

𝜉


2

, (9)

where 𝜉 = 𝜉 − (1 − 𝜏)𝐷F(𝑆, 𝑇).
Based on the uniform entropy number, using a spe-

cificHoeffding-type deviation inequality and symmetrization
inequality, the generalization bounds of domain adaptation
combining source and target data are derived as follows.

Assume that F is a function class consisting of the
bounded functions with the range [𝑎, 𝑏]. For any 𝜏 ∈ [0, 1)

and given an arbitrary 𝜉 > (1 − 𝜏)𝐷F(𝑆, 𝑇), we have, for any
𝑁𝑆𝑁𝑇 ≥ 8(𝑏 − 𝑎)

2
/𝜉
2, with probability of at least 1 − 𝜖,

sup
𝑓∈F






𝐸𝜏𝑓 − 𝐸

(𝑇)
𝑓






≤ (1 − 𝜏)𝐷F (𝑆, 𝑇)

+ (

(lnN𝜏 (F, 𝜉

/8, 2 (𝑁𝑆 + 𝑁𝑇)) − ln (𝜖/8))

(𝑁𝑆𝑁𝑇) /32 (𝑏 − 𝑎)
2
((1 − 𝜏)

2
𝑁𝑇 + 𝜏

2
𝑁𝑆)

)

1/2

.

(10)

The derived bound contains a term of discrepancy quantity
(1 − 𝜏)𝐷F(𝑆, 𝑇).

4. IPM-Based Regularization Framework

From formula (10), we can see that the generalization
bounds of domain adaptation consisted of two parts: integral
probability metric (IPM) and the extension of the covering
number (referred to as the uniform entropy number). Since
the IPM is relatively easy to compute with source data and
target data available, it is straightforward to take this term
into regularization to reduce generalization error. Besides,
it is also intuitive to make full use of target information to
construct predictors. For single source, given data X ∈ R𝑁×𝑑

and corresponding label (or target value for regression) y ∈

R𝑁, take 𝜃 ∈ R𝑑 as the parameters of model and ℓ(𝜃; x, 𝑦)
as the loss of a single sample. The general objective function
for supervised learning can be written in the following risk
minimization problem:

min
𝜃

1

𝑁

𝑁

∑

𝑛=1

ℓ (𝜃; x𝑛, 𝑦𝑛) + 𝜆𝑅 (𝜃) , (11)

where𝑅(𝜃) is the regularizer and𝜆 is the balancing parameter.
Based on the definition of IPM (3), empirical risk (4), and

learning principle (11), we formally propose the framework of
domain adaptation combining the source and the target data
by replacing the regularizer. Consider

min
𝜃

𝜏𝐸
(𝑇)

𝑓 + (1 − 𝜏) 𝐸
(𝑆)
𝑓 + 𝜆 (1 − 𝜏)𝐷F (𝑆, 𝑇) , (12)

where 𝐸𝑓 = (1/𝑁)∑
𝑁

𝑛=1 ℓ(𝜃; x𝑛, 𝑦𝑛).
In [14], the IPM can be empirically estimated by vari-

ous popular distance metrics by appropriately choosing F.
Specifically in the reproducing kernel Hilbert space (RKHS),
IPM is called kernel distance or maximummean discrepancy
(MMD) [15]. The empirical estimator of MMD is straightfor-
ward:

MMD [F, 𝑆, 𝑇]

=












1

𝑁𝑠

𝑁𝑠

∑

𝑛=1

𝜙 (x(𝑆)𝑛 ) −

1

𝑁𝑇

𝑁𝑇

∑

𝑛=1

𝜙 (x(𝑇)𝑛 )










H

,

(13)

where𝜙 : X → H is called a feature spacemapping function
and two feature maps are defined as the kernel, 𝑘(x(𝑆), x(𝑇)) =
⟨𝜙(x(𝑆)), 𝜙(x(𝑇))⟩.
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DAM frameworks [12] construct a domain-dependent
regularizer for domain adaptation from multiple sources,
which is defined as

Ω(𝑓
𝑇
) =

1

2

𝑃

∑

𝑠=1

𝛾𝑠






f𝑇𝑢 − f𝑆𝑢







2
, (14)

where 𝑃 is the number of source domains, f𝑇𝑢 and f𝑆𝑢 are the
decision values from the target classifier, and the 𝑠th classifier
on the unlabeled instances in the target domain. Here the
coefficient 𝛾𝑠 is set as exp(−𝛽 ×MMD[F, 𝑆, 𝑇]

2
).

From the definition we can see that the regularizer we
use in (12) is much simpler than that in DAM. Moreover,
the objective function in DAM consists of three parts, other
two include the regularizer which controls the complexity
of target classifier and the loss of target classifier, while the
objective function we use in (12) considers a combination of
the loss over source domain and target domain [4].

The proposed framework is also suitable for domain
adaptation combining multiple sources, where 𝐸

(𝑆)
𝑓 and

regularization term 𝐷F(𝑆, 𝑇) in (12) are defined as a linear
combination of several terms. Consider

𝐸
(𝑆)
𝑓 =

𝑃

∑

𝑖=1

𝑤𝑖𝐸
(𝑆)

𝑖 𝑓 =

𝑃

∑

𝑖=1

𝑤𝑖

𝑁𝑖

𝑁𝑖

∑

𝑛=1

ℓ (𝜃; x(𝑖)𝑛 , 𝑦
(𝑖)

𝑛 ) ,
(15)

𝐷F (𝑆, 𝑇) =

𝑃

∑

𝑖=1

𝑤𝑖𝐷F (𝑆𝑖, 𝑇) . (16)

The generalization bound of domain adaptation from multi-
ple sources has similar formwith (10), where the first term on
the right side is a linear combination of several IPMs instead
of one; see (16).

5. Experiments

We first carry out experiments on both simple regression
and classification problems to verify the effectiveness of (12).
For the purpose of easy-to-optimize, we use least square
ℓ(𝜃; x, 𝑦) = (x𝑇𝜃 − 𝑦)

2 as the loss function. It is straightfor-
ward in regression since the target value is continuous, while
for binary classification there are a few articles that discussed
this loss. Reference [16] employed it in text classification
and [17] pointed out the rationality of least square loss
compared with SVM. Since the loss is quadratic while the
IPM is expressed as an absolute value under this setting,
it is necessary to convert the regularizer into the squared
form of the original value to balance these two terms, and it
can be approximated by the gap of losses on target domain
and source domain, that is, (𝐸(𝑆)𝑓 − 𝐸

(𝑇)
𝑓)
2. All these tricks

make the whole objective function consisting of both loss
function and regularizer convex much easier to optimize. We
use the limited-memory BFGS provided by package yagtom
(https://code.google.com/p/yagtom/) in experiments.

In the last part of experiment, we would apply least
squares support vector machine (LS-SVM) [18] as the classi-
fier; the loss function is expressed as ℓ(𝜃; x, 𝑦) = (𝜃

𝑇
𝜙(x)−𝑦)2,

where 𝜙(⋅) is the kernel function. Regularization for LS-SVM

Table 1: The comparison of RMSE on four settings with different
labeled target domain samples.

𝑁𝑇1 Setting 1 Setting 2 Setting 3 Setting 4
20 42.7473 0.7642 0.7546 0.7175
50 34.1598 0.7639 0.7312 0.6894
100 7.9272 0.7594 0.6690 0.6495
200 0.7249 0.7640 0.6071 0.5812

is commonly used,𝑅(𝜃) = 𝐶‖𝜃‖
2, where parameter𝐶 controls

the balance.

5.1. Regression. We perform numeric experiments on syn-
thetic data for regression test and only consider single source.
For target domain, we assumeX(𝑇) ∈ R𝑁×100 from aGaussian
distribution 𝑁(0, 1) and the noise vector R ∈ R𝑁 with
𝑁(0, 0.5); let model parameters vector 𝜃 ∈ R100 of 𝑁(1, 5);
then the target values are generated by

𝑦
(𝑇)

𝑛 = ⟨x(𝑇)𝑛 , 𝜃⟩ + R. (17)

The derived (x(𝑇)𝑛 , 𝑦
(𝑇)
𝑛 )
𝑁𝑇1
𝑛=1 will be used in training

and cotraining with data from source domain, and
(x(𝑇)𝑛 , 𝑦

(𝑇)
𝑛 )
𝑁𝑇
𝑛=1 (𝑁𝑇 = 2000) will be used as the test data.

Similarly, the sample set (x(𝑆)𝑛 , 𝑦
(𝑆)
𝑛 )
𝑁𝑆
𝑛=1 (𝑁𝑆 = 2000) will be

used as source domain and the generating rule is

𝑦
(𝑆)

𝑛 = ⟨x(𝑆)𝑛 , 𝜃⟩ + R, (18)

where x(𝑆)𝑛 ∼ 𝑁(0, 0.2), 𝜃 ∼ 𝑁(1, 5), and R ∼ 𝑁(0, 0.5).
With the fitting accuracy root mean squared error

(RMSE) as the criterion, we conducted the following four
settings in the experiments:

(i) setting 1, 𝑁𝑇1 → 𝑁𝑇: training on the small parts
of target domain (𝑁𝑇1) and testing on target domain
(𝑁𝑇);

(ii) setting 2, 𝑁𝑆 → 𝑁𝑇: training on the source domain
(𝑁𝑆) and testing on target domain (𝑁𝑇);

(iii) setting 3, 𝑁𝑆 + 𝑁𝑇1 → 𝑁𝑇: training on the source
domain (𝑁𝑆) combining small parts of target domain
(𝑁𝑇1) and testing on target domain (𝑁𝑇);

(iv) setting 4, 𝑁𝑆 + 𝑁𝑇1 + IPM → 𝑁𝑇: training on the
source domain(𝑁𝑆) combining small parts of target
domain (𝑁𝑇1) with regularizer and testing on target
domain (𝑁𝑇).

We search the parameter 𝜆 in range of [2−10, 2−9, . . . , 210]
in setting 4 and 𝜏 = (𝑁𝑇1)/(𝑁𝑇1+𝑁𝑆) in setting 3 and setting 4
according to the similar numeric experiments to evaluate the
asymptotic convergence in [7]. 10 rounds for each problem
have been conducted and the average of RMSE is recorded as
the result. All the results are shown in Table 1.

We can see, in all cases, that RMSE in setting 4 is the
smallest. It makes sense to say that the domain adaptation
with the IPM regularizer can obtain better performance than
without it.
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Table 2: Description of the email spam dataset and 20 newsgroups datasets [12].

Source domains (𝑁𝑆) Target domains (𝑁𝑆)

Email spam
User 1 (2500)

Public set (4000)User 2 (2500)
User 3 (2500)

rec versus sci
rec.autos and sci.crypt (1976)

rec.sport.hockey and sci.space (1982)rec.motorcycles and sci.electronics (1977)
rec.sport.baseball and sci.med (1978)

comp versus rec
comp.graphics and rec.autos (1957)

comp.sys.mac.hardware and rec.sport.hockey (1955)comp.os.ms-windows.misc and rec.motorcycles (1956)
comp.sys.ibm.pc.hardware and rec.sport.baseball (1970)

sci versus comp
sci.crypt and comp.graphics (1959)

sci.space and comp.sys.mac.hardware (1943)sci.electronics and comp.os.ms-windows.misc (1947)
sci.med andcomp.sys.ibm.pc.hardware (1966)

5.2. Classification. When adopting square loss function in
binary classification, we require the sample 𝑥𝑛’s label 𝑦𝑛 ∈

{−1, 1}. Assume the output label of x𝑛 is 𝑦𝑛 = x𝑇𝑛 𝜃; in case
that 𝑦𝑛 ∗ 𝑦𝑛 > 0 the predicting is right.

The binary classification tests are carried on text datasets
email spam (available at http://www.ecmlpkdd2006.org/chal-
lenge.html) and parts of 20 newsgroups datasets (http://vc.sce
.ntu.edu.sg/transfer learning domain adaptation/). The email
spam dataset contains a set of 4000 public labeled emails
which is used here as target domain data and other three
sets, each of which has 2500 emails annotated by different
users and would be used as source domain data. In these four
datasets, samples are labeled as nonspam (𝑦 = 1) or spam
emails (𝑦 = −1). The 20 newsgroups datasets recollected
by Duan et al. [12] contains three groups and each has a
target set with three sources. Details of the datasets used in
classification are shown in Table 2.

So we have 12 groups of source-target pairs in total to
conduct the experiments; in each pair we randomly choose
𝑁𝑇1 = 20 samples from the target domain to participate in
domain adaptation and the classification accuracy on the rest
target set is chosen as the evaluation criterion.Theparameters
𝜆 and 𝜏 are picked in the same way as in the regression
experiment, and result in each pair is averaged over 10 times
running. The comparison of classification accuracy is listed
in Table 3.

As we can see, the domain adaptation with the IPM
regularizer can obtain better performance than without it
and is even better than just training on small target domain
samples in most cases.

5.3. Classification with LS-SVM. In order to improve the
classification ability in real datasets, we adopt LS-SVM with
kernel as the predictor.The square ofMMD is easily obtained
by (19), by expanding the original definition. Here in the
experiments we use linear kernel for convenience of getting
MMD (13); that is, 𝑘(x(𝑆), x(𝑇)) = (x(𝑆))𝑇x(𝑇). What is

Table 3: The comparison of classification accuracy,𝑁𝑇1 = 20.

Dataset Setting 1 Setting 2 Setting 3 Setting 4

Email spam
0.6686 0.7625 0.6962 0.8037
0.5681 0.6514 0.6962 0.8138
0.7461 0.7972 0.6962 0.8078

20 newsgroups: comp
versus rec

0.7051 0.8525 0.5885 0.8848
0.8132 0.8806 0.5885 0.9017
0.9452 0.9466 0.5885 0.9551

20 newsgroups: rec
versus sci

0.6117 0.7849 0.8329 0.7942
0.7205 0.8432 0.8329 0.8530
0.8623 0.9036 0.8329 0.9293

20 newsgroups: sci
versus comp

0.7142 0.7875 0.6062 0.8078
0.5295 0.5868 0.6062 0.5818
0.8255 0.8550 0.6062 0.8853

more, the regularization term is independent with the model
parameters. Consider

MMD [F, 𝑆, 𝑇]
2
=

1

𝑁
2
𝑆

𝑁𝑆

∑

𝑖,𝑗

𝑘 (x(𝑆)𝑖 , x(𝑆)𝑗 )

+

1

𝑁
2
𝑇

𝑁𝑇

∑

𝑖,𝑗

𝑘 (x(𝑇)𝑖 , x(𝑇)𝑗 )

−

2

𝑁𝑆𝑁𝑇

𝑁𝑆,𝑁𝑇

∑

𝑖,𝑗=1

𝑘 (x(𝑆)𝑖 , x(𝑇)𝑗 ) .

(19)

In this part, we adopt a paradigm of domain adaptation
combining multiple sources. As a consequence, in settings
2, 3, and 4, the risk on source domain is computed by (15)
and in setting 4 the regularization term IPM is computed
by (16) and (19). In each problem, there are three sources.
First of all, we search the regularization parameter𝐶 in single
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Figure 1: Comparison of testing accuracy and standard deviations on 20 newsgroups datasets, with each problem setting parameter 𝐶 =
[0.01 0.1 1 10 100]. The number of labeled data from target domain is 10. From (a) to (c): comp versus rec, rec versus sci, and sci versus
comp.

LS-SVM predictor, that is, 𝑅(𝜃) = 𝐶‖𝜃‖
2 of (11), in range

[0.01 0.1 1 10 100], on the 20 newsgroups datasets. We
can see from Figure 1 that the proposed method tends to
achieve best testing accuracy and low standard deviations. In
all datasets with any value of𝐶, setting 1 has the lowest testing
accuracy and relatively high standard, due to the insufficient
training with small amounts of labeled data. As inmost cases,
𝐶 = 0.1 has the best performance; we set this value in the
following experiments.

All results on the same datasets listed in Table 2 are shown
in Table 4. We can see that in most cases, the proposed

algorithm outperformed other methods from a statistical
perspective. Setting 1 had the worst accuracy, which means
training on small amounts of target data is not sufficient.
The fact that accuracy in setting 1 increases as the available
labeled data becomes more, which fits the experience of
ERM learning. It seems that the performance of setting 2
is even slightly better than setting 3 in most cases; thus
simply combining risks over source and target domain to
learn may not work in practice. On the other hand, the
IPM regularization term does provide a bridge between this
gap.
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Table 4: The comparison of classification accuracy (LS-SVM), with multiple sources.

Dataset Setting 1 Setting 2 Setting 3 Setting 4
𝑁𝑇1 = 5

Email spam 0.6457 ± 0.0828 0.9258 ± 0.0084 0.9251 ± 0.0081 0.9371 ± 0.0129

20 newsgroups: comp versus rec 0.6020 ± 0.3116 0.9498 ± 0.0234 0.9479 ± 0.0253 0.9509 ± 0.0226

20 newsgroups: rec versus sci 0.5922 ± 0.4323 0.8315 ± 0.0184 0.8287 ± 0.0183 0.8427 ± 0.0201

20 newsgroups: sci versus comp 0.4887 ± 0.3959 0.6988 ± 0.0469 0.6947 ± 0.0476 0.7106 ± 0.0474

𝑁𝑇1 = 10

Email spam 0.7211 ± 0.0812 0.9274 ± 0.0075 0.9269 ± 0.0073 0.9337 ± 0.0057

20 newsgroups: comp versus rec 0.6119 ± 0.3517 0.9596 ± 0.0212 0.9581 ± 0.0229 0.9594 ± 0.0217

20 newsgroups: rec versus sci 0.6173 ± 0.3125 0.8485 ± 0.0225 0.8481 ± 0.0216 0.8507 ± 0.0228

20 newsgroups: sci versus comp 0.5135 ± 0.3056 0.7485 ± 0.0557 0.7455 ± 0.0579 0.7508 ± 0.0549

𝑁𝑇1 = 15

Email spam 0.7465 ± 0.0644 0.9201 ± 0.0171 0.9195 ± 0.0167 0.9231 ± 0.0179

20 newsgroups: comp versus rec 0.7206 ± 0.2425 0.9487 ± 0.0225 0.9467 ± 0.0239 0.9478 ± 0.0232

20 newsgroups: rec versus sci 0.5872 ± 0.3634 0.8443 ± 0.0116 0.8427 ± 0.0103 0.8490 ± 0.0128

20 newsgroups: sci versus comp 0.5286 ± 0.2284 0.7294 ± 0.0574 0.7270 ± 0.0591 0.7354 ± 0.0518

𝑁𝑇1 = 20

Email spam 0.7786 ± 0.0578 0.9286 ± 0.0036 0.9279 ± 0.0033 0.9309 ± 0.0045

20 newsgroups: comp versus rec 0.7760 ± 0.2496 0.9543 ± 0.0173 0.9526 ± 0.0183 0.9545 ± 0.0172

20 newsgroups: rec versus sci 0.7536 ± 0.1642 0.8618 ± 0.0121 0.8626 ± 0.0120 0.8626 ± 0.0120

20 newsgroups: sci versus comp 0.6867 ± 0.2298 0.7006 ± 0.0624 0.6963 ± 0.0660 0.7016 ± 0.0631

6. Conclusion

In this paper, we proposed a general framework for regu-
larized domain adaptation combining source(s) and target
data. The regularization mainly considers the gap between
source domain and target domain and uses the integral
probability metric as the distance measurement of different
domains. Square approximation and inner product in RKHS
tricks are used for empirical estimation of the IPM.The IPM
regularization term is supposed to reduce the generalization
error according to a theoretical work [7]. The regularization
method can work for domain adaptation combining single
source as well as multiple sources, and a sort of popular
predictor can be utilized. Experiments on regression and
classification indicate that this method can work better than
original domain adaptation without the regularization term.

We are also interested in the relationship between semisu-
pervised learning and domain adaptation with few labeled
target domain samples, since they share similar problem
settings. And for cases when labeled target data is unavailable,
the obtained pseudolabel may help. Theoretical analysis and
empirical results are going to be investigated.
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