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To overcome the problem that the horizontal resolution of global climate models may be too low to resolve features which are
important at the regional or local scales, dynamical downscaling has been extensively used.However, dynamical downscaling results
generally drift away from large-scale driving fields. The nudging technique can be used to balance the performance of dynamical
downscaling at large and small scales, but the performances of the two nudging techniques (analysis nudging and spectral nudging)
are debated.Moreover, dynamical downscaling is now performed at the convection-permitting scale to reduce the parameterization
uncertainty and obtain the finer resolution. To compare the performances of the two nudging techniques in this study, three
sensitivity experiments (with no nudging, analysis nudging, and spectral nudging) covering a period of two months with a grid
spacing of 6 km over continental China are conducted to downscale the 1-degree National Centers for Environmental Prediction
(NCEP) dataset with the Weather Research and Forecasting (WRF) model. Compared with observations, the results show that
both of the nudging experiments decrease the bias of conventional meteorological elements near the surface and at different heights
during the process of dynamical downscaling.However, spectral nudging outperforms analysis nudging for predicting precipitation,
and analysis nudging outperforms spectral nudging for the simulation of air humidity and wind speed.

1. Introduction

General circulation models (GCMs) are primary tools for
studying the Earth's climate system and understanding
climate changes in the future and responses to climate
changes with emissions in terms of the simulation of dif-
ferent climate system components, averages, variability, and
extremes. Moreover, regional-scale climate information can
be extracted from coupled atmosphere-ocean general cir-
culation models (AOGCMs) [1]. However, the horizontal
resolution of GCMs or AOGCMs may be too low to identify
features that are important at the regional or local scales [1–
4]. To overcome this problem, downscaling of the GCM and
AOGCM results or reanalysis over a limited-area domain can
be used to generate region-specific climate information.

Dynamical downscaling, which is an extremely impor-
tant and broadly used method, is based on the physi-
cal and dynamical framework of regional climate models

(RCMs) and became a common approach for obtaining high-
resolution regional climate information. It is forced by large-
scale circulation of the GCM results or global reanalysis
and adds regional detailed representation of local processes,
topography, land cover, and other features that shape the
regional climate [5–7]. Dynamical downscaling ability may
be affected by many factors, which can be classified into two
types.Thefirst type of factor comes from the limitations in the
physical representations in RMCs, including cloud-related
processes and land-surface/atmosphere interactions, cumu-
lus convection schemes [8], the combination of schemes
for convection and the planetary boundary layer, horizontal
diffusion, and/or microphysics [9–14]. The other type of
factor comes from the choice and application of the boundary
conditions (driving data) and domains [1], which are rooted
in dynamical downscaling itself.The starting point of dynam-
ical downscaling is typically a set of coarse-resolution large-
scale fields that are used to provide the initial conditions (ICs)
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and lateral boundary conditions (LBCs) for the RCMs [15].
Thus, which are the best ICs and LBCs [16, 17], how to reduce
RCMs’ internal variability [18–21], the impact of different
driving data or strategies to inhibit the growth of errors [22–
25], and the influence of domain size, domain position, and
resolution [20, 22, 26–28] on dynamical downscaling are the
primary issues in related studies.

Among the factors which cause errors and uncertainties
in the dynamical downscaling process, we focus on a strategy
that balances the performance of RCMs in adding small-scale
features while retaining large-scale features. This strategy is
called nudging, which provides a method for constraining
the RCMs and keeps them from diverging too far from the
coarse-scale fields.

RCMs are strongly constrained by the driving data near
the lateral boundaries. Thus, in small domains, RCMs have
less freedom to generate additional information. Moreover,
larger domains allow the RCM solutions to become increas-
ingly “decoupled” from the driving data [1], which is one
key source of systematic errors in dynamical downscaling
[29]. Nudging techniques (methods for adding a correction
to the predictive equation of the variable to be adjusted at
the grid point in the model) have proved to be useful for
preventing RCMs fromdrifting away from large-scale driving
fields [1, 15, 30–32].

The nudging used in dynamical downscaling is currently
applied in two different ways: analysis nudging [33] and
spectral nudging [34]. Analysis nudging is conducted in every
grid cell, while spectral nudging is applied in zonal and
meridional directions, and only the waves under the selected
wave numbers are retained in the nudging term [29, 31,
32, 34–36]. Studies have used analysis nudging and spectral
nudging in dynamical downscaling to obtain more accurate
regional climate information [15, 30, 31, 37–39]. However, the
performances of the two nudging techniques are debated.
On the one hand, analysis nudging is generally superior to
spectral nudging when appropriate nudging coefficients are
chosen to adjust the strength of the nudging force in the
governing equations [38]. The precipitation intensity and
frequencies predicted by analysis nudging are closer to the
observed values than those predicted by spectral nudging
[40]. On the other hand, using spectral nudging has advan-
tages over using no nudging or using boundary nudging
[41–44] and could theoretically outperform analysis nudging,
which risks overforcing the RCMs at small scales [45]. Liu et
al. [29] used the Weather Research and Forecasting (WRF)
model to compare the performance of analysis nudging and
spectral nudging in downscaling and showed that spectral
nudging outperformed analysis nudging in balancing the
performance of the simulation at large and small scales. For
precipitation, Miguez-Macho et al. [35] showed that spectral
nudging successfully eliminated the spatial pattern distor-
tions of precipitation when the position of the simulation
domain was shifted by 7∘–17∘N. However, Bullock Jr. et al.
[46] indicated that stronger analysis nudging could reduce
the positive bias in precipitation and that stronger spectral
nudging did not have much effect. Therefore, additional
studies comparing analysis nudging and spectral nudging,
especially in different regions, are needed.

Since much of the motivation for dynamical downscaling
is to capture more detailed representations of local processes,
topography, and other features that shape regional climate,
higher resolution may be better [12, 47–50]. In addition,
very fine resolution datasets are useful for hydrological and
other applications [51]. For example, Gutowski Jr. et al. [52]
concluded that RCMs could provide better precipitation
extremes than GCMs, and Vautard et al. [49] found that, for
most regional climate models, warm extremes were generally
better simulated in Europe at a resolution of 12 km runs than
at a resolution of 50 km runs. Rojas [53] and Walther et al.
[50] tested the relationships between improved simulation
quality and increasing resolution in RCMs and showed that
better simulation performance corresponded with higher
resolution.

Moreover, dynamical downscaling is now being run at
convection-permitting scales, where cumulus parameteriza-
tion can be replaced by explicit dynamics to represent deep
convective systems that will reduce some uncertainties of the
parameterization. Thus, one of the future research prospects
for dynamical downscaling is to meet high-resolution needs
[51]. However, long runs with RCMs at resolution higher than
approximately 10 km remain rare [54], and even fewer RCMs
run at convection-permitting resolutions [1]. Guttler et al.
[47] noted that a 6 km run would providemore improvement
in some researched regions, and Pryor et al. [48] found
that the impacts of higher RCMs resolution (6 km compared
with 50 km) were much larger when extreme wind speeds
occurred relative to the mean wind speed. Considering res-
olution needs and the computational expense, we conducted
this study using a resolution of 6 km.

In this study, three sensitivity experiments (with no
nudging, analysis nudging, and spectral nudging) with a
grid spacing of 6 km over continental China are conducted
to investigate the performance of two nudging techniques
when downscaling the 1-degree NCEP dataset using theWRF
model.

Details regarding the model and experimental setup are
described in Section 2. In Section 3, the evaluation datasets
are introduced and the evaluation methods are presented.
The verification and comparison of simulate performance
with different nudging techniques are presented in Section 4.
Finally, the conclusions are presented in Section 5.

2. Model Description and Experimental Setup

2.1. Model Description. The regional climate model used
in this study is the WRF model, version 3.5.1, with the
Advanced Research WRF dynamic core. The initial and
boundary conditions for the large-scale atmospheric fields,
as well as the initial soil parameters (soil water, moisture, and
temperature), are obtained from 1∘× 1∘ National Centers for
Environmental Prediction Final Operational Global Analysis
data (FNL). The simulation domain is centered at 35∘N and
105∘E with 1009 × 805 horizontal grid points and a grid
spacing of 6 km across China (Figure 1). The vertical dimen-
sion included 28 terrain-following eta vertical coordinate
levels, and the pressure at the top of the model is 10 hPa.
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Figure 1: WRF model domain and topography height map and the
color scale refers to elevation.

The domain-specified lateral boundary was composed of a
one-point specified zone and a four-point relaxation zone,
with nudging toward the FNL data using the method of
Davies and Turner [55] to reduce the generation of noise at
the boundaries. In addition, the Lambert conformal conic
projection was used.

In this study, the sea surface temperature (SST) is updated
every 6 h. The SST data is provided by the National Oceanic
and Atmospheric Administration Optimum Interpolation
Sea Surface Temperature Analysis, which is on a one-degree
grid. This analysis SSTs data is from in situ and satellite and
SSTs simulated using sea ice cover and has reduced bias
in the SST at higher latitudes. Besides, the deep-layer soil
temperature is updated because it is also necessary for long
simulations [56].

The main physical options used here include the WRF
single-moment six-class (WSM6) microphysical parame-
terization [57], Rapid Radiative Transfer Model longwave
radiation [58], Dudhia shortwave radiation [59], the Yonsei
University planetary boundary layer scheme [60], and the
Noah land-surface model [61]. This study is conducted at a
grid spacing of 6 kmand it is at a convection-permitting scale;
thus, no cumulus parameterization is used. The model was
integrated from 1200UTC on April 15th to 1200 UTC on July
1st, 2011.The initial 15 days are considered as a spin-up period,
and the outputs during this period are excluded from the
analysis, so only the results from 1 May to 30 June are used
in the analysis.

2.2. Experimental Setup. In this study, three sensitivity exper-
iments are conducted to investigate the performances of
nudging in dynamical downscaling. The first one is contin-
uous integrations with no nudging, and the others are con-
tinuous integrations with the two nudging techniques. The
two interior nudging options used here are analysis nudging
and spectral nudging.Thephysical configurations inWRFare

kept the same for all the three sensitivity experiments, except
the nudging technique employed. Analysis nudging is applied
to the horizontal wind components, potential temperature,
and water vapor mixing ratio. And it is only applied above
the PBL. Spectral nudging is applied to the horizontal wind
components, potential temperature, and geopotential height
above the PBL. Here, the geopotential field is nudged, instead
of the water vapormixing ratio, because it can only be applied
to four variables in public releases and currently cannot be
applied to the water vapor mixing ratio, for it does not have
large-scale features as strong as other fields.Thewave number
used in the spectral nudging experiment in the zonal and
meridional directions is set to constant value 3. The nudging
coefficients for all variables for both analyses and spectral
nudging experiments are set at 0.0003 s−1 [29]. The nudging
is applied until the end of the simulation.

3. Evaluation Datasets and Methods

3.1. Evaluation Datasets. The satellite-derived rainfall from
the Monthly Tropical Rainfall Measuring Mission (TRMM)
3B43 dataset, which has a spatial resolution of 0.25∘ in
the latitude band 50∘N–50∘S, is used as a part of this
study for precipitation validation. This dataset provides
important data that can be used to detect rainfall globally
[62], particularly over East Asia [63, 64]. The monthly
TRMM 3B43 precipitation and the monthly precipitation
obtained from the National Meteorological Information
Center (NMIC) of the China Meteorological Administra-
tion (http://data.cma.cn/) agreed well over China. Thus, the
monthly TRMM 3B43 precipitation can be viewed as a
reasonable criterion for verifying downscaled results. When
only considering precipitation in China, all of the simulated
monthly accumulated precipitation data are interpolated into
grids with a spatial resolution of 0.25∘ (obtained from the
NMIC) using bilinear interpolation. Moreover, the precip-
itation from the real time analysis system with 0.25∘ grids
and daily precipitation over China (1st edition) obtained
from the NMIC (http://data.cma.cn/data/detail/dataCode/
SEVP CLI CHN PRE DAY GRID 0.25.html) is also used to
validate the simulated daily accumulated precipitation.

The datasets used for comparisons with other variables,
such as temperature, relative humidity, wind speed, and
pressure near the surface, are obtained from the NMIC,
but variables such as the water vapor mixing ratio and the
geopotential height at different levels were obtained from
the third-generation European Centre for Medium-Range
Weather Forecasts reanalysis product INTERIM (ERA-IN)
data [65]. In this study, we chose the above two datasets
for two reasons. First, the ERA-IN data cannot generate
realistic regional structures at the surface for the regional
topography and land-surface characteristics but is consistent
with the large-scale behavior of themonthly upper air specific
layers dataset for China. The correlation coefficients of the
two datasets, including temperature, relative humidity, wind
speed, and pressure near the surface, and the temperature,
wind speed, and geopotential heights at different levels are
calculated. These calculations show that the correlation coef-
ficients between the variables near the surface are relatively
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low and that the variables in the upper air are higher. Second,
many values are missing from the upper air specific layers
data from the NMIC, especially for dew-point, temperature,
and the variables at 850 hPa and 700 hPa.

To facilitate comparison, all simulated variables, includ-
ing the simulated daily precipitation and the related ERA-IN
variables (given by directly interpolating ERA-IN to the 6-km
WRFgrid), have been bilinearly interpolated into theChinese
observed stations.

3.2. EvaluationMethods. Evaluation of the threeWRF down-
scaling experiments is performed using a simple space distri-
bution of the variables and some statistical verification tech-
niques over China by comparing the simulated results with
the observed data mentioned above. The following statistical
verification techniques are calculated, with M representing
the model simulation values, O representing the observed
values, and N representing the total number of verification
points.

The mean error (ME), which indicates whether the
simulation over- or underestimates the mean magnitude of
the observed values, is defined as follows:

ME = 1𝑁
𝑁∑
𝑖=1

(𝑀𝑖 − 𝑂𝑖) . (1)

The root mean square error (RMSE), which provides
an overview of the accuracy of the simulations and the
observations, is defined as follows:

RMSE = [ 1𝑁
𝑁∑
𝑖=1

(𝑀𝑖 − 𝑂𝑖)2]
1/2

. (2)

The correlation coefficient (cc), which shows the relation-
ship between the simulation and observed values, is defined
as follows:

cc = (1/ (𝑁 − 1)) [∑𝑁𝑖=1 [(𝑀𝑖 −𝑀) (𝑂𝑖 − 𝑂)]]
[(1/ (𝑁 − 1)) [∑𝑁𝑖=1 (𝑀𝑖 −𝑀)2]]1/2 [(1/ (𝑁 − 1)) [∑𝑁𝑖=1 (𝑂𝑖 − 𝑂)2]]1/2

. (3)

Moreover, four other statistical verification techniques are
used to evaluate the accumulated precipitation. First, the bias
score (BS) is used to indicate whether the model over- or
underestimates the fractional areal coverage of precipitation
for a certain threshold, and its optimal value is 1. Second,
the threat score (TS) is used to measure the ability of the
model to predict the area of precipitation for a certain
threshold [15]; that is, the bigger the better. Third, the rate
of missing simulates (PO) is used to indicate the proportion
of nonforecasts of precipitation for a certain threshold based
on the actual occurrence of the event; that is, the smaller the
better. Fourth, NH is used to indicate the proportion of the
forecasts of precipitation for a certain threshold of occurrence
when the actual event does not occur; that is, the smaller the
better.

The BS, TS, PO, and NH are defined as follows:

BS = 𝑀𝑂 ,
TS = 𝐻𝑀 + 𝑂 −𝐻,
PO = 𝑁𝐶𝐻 +𝑁𝐶,
NH = 𝑁𝐵𝐻 +𝑁𝐵,

(4)

where M is the number of points at which the threshold
amount of precipitation is simulated, O is the number of
points that the threshold amount is observed, H is the num-
ber of points that threshold precipitation is both simulated
and observed, NC is the number of points at which the

threshold amount is observed but not simulated, and NB
is the number of points at which threshold precipitation is
simulated but not observed. The threshold amounts used
for monthly accumulated precipitation are 30mm, 50mm,
60mm, 100mm, 150mm, 200mm, 250mm, and 300mm,
and the threshold for daily accumulated precipitation is
10mm.

4. Results

4.1. Precipitation Verification. The reproduction of precipita-
tion is critical for regional climate downscaling applications.
Figure 2 shows the downscaling skill of the three WRF runs
for predictingmonthly accumulated precipitation. According
to themonthly TRMM3B43 observational data, precipitation
mainly occurs in the East Asia summer monsoon region,
and northwestern China is relatively drier. The maximum
precipitation occurs in the southern region inMay and in the
Yangtze River delta region in June.

The three WRF simulations reproduce the precipitation
distribution. However, the precipitation simulated by WRF
with no nudging is too high throughout southern China
and southwestern China in May and is too dry throughout
northern China and northeastern China when compared
with the TRMM. In June, the simulated precipitation is too
high throughout northernChina, southernChina, and south-
western China and is too dry throughout the Yangtze River
delta and in northeastern China. This model overestimates
the maximum precipitation and additionally misplaces the
locations of the maximum precipitation in June, which are
farther south of the Yangtze River delta region.
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Figure 2: Comparison of monthly accumulated precipitation (mm) for (a), (e) TRMM observed precipitation (TRMM), (b), (f) WRF
simulated precipitation with no nudging (NN), (c), (g)WRF simulated precipitation with analysis nudging (AN), and (d), (h)WRF simulated
precipitation with spectral nudging (SN) for May 2011 ((a)–(d)) and June 2011 ((e)–(h)).

The nudging experiments generally underpredict the
magnitude of precipitation throughout China, and the spec-
tral nudging experiment underestimates the precipitation
magnitude in the region north of the Yangtze River. How-
ever, the nudging experiments reproduce the maximum
precipitation locations, and the spectral nudging experiment

reproduces the locations and the maximum precipitation
magnitude.The spectral nudging experiment performs better
than the analysis nudging experiment; the former indicates
a lower bias in the monthly accumulated precipitation sim-
ulation regarding the coverage area and magnitude. The
spectral nudging experiment performs the best and generally
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Figure 3: The BS and TS at different threshold for monthly accumulated precipitation in May and June, 2011.
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Figure 4: Time series plots of related statistical verification techniques for the daily accumulated precipitation in May and June 2011. (a) The
ME between the observations and downscaling results by WRF by NN, AN and SN; (b) the same as (a), but is the RMSE; (c) the same as
(a), but is the cc; (d) BS at the threshold of 10mm (if the BS value is greater than 3, we set it as a missing value because it indicates much
overprediction of precipitation and makes it difficult to understand the plot); (e) TS at the of 10-threshold mm.

improved the model-simulated areal coverage of precipita-
tion.

The related statistical verification parameters against the
TRMM observations are shown in Table 1 and Figures 3
and 4. Overall, the simulations without nudging produce
much more precipitation than the observed (ME = 37.12mm
and ME = 43.25mm in May and June, resp., perfect = 0).

The analysis nudging experiment underestimates the pre-
cipitation (ME = −37.30mm and ME = −62.78mm in May
and June, resp.), and the spectral nudging experiment under-
estimates the precipitation (ME = −10.07mm and ME =−15.35mm in May and June, resp.). Although the correlation
coefficient of the analysis nudging experiment is the lowest,
the RMSE of precipitation decreased by 36.9% inMay and by
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Table 1: Summary of the mean error (ME), the root mean square error (RMSE), the correlation coefficient (cc), PO, and NH at the threshold
of 50mm and 200mm for monthly accumulated precipitation in May and June, 2011.

ME cc RMSE PO NH PO NH
Threshold = 50mm Threshold = 200mm

Accumulated NN 37.12 0.76 122.72 0.22 0.21 0.16 0.71
rain in May AN −37.3 0.39 77.46 0.76 0.16 0.93 0.72
(mean = 63.37mm) SN −10.07 0.66 61.81 0.48 0.26 0.41 0.38
Accumulated NN 43.25 0.49 195.63 0.18 0.18 0.36 0.58
rain in June AN −62.78 0.34 139.99 0.70 0.10 0.87 0.39
(mean = 100.82mm) SN −15.35 0.74 91.39 0.39 0.14 0.30 0.26

27.9% in June. The precipitation bias for the spectral nudging
experiment is generally smaller than that in the two other
runs because the ME is much closer to 0, the correlation
coefficient is relatively higher, and the RMSE is reduced by
49.6% in May and 54.2% in June.

For monthly accumulated precipitation of less than
60mm, the no nudging experiment generally reproduces the
precipitation magnitude and locations in May and June in
terms of a BS closed to 1 (perfect = 1), and a relative high
TS.The spectral nudging experiment performs slightlyworse,
and the analysis nudging experiment performs the worst.
For monthly accumulated precipitation between 60mm and
100mm, the BS of the no nudging experiment is larger
than 1, but its TS is relatively larger, indicating the no
nudging experiment would overestimate the precipitation.
The spectral experiment performs slightly better for BS. For
monthly accumulated precipitation of more than 100mm,
the no nudging experiment obviously overestimates the
precipitation during May and June obviously, with the BS
values being much larger than 1 and a relatively low TS value,
especially for BS in May. The analysis nudging experiment
underestimates the precipitation considerably because the BS
value is smaller than 1, and the TS is rather low, especially
for extreme precipitation in May. The spectral nudging
experiment performs best because theBS value is nearly 1, and
theTS is relatively higher.This result suggests that the spectral
nudging experiment can accurately characterize heavy rain
during the flood season.

To compare the daily variations, the ME, RMSE, cc, and
BS and TS from the model-simulated daily accumulated pre-
cipitation are displayed in Figure 4 (the precipitation from the
real time analysis system of the 0.25∘ grids daily precipitation
dataset over China (1st edition) obtained from the NMIC
was chosen as the observation dataset). Figure 4(a) shows
that the no nudging experiment overestimates precipitation
almost every day, but the analysis nudging experiment under-
estimates precipitation. The spectral nudging experiment
provides better predictions than the no nudging experiment
and the analysis nudging experiment because the ME and BS
are closer to 1, the cc and TS are relatively higher for most
days, and the RMSE of the spectral nudging experiment is
relatively smaller.These results are consistent with the results
shown in Figures 2 and 3 and Table 1. In addition, the phase of
the errors in the no nudging experiment is often not aligned
with the errors in the spectral nudging experiment and always

overestimates precipitation, especially when the BS value is
greater than 3.This result suggests that the individual weather
events in the no nudging experiment may be misrepresented,
which indicates that they may inaccurately characterize pro-
longed periods of heavy rain and contribute tomore flooding.
Similarly, the analysis nudging experiment may inaccurately
characterize dry spells and contribute to more droughts. The
spectral nudging experiment is a good choice for dynamical
downscaling when focusing on precipitation.

4.2. Verification of ConventionalMeteorological Elements Near
the Surface. Themonthly mean conventional meteorological
elements near the surface, including 2m temperature (T2),
surface pressure (Ps), 10m wind speed (wsp10), and 2m
relative humidity (RH2), are computed for each of the
threeWRF simulations and compared with the observations.
Figure 5 shows a comparison of the 2m temperature data for
May 2011 and the 2m relative humidity for June 2011. All of
the three WRF simulations reproduce the 2m temperature
distribution, but the results of the 2m relative humidity are
relative poor.The no nudging experiment shows a warm bias
in northern China, the Yangtze River delta, southern China,
southwestern China, and the Taklimakan desert and a slight
cold bias in the Tibet Plateau. The two nudging experiments
effectively decrease thewarmbias of the 2m temperature.The
no nudging experiment shows a heavy dry bias in northeast
China, northwestern China, and northern China. Both the
nudging experiments decrease the dry bias of the 2m relative
humidity. The analysis nudging experiment performs much
better than the spectral nudging experiment and reproduces
the distribution, although it still has a slight dry bias.

The related statistical verification techniques are shown
in Table 2. The bias of the monthly mean conventional
meteorological elements is more pronounced in the no
nudging experiment, in which the warm and dry bias exceeds
3.2∘C and 15% and the biases of the surface pressure and 10m
wind speed exceed −7.0 hPa and 1.7m/s, respectively. The
evolutions of theME,RMSE, and cc of somemodel-simulated
daily conventional meteorological elements near the surface
are displayed in Figures 6 and 7. This further supports the
results shown in Table 2. Compared with daily variations, the
no nudging experiment overestimates the 2m temperature
and 10m wind speeds and underestimates the surface pres-
sure and 2m relative humidity nearly every day. On special
days, the biases of the 2m temperature, surface pressure, 10m
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Figure 5: Comparison of 2m temperature (∘C) inMay 2011 ((a)–(d)) and 2m relative humidity (%) in June 2011 ((e)–(h)): (a), (e) the observed
value, (b), (f) WRF simulated results with no nudging (NN), (c), (g) WRF simulated results with analysis nudging (AN), and (d), (h) WRF
simulated results with spectral nudging (SN).

wind speed, and 2m relative humidity are greater than 5.5∘C,−9.4 hPa, 2.7m/s, and −24%, respectively. The two nudging
experiments decrease the daily bias. The analysis nudging
experiment and the spectral nudging experiment perform
similarly when simulating the surface pressure. The analysis

nudging experiment performs much better for the 10m
wind speed and especially for the 2m relative humidity. The
analysis nudging experiment is a good choice for dynamical
downscaling when focusing on conventional meteorological
elements near the surface.
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Table 2: Summary of the ME, RMSE, and cc for monthly averaged conventional meteorological elements near the surface, including the 2m
temperature (T2), surface pressure (Ps), 10m wind speed (wsp10), and 2m relative humidity (RH2) in May and June, 2011.

May June
ME RMSE cc ME RMSE cc

T2
NN 3.21 4.33 0.94 3.88 4.76 0.92
AN 0.19 1.69 0.97 0.67 1.76 0.96
SN 0.01 1.74 0.96 0.43 1.81 0.95

Ps
NN −7.06 18.08 0.99 −8.28 19.00 0.99
AN −5.35 17.81 0.99 −5.17 18.26 0.99
SN −5.33 17.82 0.99 −5.06 18.23 0.99

wsp10
NN 1.70 1.91 0.60 2.03 2.25 0.51
AN 0.36 0.84 0.70 0.35 0.87 0.64
SN 0.98 1.30 0.63 0.94 1.29 0.58

RH2
NN −15.42 19.51 0.76 −18.81 21.87 0.80
AN −7.18 10.30 0.90 −8.88 11.64 0.90
SN −15.07 18.35 0.79 −17.19 20.08 0.85

4.3. ConventionalMeteorological Elements for Different Height
Level Verification. The monthly mean conventional mete-
orological elements at the different heights of the three
WRF simulations are also compared against the observational
data. Figures 8(a), 8(b), and 8(c) compare the biases in
the 500 hPa geopotential height and circulation, and Figures
8(d), 8(e), and 8(f) compare the biases in the 700 hPa water
vapor mixing ratio and circulation for June, 2011. The results
from the no nudging experiment show remarkable biases.
Figure 8(a) shows a major high-pressure system located over
northwestern China and northern China, where relatively
irregular and weak anticyclones are located; however, the dif-
ference in circulation is relatively small. Major low-pressure
and cyclonic bias occurs over southwestern China, southern
China, and the East China Seaboard centered on Taiwan.
Moreover, a low-pressure and cyclonic system also occurs in
northeastern China. All of the above results indicate biases
in the large-scale circulation. Figure 8(d) shows a major high
water vapor mixing ratio belt in southwestern China, in the
northern China region, and in northeastern China and a
major low water vapor mixing ratio region in other regions.
Moreover, differences in circulation are also obvious.

The biases in the two nudging experiments are consider-
ably smaller, especially for the analysis nudging experiment.
The analysis nudging experiment shows the smallest bias for
circulations and water vapor mixing ratio at 500 hPa and
700 hPa (Figures 8(b) and 8(e)). The bias of the 500 hPa
geopotential height simulated by the spectral nudging exper-
iment is similar to that in the analysis nudging experiment
(Figures 8(b) and 8(c)), but the bias in the circulation and
700 hPa water vapor mixing ratio is larger (Figures 8(c)
and 8(f)). Figure 8(f) shows low water vapor mixing ratios
throughout China.

The related statistical verification techniques of all
monthly averagedmeteorological elements at different height
levels are calculated, and the bias is more pronounced in
the no nudging experiment (table not shown). For further
analysis, the evolutions of the ME, RMSE, and cc of some

model-simulated daily conventionalmeteorological elements
at different height levels are displayed in Figure 9. Com-
pared with the daily variations, the no nudging experiment
generally overestimates the 500 hPa geopotential height and
temperature, and the 700 hPa water vapor mixing ratio,
the 850 hPa wind speed, and the RMSE are the largest.
The spectral nudging experiment performs similarly to the
analysis nudging experiment in the simulations with 500 hPa
geopotential height and temperature; however, the analysis
nudging experiment still performs slightly better. Regarding
the 700 hPa water vapor mixing ratio and the 850 hPa wind
speed, the analysis nudging experiment performs the best,
especially for a water vapor mixing ratio at 700 hPa, which
the spectral nudging experiment heavily underestimates.

In conclusion, analysis nudging experiment performs
better regarding the performance of conventional meteoro-
logical elements simulations, especially for air humidity and
circulation systems at different height levels. Analysis nudg-
ing is applied to the horizontal wind components, potential
temperature, andwater vapormixing ratio and spectral nudg-
ing is applied to the horizontal wind components, potential
temperature, and geopotential height. The field moisture is
directly adjusted when using analysis nudging in the WRF.
Thus, it is understandable why analysis nudging performs
better for air humidity.

In addition, although analysis nudging and spectral
nudging both directly adjust the wind field and spectral
nudging directly adjusts the height field, for spectral nudging,
the atmospheric state is forced to accept the analyses for
large scales while smaller scales are left to be determined by
the regional model itself [34]; however, analysis nudging is
conducted to force the atmospheric state at both the large
scales and small scales [33]. Thus, the performance of the
analysis nudging experiment is better for simulating circu-
lation systems, such as wind speed, because the circulation
systems are influenced by both large-scale circulation and the
local scale characteristic, such as local mountains and lakes.
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Figure 6: Time series plots of related statistical verification techniques for daily averaged conventional meteorological elements near the
surface for May, 2011.

What is more, the spectral nudging experiment performs
much better for the precipitation than the analysis nudging
experiment that the former indicates a lower bias in the pre-
cipitation simulation regarding area coverage andmagnitude.
The reason is that spectral nudging balances the performance
of the simulation at the large and small scales much better
and performs better for horizontal kinetic energy, which
strongly affects clouds and precipitation [29]. Therefore, for
precipitation, which is a product of various factors, spectral
nudging experiment performs better. Besides, the better
simulation of precipitation achieved by the spectral nudging
experiment suggests that directly nudging moisture may not
be necessary for improving the precipitation simulations,
which is consistent with the results of [29].

5. Conclusions

In this paper, the performances of nudging, including analysis
nudging and spectral nudging on regional climate dynamical
downscaling, are compared. Using theWRFmodel as a RCM,
three continuous sensitivity experiments (with no nudging,
analysis nudging, and spectral nudging) are conducted to
investigate which nudging techniques perform better when
downscaling the NCEP data using the WRF model over
China. Considering the resolution needs and computational
expense, all experiments are conducted between May and
June 2011 at a resolution of 6 km.

The simulation with no nudging overestimates the max-
imum precipitation magnitude and locations and simulates
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Figure 7: The same as Figure 6 but for June, 2011.

the incorrect locations (farther south of the Yangtze River
delta region) of the maximum precipitation in June. The
analysis nudging experiment generally underestimates the
precipitation magnitude throughout China, and the spec-
tral nudging experiment underestimates the precipitation
magnitude in the region north of the Yangtze River. When
comparing the daily variations, the no nudging experiment
overestimates precipitation almost every day, but the analysis
nudging experiment underestimates the precipitation. The
spectral nudging experiment indicates a lower bias in the pre-
cipitation simulation regarding area coverage and magnitude
and performs better than the analysis nudging experiment.

Moreover, the results show that both of the nudging
experiments decrease the bias of conventionalmeteorological
elements near the surface and at different heights during the
regional climate dynamical downscaling process relative to
the experiment with no nudging. In detail, the performances
of the two nudging experiments are similar in the simulation
of 2m temperature, surface pressure, geopotential height,
and temperature at different levels, but the analysis nudging
experiment performs better for the 10m wind speed, 2m
relative humidity, air humidity, and circulation systems at
different heights.

However, our numerical experiments are based on only
one model simulation covering a short period of two months



12 Advances in Meteorology

5

−20

−16

−12

−8

−4

0

4

8

12

20

75
∘E 85

∘E 95
∘E 105

∘E 115
∘E 125

∘E 135
∘E

55
∘N

45
∘N

35
∘N

25
∘N

15
∘N

(a) NN-ERA

2

−20

−16

−12

−8

−4

0

4

8

12

20

75
∘E 85

∘E 95
∘E 105

∘E 115
∘E 125

∘E 135
∘E

55
∘N

45
∘N

35
∘N

25
∘N

15
∘N

(b) AN-ERA

2

−20

−16

−12

−8

−4

0

4

8

12

20

75
∘E 85

∘E 95
∘E 105

∘E 115
∘E 125

∘E 135
∘E

55
∘N

45
∘N

35
∘N

25
∘N

15
∘N

(c) SN-ERA

5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

75
∘E 85

∘E 95
∘E 105

∘E 115
∘E 125

∘E 135
∘E

55
∘N

45
∘N

35
∘N

25
∘N

15
∘N

(d) NN-ERA

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

75
∘E 85

∘E 95
∘E 105

∘E 115
∘E 125

∘E 135
∘E

55
∘N

45
∘N

35
∘N

25
∘N

15
∘N

(e) AN-ERA

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

75
∘E 85

∘E 95
∘E 105

∘E 115
∘E 125

∘E 135
∘E

55
∘N

45
∘N

35
∘N

25
∘N

15
∘N

(f) SN-ERA

Figure 8: The model biases of monthly mean geopotential height (shading in units of meter) and horizontal winds (vector in units of 5m/s
withNN, but 2m/swithANand SN) at 500 hPa ((a)–(c)) andmonthlymeanwater vapormixing ratio (shading in units of q/kg) and horizontal
winds at 700 hPa ((d)–(f)) in June, 2011. Respectively, (a) and (d) are the biases simulated with the no nudging experiment (NN), (b) and (e)
are the biases simulated with the analysis nudging experiment (AN), and (c) and (f) are the biases simulated with the spectral nudging
experiment (SN). All the biases are defined by the departure of WRF simulations from ERA-IN. Gray zones are the missing value masked by
the topography.

at a convection-permitting resolution of May and June, 2011.
Besides, the different nudging coefficients, wave numbers,
durations, and nudging different variables would affect the
performance of nudging. Long-term simulations with mul-
tiple models and more experiments with different setting
options of nudging and coarse resolution are needed to
validate the robustness of the conclusions obtained here.
Nevertheless, the issues addressed here may provide useful
insight for future design of RCMs intercomparison project.
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Figure 9: Time series plots of the ME and RMSE between the observations and downscaling results for 500 hPa geopotential height (a, b)
and temperature (c, d), 700 hPa water vapor mixing ratio (e, f), and 850 hPa wind speed (g, h) for May and June 2011.
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downscaling ability of a one-way nested regional climate model
in regions of complex topography,” Climate Dynamics, vol. 26,
no. 2-3, pp. 305–325, 2006.
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