TOTALLY REAL SURFACES IN CP² WITH PARALLEL MEAN CURVATURE VECTOR

M. A. AL-GWAIZ and SHARIEF DESHMUKH

Department of Mathematics
King Saud University
P.O. Box 2455

Riyadh 11451
Saudi Arabia
(Received October 26, 1990 and in revised form May 10, 1991)

Abstract

It has been shown that a totally real surface in $C P^{2}$ with parallel mean curvature vector and constant Gaussian curvature is either flat or totally geodesic.

Key Words and Phrases: Riemannian connection, Gaussian curvature and real surfaces. 1991 Mathematics Subject Classification Codes: 53B21, 53C20

1. INTRODUCTION.

Let J be the almost complex structure on $C P^{2}$ and g be the Hermitian metric on $C P^{2}$ of constant holomorphic sectional curvature 4. If $\bar{\nabla}$ is the Riemannian connection with respect to g and \bar{R} is the curvature tensor of $\bar{\nabla}$, then

$$
\begin{gather*}
\left(\bar{\nabla}_{X} J\right)(Y)=0 \tag{1.1}\\
\bar{R}(X, Y) Z=g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X-g(J X, Z) J Y+2 g(X, J Y) J Z, \tag{1.2}
\end{gather*}
$$

where X, Y, Z are vector fields on $C P^{2}$.
Let M be a 2 -dimensional totally real submanifold of $C P^{2}$ and v be the normal bundle of M. If $\chi(M)$ is the lie-algebra of vector fields on M, then for each $X \in \chi(M), J X \in v$. The Riemannian connection $\bar{\nabla}$ induces the Riemannian connection ∇ on M and the connection ∇^{\perp} in the normal bundle v. We then have the following Gauss and Weingarten formulae

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \nabla_{X} N=-A_{N} X+\nabla_{X}^{1} N, X, Y \in \chi(M), N \in v \tag{1.3}
\end{equation*}
$$

where $h(X, Y)$ and $A_{N} X$ are the second fundamental forms and are related by $g(h(X, Y), N)=g\left(A_{N} X, Y\right)$. The mean curvature vector H of M is given by

$$
H=(1 / 2) \sum h\left(e_{i}, e_{i}\right),
$$

where $\left\{e_{1}, e_{2}\right.$) is a local orthonormal frame on M. If $H=0$, then M is said to be a minimal submanifold of $C P^{2}$. It is known that if M is a minimal totally real surface of constant Gaussian curvature in $C P^{2}$, then either M is flat or totally geodesic (cf. [2]). The mean curvature vector H is said to be parallel if $\nabla_{X}{ }^{\perp} H=0, X \in \chi(M)$. In this paper we consider the totally real surfaces of constant Gaussian curvature with parallel mean curvature vector in $C P^{2}$.

The Gaussian curvature K of M is given by

$$
\begin{equation*}
K=1+g(h(X, X), 2 h(Y, Y))-g(h(X, Y), h(X, Y)) \tag{1.4}
\end{equation*}
$$

where $\{X, Y\}$ is an orthonormal frame on M. The Codazzi equation gives

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z), X, Y, Z \in \chi(M) \tag{1.5}
\end{equation*}
$$

For a totally real surface M, using (1.1) and (1.3), we get

$$
\begin{equation*}
h(X, Y)=J A_{J Y} X, \nabla_{X}^{\perp} J Y=J \nabla_{X} Y, X, Y \in \chi(M) \tag{1.6}
\end{equation*}
$$

Using (1.6) and the symmetry of $h(X, Y)$, we have

$$
\begin{equation*}
g(h(Y, Z), J X)=g(h(X, Y), J Z)=g(h(X, Z), J Y), X, Y, Z \in \chi(M) \tag{1.7}
\end{equation*}
$$

2. MAIN RESULTS

THEOREM 2.1. Let M be a connected totally real surface in $C P^{2}$ of constant Gaussian curvature \boldsymbol{c} with parallel mean curvature vector. Then either M is flat or totally geodesic.

PROOF. Let $U M=\{X \in T M:\|X\|=1\}$ be the unit tangent bundle of M. Define the function $f: U M \rightarrow R$ by $F(X)=g(h(X, X), J X)$, which is clearly a smooth function. First suppose that f is constant. Then $f(-X)=-f(X)$ gives $f(X)=0$ and therefore $g(h(X, X), J X)=0, X \in U M$. Now consider a local orthonormal frame $\{X, Y\}$ on M. Then we have $g(h(X, X), J X)=0, g(h(Y, Y), J Y)=0$,

$$
g\left(h\left(\frac{X+Y}{\sqrt{2}}, \frac{X+Y}{\sqrt{2}}\right), J\left(\frac{X+Y}{\sqrt{2}}\right)\right)=0, g\left(h\left(\frac{X-Y}{\sqrt{2}}, \frac{X-Y}{\sqrt{2}}\right), J\left(\frac{X-Y}{\sqrt{2}}\right)\right)=0
$$

These equations, in view of (1.7), imply that $g(h(X, X), J Y)=0, g(h(Y, Y), J X)=0, g(h(X, Y), J X)=0$, and $g(h(X, Y), J Y)=0$. Since $\{J X, J Y\}$ is a local orthonormal frame in the normal bundle v, we conclude that $h(X, X)=0, h(X, Y)=0$ and $h(Y, Y)=0$, which means that M is totally geodesic.

We therefore assume that f is not a constant. Since the unit tangent bundle $U M$ is compact, f attains a maximum at some $e_{1} \in U M$. It is known that $g\left(h\left(e_{1}, e_{1}\right), J Y\right)=0$ for any vector in $T M$ which is orthogonal to e_{1} (cf. [1]). Choose e_{2} such that $\left\{e_{1}, e_{2}\right\}$ is an orthonormal frame on M. Then we can set

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\alpha J e_{1}, h\left(e_{2}, e_{2}\right)=\beta J e_{1}+\gamma J e_{2} \text { and } h\left(e_{1}, e_{2}\right)=\beta J e_{2}, \tag{2.1}
\end{equation*}
$$

where α, β and γ are smooth functions. Using the structure equations of M we have locally

$$
\begin{equation*}
\nabla_{e_{1}} e_{1}=a e_{2}, \quad \nabla_{c_{2}} e_{2}=b e_{1}, \quad \nabla_{e_{1}} e_{2}=-a e_{1}, \quad \nabla_{c_{2}} e_{1}=-b e_{2} \tag{2.2}
\end{equation*}
$$

where a, b are smooth functions. Inserting different combinations of the frame vectors e_{1}, e_{2} in (1.5) and using (2.1) and (2.2) we get, upon equating components,

$$
\begin{equation*}
e_{1} \cdot \beta=a \gamma+2 b \beta-b \alpha, e_{2} \cdot \alpha=a(\alpha-2 \beta), e_{2} \cdot \beta-e_{1} \cdot \gamma=3 a \beta-b \gamma . \tag{2.3}
\end{equation*}
$$

Since the mean curvature vector $H=(1 / 2)\left(h\left(e_{1}, e_{1}\right)+h\left(e_{2}, e_{2}\right)\right)$ is parallel, we have

$$
\nabla_{e_{1}}^{\perp}\left(h\left(e_{1}, e_{1}\right)+h\left(e_{2}, e_{2}\right)\right)=0 \text { and } \nabla_{e_{2}}^{\perp}\left(h\left(e_{1}, e_{1}\right)+h\left(e_{2}, e_{2}\right)\right)=0
$$

Using (1.6), (2.1) and (2.2) in the above equations we conclude, upon equating components, that

$$
\begin{array}{ll}
e_{1} \cdot(\alpha+\beta)=a \gamma, & e_{1} \cdot \gamma=-a(\alpha+\beta) \\
e_{2} \cdot(\alpha+\beta)=-b \gamma, & e_{2} \cdot \gamma=b(\alpha+\beta) \tag{2.5}
\end{array}
$$

From (2.3), (2.4) and (2.5), we have

$$
\begin{array}{lll}
e_{1} \cdot \alpha=b(\alpha-2 \beta), & e_{1} \cdot \beta=a v+2 b \beta-b \alpha, & e_{1} \cdot \gamma=-a(\alpha+\beta) \\
e_{2} \cdot \alpha=a(\alpha-2 \beta), & e_{2} \cdot \beta=-b \gamma+2 a \beta-a \alpha, & e_{2} \cdot \gamma=b(\alpha+\beta) \tag{2.6}
\end{array}
$$

In view of (2.1) and (1.4), the Gaussian curvature c is given by $c=1+\alpha \beta-\beta^{2}$. If we operate on this equation by e_{1} and e_{2} with c constant, and use (2.6), we obtain

$$
\begin{equation*}
(\alpha-2 \beta)(a \gamma+b(3 \beta-\alpha))=0 \text { and }(\alpha-2 \beta)(-b \gamma+a(3 \beta-\alpha))=0 . \tag{2.7}
\end{equation*}
$$

We have two cases:
Case (i). Suppose $\alpha \neq 2 \beta$, then the two equations in (2.7) give $\left(a^{2}+b^{2}\right) \gamma=0$ and $\left(a^{2}+b^{2}\right)(3 \beta-\alpha)=0$. If $a^{2}+b^{2}=0$, then from (2.2) it follows that M is flat (as c is constant). If $a^{2}+b^{2}=0$, then we have $\gamma=0$ and $3 \beta-\alpha=0$. Since a and b cannot both be zero and $\gamma=0$ it follows from equations (2.4) and (2.5) that $\alpha+\beta=0$. Thus we have $\gamma=0$ and $\alpha+\beta=0$, which implies that $H=0$, that is, M is minimal.

Case (ii). Suppose $\alpha=2 \beta$. Then from (2.6) we get that α is constant, and consequently β is also constant. With $\alpha=2 \beta$ and β constant equations (2.6) give $a \gamma=0$ and $b \gamma=0$. Thus either $a=b=0$ or $\gamma=0$, which results in either M being flat or $\gamma=0$. If M is not flat, that is, not both a and b are zero, and $\gamma=0$, then from (2.4) and (2.5) we get $\alpha+\beta=0$. This shows that $H=0$. Hence either M is flat or minimal. But since a minimal totally real surface is constant curvature in $C P^{2}$ is either flat or totally geodesic [2], the theorem is proved.

In the following we first prove that in any submanifold of a Riemannian manifold if the second fundamental form is parallel, then the mean curvature vector is parallel. Though this is a simple observation, it does not seem to appear in the literature and is worth mentioning. As a corollary then we obtain the same result as in Section 2 for the totally real surfaces of $C P^{2}$ with parallel second fundamental form.

THEOREM 2.2. Let M be a submanifold of a Riemannian manifold \bar{M} with parallel second fundamental form. Then the mean curvature vector of M is parallel.

PROOF. Suppose $\operatorname{dim} M=n$. Then for a local orthonormal frame $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of M, the mean curvature H is given by

$$
H=(1 / n) \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) .
$$

Since the second fundamental form is parallel we have

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)=0 \text { for } X, Y, Z \in \chi(M) .
$$

Thus for each frame vector e_{i} we can write

$$
\nabla_{x}{ }^{1} h\left(e_{i}, e_{i}\right)=2 h\left(\nabla_{X} e_{i}, e_{i}\right) .
$$

Adding these equations we get

$$
n \nabla_{X}{ }^{1} H=2 \sum_{i=1}^{n} h\left(\nabla_{X} e_{i}, e_{i}\right) .
$$

Let ω_{j}^{i} be the connections forms on M. Then we have

$$
\nabla_{x} e_{i}=\sum_{j=1}^{n} \omega_{i}^{j}(x) e_{j} .
$$

Substituting this into the above equation we get

$$
n \nabla_{X}{ }^{1} H=2 \sum_{i, j=1}^{n} \omega_{i}^{j}(X) h\left(e_{i}, e_{j}\right) .
$$

Since $\omega_{i}^{j}(X)=-\omega_{j}^{i}(X)$ and $h\left(e_{i}, e_{j}\right)=h\left(e_{j}, e_{i}\right)$, we conclude that $\nabla_{X}{ }^{1} H=0, X \in \chi(M)$.
As a direct consequence of this theorem and the theorem in the previous section we have
COROLLARY 2.1. Let M be a connected totally real surface in $C P^{2}$ with parallel second fundamental form and constant Gaussian curvature. Then M is either flat or totally geodesic.

ACKNOWLEDGEMENT. This work has been supported by grant No. (Math/1409/05) of the Research Center, College of Science, King Saud University, Riyadh, Saudi Arabia.

REFERENCES

[1] Ejiri, N., Totally Real Minimal Immersions of N-dimensional Real Space Forms Into N-dimensional Complex Space Forms, Proc. Amer. Math. Soc. 84 (1982), 243-246.
[2] Houh, C. S., Some Totally Real Minimal Surfaces in CP ${ }^{2}$, Proc.Amer. Math. Soc, 40(1973), 240-244.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

