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Cutaneous melanoma is the most life-threatening form of skin cancer. Although advanced melanoma is often considered as
incurable, if detected and excised early, the prognosis is promising. Today, clinicians use computer vision in an increasing number of
applications to aid early detection of melanoma through dermatological image analysis (dermoscopy images, in particular). Colour
assessment is essential for the clinical diagnosis of skin cancers. Due to this diagnostic importance,many studies have either focused
on or employed colour features as a constituent part of their skin lesion analysis systems. These studies range from using low-level
colour features, such as simple statistical measures of colours occurring in the lesion, to availing themselves of high-level semantic
features such as the presence of blue-white veil, globules, or colour variegation in the lesion. This paper provides a retrospective
survey and critical analysis of contributions in this research direction.

1. Introduction

Image-based computer-aided diagnosis systems have signifi-
cant potential for screening and early detection ofmelanoma.
At present, digital dermoscopic images seem to be the most
promising source for automatic or computer-aided mela-
noma diagnosis [1]. Automatic dermoscopy image analysis is
mainly concernedwith two tasks: (i) identifying dermoscopic
features in each image and (ii) associating those features with
a diagnosis (image classification of skin lesions). Both tasks
are examples of visual recognition that itself is a classical
problem of computer vision. The organization of a computer
vision system is highly application-dependent. For automatic
dermoscopy image analysis, a typical systempipeline involves
preprocessing, lesion segmentation, feature extraction, and
classification. These steps are briefly described next. For a
detailed survey, the interested reader is referred to [2, 3].

(i) Preprocessing used for dermoscopy images is of many
kinds, including but not limited to image enhance-
ment (such as colour correction, shading removal,

and contrast adjustment), colour space transforma-
tion, and removal of artifacts (such as hairs, ruler
markings, air bubbles, black frames, and ink mark-
ings). Among these, previous efforts havemostly been
focused on the development of hair removal algo-
rithms.

(ii) Lesion segmentation involves isolating skin lesions
from normal skin surrounding it. It is important for
two reasons: Firstly, the lesion boundary provides
important information for accurate diagnosis. For
example, border asymmetry or irregularity can signal
malignancy. Secondly, it is a common practice to
perform feature extraction for the lesion area only,
masking the healthy skin surrounding it. Therefore,
representativeness of image features depends on the
accuracy of the segmentation. Lesion segmentation is
one of themost studied topics. It poses a challenge for
several reasons, including low contrast between the
lesion and its background and the presence of arti-
facts.
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(iii) Feature extraction involves detection, description, and
representation of image features. The concept of
image feature is very general but, in the context of
dermoscopy image analysis, it can be defined as com-
puting abstractions of information contained within
the image that is relevant for diagnosis. This abstrac-
tion can be made at different levels (local versus
global, low-level versus high-level) depending on
how subsequent algorithms operate. For example,
primitive or low-level features such as the distribution
of image intensity, texture, or colour may be used for
solving the computational task related to the diag-
nosis of a medical condition. A common trend in
recent years is in developing high-level semantic
(clinically meaningful) visual features that can be
used by both clinicians and computer programs for
computer-assisted diagnosis.

(iv) Classification is usually the final step. The output of
lesion classification depends on the application but it
is often an estimate of the probability of malignancy.
To this aim, a typical approach would be based on the
classical paradigm of supervised machine learning
that requires training images. Classification might be
preceded by feature selection which is the process
of selecting a subset of relevant features for use in
model construction. In many cases, the derivation of
high-level semantic features also requires the use of
classification (or other machine learning techniques).

Colour features are among the most widely used features
in image analysis tasks. Colour has been arguably the most
widely used feature in dermoscopy image analysis as well.
This is not a surprise since colour is an essential part of
most clinical methods for screening of skin lesions. The pre-
sence ofmultiple colours with an irregular distribution highly
suggests malignancy. Among dermoscopic features of mela-
noma, colour has a substantial role too. The presence of
certain shades of blue in a lesion implies the possible diag-
nosis of melanoma more so than a lesion manifesting only
different shades of brown.Thus, the correct clinical diagnosis
of a pigmented skin lesion requires accurate evaluation of
its colouration in terms of its shades and distributions. This
paper is aimed at reviewing the literature on incorporating
colour features for computer-aided diagnosis through der-
moscopy image analysis.

The studies cited in this review were retrieved through
a careful literature search using several databases, namely,
IEEE Xplore (http://ieeexplore.ieee.org/), Springer Link
(http://link.springer.com/), Science Direct (http://www
.sciencedirect.com/), Wiley Online Library (http://online-
library.wiley.com/), Web of Science (http://webofscience
.com/), PubMed (http://www.ncbi.nlm.nih.gov/pubmed),
and Google Scholar (https://scholar.google.com/). One of
the challenges of finding relevant literature, as it is with
cross-disciplinary research, is to survey a wide array of
topic areas from clinical practice to scientific research that
includes specialized journals to multidisciplinary confer-
ences. The initial search strategy included keyword search
in combination with category filtering and retrieved more

than 1500 articles. These articles were archived using Zotero,
a web browser plug-in for gathering and organizing research
resources. Using Zotero, duplicated results were removed.
Moreover, through analysis of articles’ titles and keywords, all
results pertaining to the following categories were manually
removed:

(i) Studies that used imaging modalities other than der-
moscopy or clinical photography, including confocal
microscopy, histopathology, laserDoppler,MRI,mul-
tiphoton laser tomography, ultrasound, near infrared,
(any type of) spectroscopy, fluorescence imaging,
stereo imaging, and multi- or hyperspectral imaging.

(ii) Studies that did not focus on computer-aided diag-
nosis through image analysis. For example, clinical
trials, case studies, or studies on genome, biomarkers,
bioprofile, and proteins were all removed.

(iii) Studies which were not aimed at diagnosis of skin
cancer. For example, topics of “wound healing eval-
uation,” “assessment of burn scars,” “erythema mea-
surement,” and “detection of psoriasis”were removed.

The initial retrieval set was reduced to about 600 articles
at this stage. This reduced set was carefully reviewed to fur-
ther identify those studies using colour features for computer-
aided diagnosis through dermoscopy image analysis. At the
end, more than 100 articles (published from 1989 to 2015 in
more than 20 different publications) were selected. This final
set is critically reviewed in the following sections.

2. Clinical Background

Dermoscopy (a.k.a. epiluminescence microscopy, dermato-
scopy, or amplified surface microscopy) uses a handheld
microscope called a dermatoscope (or dermoscope) for in
vivo examination of skin lesions. It can be used to differentiate
most lesions of the skin from melanoma [4]. In the hands of
experienced users, dermoscopy can improve the clinicians’
diagnostic accuracy by 10% to 30% (depending on the type
of skin lesion) [5, 6] and increases the physicians’ confidence
in their clinical diagnoses [7, 8], thus significantly reducing
unneeded biopsies [9].

The dermoscopic diagnosis of pigmented skin lesions
is based on various analytic approaches or algorithms that
have been set forth in the last few decades. The common
denominators of all these diagnostic methods are particular
dermoscopic features (such as colours and patterns) that
represent the backbone for the morphologic analysis of
pigmented skin lesions.

2.1. Dermoscopic Colours. Skin colour is the result of the
interaction of light with skin pigments (melanin, hemo-
globin, and keratin) and other materials (collagen, serum in
crusts, etc.). Dermatoscope reveals a wider range of colours
than those that can be seen with the naked eye. Com-
mon colours under dermatoscope include various shades of
brown, blue, black, white, and red. There is more of these
colours than those that meet the eye; colours can convey
criticalmorphologic information. For instance, shades of blue
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might be caused by the presence of melanin pigment in the
deeper layers of skin (deeper than expected) which itself can
be a clue to invasive melanoma. Among other colours, shades
of red can be associated with increased vascularization,
dilatation of blood vessels, and bleeding within the lesion.

Melanin is the main chromophore in pigmented skin
lesions. Melanin is black but, depending on how deeply
and densely in the skin it is located, it might be perceived
differently. If melanin is situated in the stratum corneum or
immediately beneath it, the lesion would appear black on
dermoscopy.Melanin at the dermoepidermal junction would
be perceived as light brown to dark brown, depending on its
density.Melanin in the dermis results in shades of grey to blue
(when located in the deeper dermis).

The other important determinant of lesion colouration is
hemoglobin in red blood cells which results in shades of pink
and red (depending on the vascular volume). Poorly oxy-
genated blood might be perceived as purple, and congealed
blood (thrombus) often appears as jet black. The stratum
corneum, devoid of blood and melanin, appears yellow.
Orange hues are due to serum present in erosions or superfi-
cial ulcerations.White colour is due to depigmentation, fibro-
sis, alterations in the collagen matrix, or keratin within cysts.

Benign lesions (usually) reveal only one or two colours
whereas melanomas (frequently) reveal three or more
colours. Thus, the number of colours present in a lesion can
also help differentiate many benign nevi from melanomas. It
is important, however, to appreciate that not all colours have
the same impact on the diagnosis of melanoma.The presence
of red, white, and/or blue-grey colours in a lesion implies the
possible diagnosis of melanoma more so than a lesion mani-
festing only different shades of brown.Moreover, distribution
of colours in melanoma are often focal, asymmetrical, and
irregular. Thus, the correct clinical diagnosis of a pigmented
skin lesion requires an accurate evaluation of its colouration
(concerning the shades and the distribution of colours).

In addition to common colour names, dermatologists
often use other descriptive terms to describe skin colouration.
These include

(i) hyperpigmentation: skin colour that is darker than
normal. This is usually associated with increased
melanin (melanosis)

(ii) hypopigmentation: skin colour that is paler than
normal but not completely white (often associated
with loss of melanin).

(iii) erythema: skin redness due to increased blood supply.
It might occur with any skin injury, infection, or
inflammation.

For a detailed survey, the interested reader is referred to
[10].

3. Colour Moments

Colour moments characterize colour distribution in an
image. To this aim, first and second moments (mean and
variance) are the most commonly used features, although
third and fourth moments (skewness and kurtosis) are some-
times employed as well. Higher-order moments are usually

not part of the colourmoment feature set, because, to obtain a
good estimate of their value, more data is required (also, they
are more sensitive to noise). Instead, some authors include
other statistical measures such as maximum, minimum,
range, and entropy alongside colour moments. These simple
statistical parameters are easy to compute and have been used
extensively in dermoscopy image analysis literature [11–35].

Colour moments are usually calculated for each colour
channel separately over a region or the entire image.They can
be computed for any colour model. Some authors combined
different colour spaces to enrich the colour moment feature
set. Ganster et al. [30], for instance, employed the minimum,
maximum, average, and the variance of the RGB and HSI
colour channels as colour features.

Colour moments have been extensively used for image
retrieval [36–39]. The main advantage of using colour
moments is that there is no need to store the complete colour
distribution [40]. This speeds up image retrieval since there
are fewer features to compare. Also, colour moments are
scaling and rotation invariant. On the downside, these fea-
tures are most useful when they are calculated to represent a
homogeneous region.They are not often enough to represent
all the colour information of an image.

4. Colour Histogram

A colour histogram represents the distribution of the compo-
sition of colours in an image. It quantizes a colour space into
different “bins” and counts the frequency of pixels belonging
to each colour bin. In general, a histogram is a representation
of the distribution of “continuous numerical data,” like image
intensities, where data is grouped into ranges (i.e., bins).
When used as an image feature, a histogram is a vector with
as many elements as the number of bins, and each element is
the count of pixels that “fall” into the corresponding bin.

Colour histograms have been widely employed in der-
moscopy image analysis literature. For instance, Xie et al.
[26] used a multivariate histogram to capture the colour
variegation of lesions. In their method, the RGB colour space
was quantized into 16 × 16 × 16 bins and the joint distribution
of RGB data was represented via a 3D histogram. In addition,
Xie et al. captured the colour differences between lesion and
healthy skin surrounding it and used that as an image feature.
To this aim, they computed the Euclidean distance between
the histogram of lesion and the histogram of peripheral
area around the lesion. The latter was carried out using 3D
histograms with 4 × 8 × 8 bins in CIE Luv colour space. Other
notable studies include the works of Stanley et al. [41], Celebi
et al. [11], Rahman and Bhattacharya [33], Situ et al. [42],
Ruela et al. [12, 43], and Barata et al. [22, 24, 44].

The formation of a histogram involves various principles.
For instance, one can choose to have fixed or variable bin
width. One can use “hard assignment” where intensity values
are assigned to the closest bin or “soft assignment” instead,
where each pixel contributes to all bins based on the distance
to all bin centers. For a colour histogram, there are other con-
siderations. For example, one can choose to create a his-
togram for each colour channel and then concatenate
these into one feature vector. This format is often called
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unidimensional or univariate histogram. Alternatively, one
can choose to model the joint distribution of colour channels
and create a large histogram that accounts for every com-
bination of triple colour values. The latter is called a multi-
dimensional or multivariate histogram. A colour histogram
does not contain pixels’ spatial information.The advantage is
that since a histogram does not provide spatial information,
it is rotation and translation invariant. The disadvantage is
that two images with the same colour content but different
spatial distribution of these colours are indistinguishable
based solely on colour histogram comparisons.

5. Colour Asymmetry

Asymmetry is a feature inspired by the clinical diagnosis
guidelines. In theABCD rule of dermoscopy [45], asymmetry
is given the highest weight among the four features. In the
Menzies method [46], symmetry is one of the two features
that rules out malignancy. In the Chaos and Clues algorithm
[47], “chaos” is defined as “asymmetry of structure or colour.”
Asymmetry is also considered in the CASH algorithm [48]
and the three-point checklist [49] guideline. During the
Consensus Net Meeting on Dermoscopy [50], asymmetry
was identified as one of the three criteria (the other two were
atypical pigment network and blue-white structures) that
are especially important in distinguishing malignant from
benign pigmented skin lesions, with a good interobserver
agreement between experts.

In the ABCD rule of dermoscopy, the lesion is bilaterally
segmented by two orthogonal axes that are positioned to
produce the lowest possible asymmetry score. If both axes
show asymmetric contours, internal colours, and dermo-
scopic structures, the asymmetry score is two. If there is
asymmetry on one axis only, the score is one. If asymmetry
is absent with regard to both axes, the score is zero. Stolz et al.
[45] highlighted that 96% of melanoma cases in their study
had an asymmetry score of 2 whereas only 24% of benign
lesions showed two-axis asymmetry.

Most authors focused on lesion shape (contour) to detect,
measure, and quantify asymmetry. Others tried to include
colour and texture in this process as well. Incorporating
colour and structures are very crucial to the evaluation of
lesion asymmetry since some early melanomas have sym-
metrical shapes [51]. In the following, we will first, briefly,
review themethods that attempted to evaluate the asymmetry
of shape. It will be followedby amore detailed reviewofmeth-
ods concerned with asymmetry of colour in dermoscopy
images.

5.1. Asymmetry of Shape. There have been many approaches
proposed to quantify the asymmetry of lesions through
analysis of lesion contour. Most of these methods try to
imitate the ABCD rule of dermoscopy where asymmetry is
quantified with respect to a symmetry axis that bisects the
lesion. In automatic image analysis approaches, the symmetry
axis is determined in a variety of ways, such as principal axes
(moment) of inertia of the lesion shape [52]. The asymmetry
is then quantified by overlapping the two halves of the lesion
along the symmetry axes and dividing the nonoverlapping

area differences of the two halves by the total area of the lesion
[52–56].

5.2. ABCD Mimickers. Pellacani et al. [57] tried to repro-
duce the asymmetry evaluation approach of ABCD rule
of dermoscopy [45] with focus on asymmetry of pigment
distribution. They used principal inertia axes of lesion shape
as the symmetry axes and quantified pigment distribution
asymmetry based on the comparison of the difference in
lightness (average grey-level values) between the two halves
of the lesion along the two axes. A score of one was attributed
to each axis if the grey-level differences were greater than
a (empirically defined) threshold. Pellacani et al. evaluated
the performance of their proposed approach by comparing
it to the performance of two experienced clinicians (inter-
observer agreement between experts, as well as how their
evaluation was combined for comparison to computer, is not
described in the paper) over a set of 331 dermoscopic images
(113 melanomas and 218 melanocytic nevi). They concluded
“human and computer concordance was good for shape
asymmetry.”The human/computer concordance for pigment
distribution asymmetry was lower than that observed for
shape symmetry. Also, pigment distribution asymmetry was
found as “the most striking parameter for diagnosis of
melanoma (for both clinician and the computer).”

Seidenari et al. [58, 59] modified the method by Pellacani
et al. In their work, a grid is laid on the image plane and
aligned with the principal inertia axis. Next, colour distance
between each block and its corresponding one with respect
to each symmetry axis was computed. Each image block was
represented by mean and standard deviation of the distribu-
tion of CIE LAB colours within the block, and the colour dif-
ference was computed using the Bhattacharyya distance [60].
To calculate a measure of symmetry, the colour differences
between corresponding blocks were averaged for each axis. A
score was automatically attributed to each axis: 0 if average
colour distance was equal to or greater than a (empirically
defined) threshold and 1 if lower. Comparison with human
performance was carried out (similar to that reported in
Pellacani et al.) over a set of 459 dermoscopic images. Authors
reported that “81% of symmetric/asymmetric evaluations
were concordant between clinician and computer.”

Ruela et al. [12] extended the approach of Seidenari et
al. and studied the role of colour symmetry in automatic
detection of melanoma. In addition to using the mean colour
to represent each block (as originally conducted by Seidenari
et al.), they used two additional descriptors: (i) unidimen-
sional colour histograms and (ii) generalized colourmoments
[61]. Ruela et al. also experimented with multiple colour
spaces. Moreover, instead of averaging colour difference (as
in Seidenari et al.), the colour symmetry of the whole lesion is
characterized by statistical properties of the colour distances
(maximum, minimum, mean, and variance) which represent
the distances between all symmetrical blocks.

Ruela et al. employed these features for classification of
melanoma versus benign lesions on a set of 177 dermoscopy
images. They experimented with a combination of different
classifiers and features. The best results were achieved with
the HSV colour space and the kNN classifier. Interestingly,
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the best colour descriptor was the mean colour vector (the
original approach of Seidenari et al.) although the unidi-
mensional colour histogram (computed by concatenating
histograms of all colour channels) also achieved good results.
This study is particularly insightful concerning theirmethod-
ology and evaluation efforts. It is, however, open to criticism
on three grounds: (i) lack of comparison to prior work, (ii)
using a small data set, and (iii) negligence in experimenting
with proposed features for discriminating between symmet-
ric versus asymmetric lesions.

Celebi et al. [11]’s paper is yet another study that imitates
the ABCD rule of dermoscopy, although they devised a new
measure to quantify shape and colour asymmetry. In their
approach, the image is rotated (clockwise) to align its coor-
dinate (𝑥 and 𝑦) axes with principal inertia axis of the lesion.
The lesion is then hypothetically folded around the𝑥-axis and
the area difference (𝐴𝑥) between the overlapping folds was
taken as the amount of asymmetry on the 𝑥-axis. The same
procedure was performed for the 𝑦-axis. Two asymmetry
measures were calculated from 𝐴𝑥 and 𝐴𝑦 as follows:

𝐴1 =
min (𝐴𝑥, 𝐴𝑦)

𝐴 × 100%

𝐴2 =
(𝐴𝑥 + 𝐴𝑦)

𝐴 × 100%.
(1)

For colour asymmetry, the same procedure is carried out
except that, instead of area, pixel values were incorporated
in the calculations: the sum of the absolute grey-level differ-
ence between the corresponding pixels in the two folds.
The two asymmetry measures noted above (𝐴1 and 𝐴2)
are computed for each image channel, in the RGB colour
space, resulting in the total of six-coefficient (6D) colour
asymmetry feature. Celebi et al. used shape and colour asym-
metry features (along with other features) for classification
of dermoscopy images. Experiments using support vector
machine (SVM) classification, on a set of 564 images, yielded
specificity and sensitivity of about 93%. The paper neither
evaluates the proposed asymmetry measure for detection
and quantification of lesion shape/colour asymmetry nor
reports the efficacy of using this feature (alone) for the main
task of lesion classification (diagnosis).

Zortea et al. [62] developed an image analysis system for
detection of malignant melanoma from dermoscopy images.
The focus of their work was on engineering novel features,
including features to quantify asymmetry of lesion shape and
colouration. To that aim, they created three features that are
described as follows:

(i) Asymmetry of Shape.Acoordinate system is placed on
lesion’s center of gravity. For each axis, the difference
of lesion area bisected by the axes (i.e., Δ𝑆𝑖 and Δ𝑆𝑗) is
computed (e.g.,Δ𝑆𝑖 = ‖area(𝐴1∪𝐴2)−area(𝐴3∪𝐴4)‖)
and normalized by dividing by the total lesion area.
The coordinate system is then rotated in steps of 10∘.
The axis with the lowest average Δ𝑆 is kept as the axis
of symmetry and associated 𝑓1 = Δ𝑆𝑖 and 𝑓2 = Δ𝑆𝑗 as
asymmetry of shape features.

(ii) Asymmetry of Colour Intensity. The computation of
this feature is similar to the calculation of shape asym-
metry except that intensity values are used, instead
of area, to compute 𝑓3 = Δ𝐶𝑖 and 𝑓4 = Δ𝐶𝑗. For
example, Δ𝐶𝑖 = Σ255𝑥=0‖𝐹𝐴1∪𝐴2(𝑥) − 𝐹𝐴3∪𝐴4(𝑥)‖, where𝐹(𝑥) is the estimated distribution of the 256 grey-level
(𝑥) values from the pixels belonging to either side
of an axis, and it is computed using Gaussian kernel
density estimate.

(iii) Asymmetry of Colour Shape. Zortea et al. used grey-
level thresholding to segment the lesion.The center of
the lesion is defined by computing the center of mass
of the binary mask of the lesion. By applying different
thresholds to the grey-scale values inside the lesion at
percentiles 𝑡 = [0.10, 0.20, . . . , 0.90], different binary
masks can be generated. Each would result in a differ-
ent center of mass. Zortea et al. created a vector k
whose elementswere the Euclidean distances between
the detected lesion centers for different threshold
values. These distances were normalized by dividing
by a lesion-dependent constant defined as the radius
of a circle of the equivalent area as the original binary
mask. Finally, average and standard deviation of k
were used as features (i.e., 𝑓5 = 𝜇(V) and 𝑓6 = 𝜎(V)).

5.3. Classification instead of Feature Engineering. Vasconcelos
et al. [63] trained different classifiers (Bayes, SVM, kNN,
boosting, and Random Tree) to discriminate between sym-
metric and asymmetric lesions on two sets of 382 dermoscopy
images (227 symmetric and 155 asymmetric) and 80 images
(17 symmetric and 63 asymmetric) captured using a handheld
mobile smartphone. To that aim, a total of 310 low-level
features (including shape, colour, and texture) were extracted
from each image. Some of these features were extracted from
the entire lesion while other features were extracted from
the intensity differences around the axis of inertia (like the
method of Celebi et al. [11]). For example, mean and standard
deviation of intensity differences were computed for each axis
and each channel of RGB, HSV, and CIE LAB colour spaces,
as part of colour features.

The study by Vasconcelos et al. is interesting since, unlike
others who focused on feature engineering, it has mainly
used low-level features and focused on classification for sym-
metric/asymmetric discrimination. Vasconcelos et al. also
applied different feature selection techniques. The best clas-
sifier for the dermoscopic image set was the Random Forest
classifier, which achieved 83% sensitivity and 89% specificity
using as few as eight features. The paper, however, did not
indicate which features; a reader is particularly left with the
questionwhether the features extracted from the entire lesion
or those extracted from the intensity differences around the
axis of inertia were useful.These are only a few ofmany issues
of which this study suffers. Among the other issues, the most
serious is perhaps lack of comparison to prior art.

5.4. Asymmetry as Noise. Schmid-Saugeon et al. [53, 64]
proposed ameasure to quantify symmetry based on themean
squared error (MSE) between the original image and the
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reflected image for any potential axis of symmetry. These
authors argued that any object could be decomposed to sym-
metric and asymmetric components. Considering the asym-
metric component as symmetry noise, asymmetry can
be measured using peak noise-to-signal ratio (PSNR =
10 log10(max2𝐼/MSE), where max𝐼 is the maximum possible
pixel value of image 𝐼, e.g., max𝐼 = 255 for an image repre-
sented by 8 bits per pixel). A symmetry measure can be
defined [64] as

𝜓 (𝜑, 𝑟, 𝐼) = 1 − ( 1
1 + PSNR

) , (2)

where angle 𝜑 and offset 𝑟 are parameters of any line (poten-
tial symmetry axis) in polar coordinates with respect to the
center of lesion. The symmetry measure 𝜓 is equal to 1 only
if symmetry is perfect and decreases to zero for increasing
asymmetry. A lesion’s axis of symmetry is any line (𝜑𝑙, 𝑟𝑙)
that produces 𝜓(𝜑𝑙, 𝑟𝑙, 𝐼) = 1. The asymmetry score of the
lesion is the one that maximizes the symmetry measure (i.e.,
𝜓 = max𝜑,𝑟𝜓(𝜑, 𝑟, 𝐼)) or in other words minimizes the mean
squared error. The score and optimal parameters can be
found through optimization, or by grid searching the para-
meter space at predefined intervals. The latter approach is
practiced by the authors and visualized in what they called
“the lesion symmetry map.”

The MSE is computed only for pixels within the lesion.
Each pixel is represented using a feature vector consisting
of 𝑢 and V (of CIE Luv colour space) components. Schmid-
Saugeon et al. also used Gabor texture features. Schmid-
Saugeon et al. did not conduct an objective experiment to
evaluate the effectiveness of proposed feature to quantify
asymmetry. However, the proposed asymmetry score was
used as a feature to classify melanoma versus benign lesions,
on a set of 100 dermoscopy images with results showing 78%
sensitivity and 90% specificity. These results were achieved
using a linear classifier trained in a 6D feature space con-
sisting of asymmetry score using texture, colour, and shape
(for shape asymmetry, instead of intensity values, MSE of the
area was computed) (for each of these, asymmetry score cor-
responding to two axes was computed to mimic ABCD rule).
Interestingly, texture asymmetry is reported to be the most
discriminant feature although the combination of colour-
shape-texture produced the best results (the paper did not
indicate the discriminative power of colour (asymmetry) fea-
ture).

5.5. Normalized Colour Distance. Clawson et al. [65] pro-
posed a method to quantify colour asymmetry and also to
visualize (display) it graphically. Their proposed algorithm
is based on analysis of pigment distribution along radial
paths from the lesion centroid to sample boundary points.
For each radial path, the average greyscale value 𝐴V𝑖 is
computed (where 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁 indexes sample points on lesion
boundary). A measure is defined as Normalized Colour Dis-
tance (the naming convention is rather inappropriate since
the measure does not represent the difference or distance
between two colours, in ametric of interest, as it is commonly
defined in colour science) NDC𝑖 = 𝐴V𝑖/𝐴𝐿 × 100, where 𝐴𝐿
is themean𝐴V𝑖 for thewhole lesion (i.e.,𝐴𝐿 = ∑𝐴V𝑖/𝑁).The

NCDvalues were used to generate a new contour, the shape of
which is indicative of pigment distribution within the lesion.
For a homogeneous lesion with perfect colour symmetry,
𝐴𝐿 = 𝐴V𝑖; ∀𝑖; thus NCD𝑖 = 100; ∀𝑖, and new contour
will be a circle. Hyperpigmented areas (dark pigmentation
relative to lesion average colour) will result in larger (NCD𝑖 >100) values, and hypopigmented areas will result in smaller
(NCD𝑖 < 100) values.

Clawson et al. derived a number of features from their
proposed NCD measure and resultant symmetry contour
representation. For example, since a perfectly colour symmet-
ric lesion has a circular contour, the circularity index of the
contour might be used to quantify the degree of asymmetry.
The scatter plot of NCD values can also be studied for
asymmetry analysis since NCD values for a perfect colour
symmetric lesion would lie on a line. Deviation from the
symmetry line can be used to quantify colour asymmetry.

Clawson et al. [65]’s study is one of the very few studies
that has reviewed the literature; although it did not objectively
compare their proposed method to the state-of-the-art one,
it has cited other studies pertaining to the subject. This
study is also the first to engineer a novel feature and to
objectively evaluate it for detection of colour asymmetry.
However, the method is tested on a set of 30 dermoscopy
images with as few as eight positive samples. Therefore, we
must be conservative when evaluating the effectiveness of the
proposed feature. Also, interestingly, among all the proposed
features, the decision tree (with the C5 algorithm) picked
only one feature, named LTA/LTW in the paper, as the only
significant parameter to differentiate between symmetrical
and asymmetrical lesions (i.e., classification can be done by
thresholding over this feature alone). The LTA/LTW feature
is defined using the curve (scatter plot) of NCD values. It
is computed by dividing the largest trough (the lowest point
the curve sinks to) to the total area under the curve. It
represents, in a way, the intensity and area of hypopigmented
areas within the lesion. Hypopigmented areas represent
melanoma-specific features such as regression.Therefore, one
can question whether it is the colour asymmetry or presence
of this feature that is being captured by the proposedmethod.

5.6. Reflectional Asymmetry in Histograms. Liu et al. [66, 67]
proposed a method to quantify the shape and pigmentation
asymmetry of skin lesions. The proposed method comprises
many components, and a full review would be overlong. The
description of the method’s integral component, Reflectional
Asymmetry inHistograms, follows.The centroid of the lesion
is detected by averaging its spatial information. The lesion
area is equally divided into 360 segments around the polar
coordinate of its center. Each segment is represented by the
area of that segment relative to the total area of the lesion.
The relative area values (from 360 segments) can be plotted
(e.g., from 0 ⋅ ⋅ ⋅ 2𝜋) to generate a 1D histogram (where each
bin value corresponds to one segment value). Assuming
one segment as the bilateral symmetry axis each time, the
histogram is populated such that the selected segment is
always at the center (in bin #180). The asymmetry of a
lesion can then be quantified by minimizing the sum of
the Euclidean distances between corresponding bins from
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the left and the right halves of the histograms. In order to
measure pigmentation (colour) asymmetry, instead of the
relative area, one can choose, for example, (relative) average
intensity values from any of 𝑅, 𝐺, or 𝐵 image channels.
Instead of these image channels, Liu et al. decided to use
melanin index (MI) and erythema index (EI) to “enhance
the characterization of pigmentation distributions.” The MI
and EI are approximated from 𝑅 and𝐺 channels according to
Takiwaki et al. [68]. Moreover, instead of intensity values, Liu
et al. employed a metric called global point signature (GPS)
that represents “a point as a vector of scaled eigenfunctions
of the Laplace-Beltrami operator computed on the object’s
surface [69].” Liu et al. computed theGPS representation over
their proposed Lesion Pigmentation Elevation Models. The
elevation models were created by mapping MI and EI values
as the height information (on the 𝑧-axis) on the image plane.
Liu et al. claimed, although not conclusive from the paper,
that GPS representation “simultaneously integrates the shape
and pigmentation information.” The performance of the
proposed asymmetry analysis was tested on 351 dermoscopy
images (88 melanomas and 263 benign) for classification of
melanoma versus benign lesions.The efficacy of the proposed
method for discriminating between symmetric and asym-
metric lesions remains to be tested. Interestingly, according
to the authors’ experiments and despite their laudable effort,
the use of GPS representation, as well as employing MI and
EI images, only offered a marginal improvement.

5.7. Summary and Discussion. Colour asymmetry is one of
the most studied topics, compared to other colour features.
Although many different techniques are proposed, most of
the approaches are mimickers of the clinical ABCD rule of
dermoscopy. The most successful method is probably the
method of Zortea et al. [62]. Among the other techniques,
the most notable are the methods of Schmid-Saugeon et al.
[53, 64] and Clawson et al. [65] for their novelty. A list of the
papers reviewed in this section is given in Table 1.

6. Colour Variegation

In the jargon of dermatology, variegated colouring is the term
often used to describe a lesion with multiple colours. Benign
lesions tend to have few colours, whereas melanomas often
have many.The importance of this observation is reflected by
the fact that most diagnosis guidelines [45–48] consider this
feature as a sign of malignancy. In contrast, the presence of
only a single colour is often enough to exclude the diagnosis
of melanoma [46, 47]. Note that the dermatoscope reveals a
wider range of colours than those that can be seen with the
naked eye.

In clinical practice, the most common way to quantify
colour variegation is to count the presence of certain colours
in the lesion. In the ABCD rule of dermoscopy [45], for
instance, the following six colours are considered important:
light brown, dark brown, black, red, white, and blue-grey.
Each of these colours in a lesion is assigned one point. The
CASH algorithm [48] and Menzies’s method [86] follow the
same scoring principles (in the Menzies method, the colour
“white” is not scored while blue and grey are considered

Table 1: Methods for capturing colour asymmetry.

Authors Year Method
Schmid-Saugeon et al. [64] 2000 Asymmetry as noise
Schmid-Saugeon et al. [53] 2003 Asymmetry as noise
Pellacani et al. [57] 2006 ABCD mimickers
Seidenari et al. [58] 2006 ABCD mimickers
Seidenari et al. [59] 2006 ABCD mimickers
Celebi et al. [11] 2007 ABCD mimickers
Clawson et al. [65] 2007 Normalized colour distance
Liu et al. [66] 2011 Reflectional asymmetry
Liu et al. [67] 2012 Reflectional asymmetry
Ruela et al. [12] 2013 ABCD mimickers
Vasconcelos et al. [63] 2014 Classification
Zortea et al. [62] 2014 ABCD mimickers

two colours (instead of a blue-grey colour)). Due to this
diagnostic importance, the analysis of lesion colouration has
been undertaken in several studies. One of the simplest
approaches is to derive basic descriptive statistics from the
distribution of colour primaries inside the lesion. Seidenari
et al. [70, 71] divided each image into nonoverlapping blocks
where each block was represented by the average colour of
its contained pixels. This was followed by computing colour
difference between blocks using the Euclidean distance in
the RGB colour space (each colour block is compared with
every other block in the image and not only to its corre-
sponding one about the axis of symmetry). Mean, variance,
and maximum colour differences were used as measures of
colour distribution capturing colour variegation within the
lesion. The intuitive idea behind Seidenari et al.’s findings is
that a significant difference between RGB values means that
the lesion’s structure (colours/patterns) is nonhomogeneous.
However, there are two drawbacks with this method. First, it
is sensitive to the choice of block size. Second, larger colour
differences do not necessarily mean more colour variegation.
Seidenari et al. performed discriminant analysis over a set
of 229 lesions and concluded that their proposed numerical
parameters to capture colour variegation (i.e.,mean, variance,
and maximum colour block distances) are “reasonably”
discriminative (higher in melanoma compared to nevi).

Abbas et al. [54] used the 𝑘-means clustering [87, 88]
algorithm to quantize the dominant colours within a lesion.
The corresponding percentage of occurrence of each colour
cluster is used as features to capture colour variegation (Abbas
et al. [54] are not very clear on how the feature in discussion
was formed or on how it was used). A major issue with
clustering is how to decide the number of clusters. Abbas et
al. chose 𝑘 = 6 to imitate the ABCD rule [45].This means the
algorithm considers every lesion to bemade up of six colours,
even a lesion that is homogeneous with uniform colouration.

Andreassi et al. [89] described an image processing and
pattern analysis software (http://www.ddax3.com/eng/index
.html) which extracts “colour islands” (colour clusters within
the lesion) among other image features. The details of this
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Table 2: Methods for capturing colour variegation.

Authors Year Colour clustering Colour distribution
Seidenari et al.
[70] 2005 ✓ ✓
Seidenari et al.
[71] 2006 ✓ ✓
Celebi et al. [11] 2007 ✓
Abbas et al. [54] 2013 ✓

process were not disclosed (perhaps due to patent protec-
tion). Siedenari et al. [90] noted that “colour islands [89]
inside the lesion were described by polar moments of inertia
(on the 𝑥 and the 𝑦 axes) of different order.” From colour
islands, several features were extracted [89] to represent
the colour distribution of a lesion. Among these were, for
example, the percentage of the island area (with respect to the
lesion area) and distance from the center of the colour island
to the center of the lesion. These features were studied with
different agenda as these authors continued to investigate
various skin diseases [55, 56, 91–104].

Celebi et al. [11] devised the feature “centroidal distances”:
the distance between the geometric centroid of a lesion and
the brightness centroid. The former was computed from the
binary lesion mask whereas the latter, the center of gravity of
pixels in the lesion, was computed for each colour channel of
the RGB space (and for five other colour spaces). To achieve
invariance to scaling, the distance values were divided by
the lesion diameter. The centroidal distance (for each colour
channel) will be small if the lesion colouration is homoge-
neous because the brightness centroid will be close to the
geometric centroid. Note that a symmetric lesion comprised
of many concentric colour zones would (potentially) have the
centroidal distance of zero just as a symmetric lesion made of
a single shade.

6.1. Summary and Discussion. Themethods described in this
section can be seen as different instances of two broader
approaches. Either “colour clustering” is used or “colour
distribution” inside the lesion is considered to capture colour
variegation (Table 2). Among these, only Umbaugh et al.
specifically conducted experiments about identification of
colour variegation. Other authors focused on discriminat-
ing melanoma versus benign lesions. Among those, only
Seidenari et al. examined the discriminant power of their
proposed feature for differentiating between melanomas and
benign lesions (common and atypical nevi).

Colour variegation, although easy to define, can be diffi-
cult to identify and subjective to quantify since human cap-
ability to distinguish colours is varied and limited. Ideally,
image analysis algorithms would identify this effect andmea-
sure it objectively and quantitatively to support clinical diag-
nosis. A major limitation of current state-of-the-art methods
(Table 2) remains in that they are blind to “what” colours
the lesion is comprised of. To address this defect, some
researchers focused on colour classification.The next section
is devoted to those methods.

7. Colour Classification

The objective of colour classification is to assign labels (such
as colour names) to each region (or pixel) of the image using
the colour information contained in that region. There are
two class of approaches to achieve any classification task:
generative models versus discriminative models. Generally
speaking, a generative algorithm models data directly from
the training samples and performs classification based on
which class is most likely to generate the sample according
to the model. A discriminative algorithm, on the other hand,
models the differences between classes, for example, by find-
ing decision boundaries, and simply categorizes a given sam-
ple according to those boundaries (this is an overly simpli-
fied description; for a more rigorous definition, refer to
[105, 106]).

7.1. Discriminative Models. One of the easiest methods for
colour classification is to define the boundaries of each colour
class in a specific colour space. Sboner et al. [13, 14, 73] clas-
sified colours within lesions to four categories of dark brown,
light brown, reddish, and whitish veil, in HSV colour space,
based on this simple principle. For example, a pixel with Hue
∈ [13, 157] and Saturation ∈ [120, 255] and Value ∈ [0, 137]
was classified as dark brown. The boundary values were
defined empirically. The success of this method is subject to
the separability of colour classes in a given colour space.

Silva et al. [77] performed separability analysis of colour
classes on dermoscopy images.They analysed the distribution
of six different colour classes (white, black, red, blue-grey,
dark, and light brown) in RGB space, using a set of 30 images,
and concluded “a suitable classifierwould potentially produce
good results, with the exception of classes black and blue-
grey that cannot be properly distinguished.” Their findings,
however, are limited by the fact that their training sample was
confined to one annotated image (Silva et al. also considered
using six annotated images for training although reportedly
“this increased the dispersion of colour classes in the RGB
space”).

Seidenari et al. [71, 74, 75] quantitatively evaluated their
colour classifier. In their study, two clinicians independently
annotated colour regions with colour names on a set of
30 dermoscopy images. From these annotated images, the
average RGB values of each region were stored as an example
(shade) of that colour name (class), permitting a total of 98
samples compromising a “colour palette” of six colour classes.
Seidenari et al. evaluated their work on a database of 331
images (113 melanoma and 218 nevi). For each image, the two
clinicians recorded the presence of each colour class. This
assessment was compared with the computer’s performance.
The correlation between clinicians’ evaluation and computer’s
evaluation was reported between 0.73 (for light brown) and
0.893 (for black).

Seidenari et al. also counted the number of colours in
each image with results comparable to the evaluation of clini-
cians. They have also analysed [76] the distribution of
colours in melanoma versus (atypical and common) nevi.
Results showed that the number of colours in melanoma is
higher than that in nevi; in particular, black, blue-grey, and
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white colours were more frequently found in melanomas.
They concluded colour assessment can contribute to the
distinction ofmelanoma, in particular from atypical nevi that
share some dermoscopic features with the deadly disease.
It is to be noted that labelling each pixel of each image in
the nearest neighbor fashion (as practiced by Seidenari et al.
and Alcon et al.) could be computationally expensive. Also,
using Euclidean distance metric in RGB space for computing
colour differences is a refuted practice for colour matching
because RGB is not a perceptually uniform colour space.That
is, colour differences in RGB do not agree consistently with
human visual perception.

7.2. Generative Models. Chen et al. [72] labelled each pixel
as a melanoma colour or a benign colour. Their labelling
algorithm was based on histogram models. Two histograms
were populated for each class (melanoma and benign) where
each bin of each histogram stores the count associated with
the occurrence of the bin colour in the training data for that
class. The histogram counts are normalized to sum to unity,
converting the histogram to (discrete) probability density
function. Thus, for each class, a bin value corresponds to
the likelihood of the bin colour belonging to this category.
Pixels are labelled by comparing the likelihood values of their
associated histogram bins.The downfall of histogrammodels
is that classification accuracy is subject to the representa-
tiveness of training data. A pixel is labelled, for instance, as
“melanoma colour” if that particular colour was observed
more in melanoma training data than that of benign. Chen et
al. labelled pixels as “unpopulated” if the colour was not seen
in the training data (empty bin) or as “uncertain” if the like-
lihoods of belonging to each class were approximately equal.

Barata et al. [78] trained a Gaussian Mixture Model
(GMM) for classification of five different colour classes
(black, blue-grey, white, dark, and light brown) and com-
pared its performance with that of a dermatologist. Unlike
histogram models, GMMs can be made to generalize well
on small amounts of training data at the cost of tuning their
parameters. In their study [78], colour regions were manually
segmented and labelled by a dermatologist for a training set
of 27 dermoscopy images. For each colour class, small patches
were randomly extracted from the corresponding segmented
colour regions. The average value of HSV and LAB colour
components (a 6D feature vector) from each patch is taken
to represent a training sample. Barata et al. trained a GMM
for each colour class using this training data. The overall
performance was evaluated on a test set of 103 images (27
melanoma and 76 nevi).The objective was to determine pres-
ence/absence of each colour class in images. Test images were
decomposed into small patches. Each patch was represented
by average (HSV and LAB) colour components. Using this
feature and the GMM models, the patch was labelled by
comparing the likelihoods that GMMs generated. Reported
results indicate average Spearman correlation of 0.7981 with
the performance of human expert [78].

7.3. Summary and Discussion. All of the studies reported in
this section employed colour classification to quantify the
number of colours in images (lesions). As previously dis-

cussed, this is to imitate clinical practices (such as ABCD
rule) to quantify colour variegation feature of skin lesions.
Among these studies, many did not directly evaluate the
performance of their proposed colour classification method.
Instead, they performed classification of melanoma versus
benign lesions.Most studies used nearest neighbor technique
in RGB colour space and define six colour classes (see
Table 3). Lack of benchmarking for comparison and eval-
uation is a major challenge that remains to be addressed.
The state of the art might be improved by incorporating and
adapting existing methods in the context of image under-
standing for colour naming [107–110]. Colour naming is the
action of assigning a linguistic colour label to image pixels
and has many applications in the domain of computer vision
such as for image retrieval [111], image segmentation [112],
image editing [113], image description [114], pattern colouri-
sation [115], data visualization [116], and colour constancy
[117].

Among the common colours under dermoscopy, there
are a few that are more specific to melanoma. For example,
blue-grey or blue-whitish colour is considered a significant
indicator of the disease (see 7-point checklist [118], Menzies
method [86], and three-point checklist [49]). Therefore,
some studies aimed at detecting certain colour and use this
characteristic to classify the lesion as melanoma or benign.
The next section will cover this topic.

8. Colour Detection

The goal is to detect specific colours that have diagnostic sig-
nificance. For example, detection of blue-white veil colour or
hyperpigmented areas. Colour detection is in a sense a binary
colour classification. The reasons why a section is dedicated
to colour detection, separated from colour classification, are
twofold. Firstly, these methods do not aim to assign a class
label to every pixel (or every region) in the image. They
aim to identify the presence or absence of certain colours
(and in some cases to localise those colours). Secondly, these
methods might use features other than colour information
such as texture and shape. This might seem unnecessary or
even inappropriate since the task is indeed colour detection.
The reader is reminded however that “colour” here is a
specific dermoscopic feature and not necessarily a particular
hue. For example, what dermatologist annotate as the blue-
white veil is a mixture of many different hues including blue,
white, grey, and purple. The methods in this section are
grouped together based on the principal approach underlying
their colour detection algorithm.

8.1. Thresholding. Thresholding is one of the simplest meth-
ods of image segmentation. Ogorzałek et al. [15] used thresh-
olding in RGB space to detect white, black, and blue-grey
areas. For instance, white areas were identified as pixels which
satisfied 𝑅 > 110, 𝐺 > 𝑅 − 26, and 𝐵 > 𝑅 − 20. There is
no indication on how these decision rules were generated.
Also, the paper does not provide any experiment to evaluate
the success of colour detection. The detected colours were
quantified by their area as part of a feature set for classification
of skin lesions (computer-aided diagnosis).
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Table 3: Colour classification studies.

Authors Year Method Colour space Number of colour classes
Sboner et el. [13] 2001 Thresholding HSV 4
Chen et al. [72] 2003 Histogram RGB 2
Sboner et al. [73] 2003 Thresholding HSV 4
Seidenari et al. [74] 2003 Nearest neighbor RGB 6
Pellacani et al. [75] 2004 Nearest neighbor RGB 6
Sboner et al. [14] 2004 Thresholding HSV 4
Seidenari et al. [76] 2005 Nearest neighbor RGB 6
Seidenari et al. [58] 2007 Nearest neighbor RGB 6
Seidenari et al. [71] 2006 Nearest neighbor RGB 6
Silva et al. [77] 2012 Nearest neighbor RGB 6
Barata et al. [78] 2014 Gaussian mixture HSV & Lab 5

Pellacani et al. [71, 79] extracted dark areas in dermoscopy
images. Their definition of “dark” appears to be dark brown
and black pigment areas with irregular shape or asymmetric
distribution that are frequently observed in melanomas. To
that aim, they introduced two features: absolute dark area
(ADA) and relative dark area (RDA). For ADAs, first, the
mean brightness of the surrounding skin was computed as
a reference brightness level. Next, the ratio between the
brightness of each lesion pixel and the reference (skin’s)
brightness was computed. If this value was lower than a given
threshold (empirically set to 0.13), the pixel was considered
“absolutely” dark. For RDAs, the histogram of lesion bright-
ness values were divided into four quartiles and the quan-
tile corresponding to the lowest brightness was considered
“relatively” dark. To explore the diagnostic importance of
these features, statistical analysis was conducted on a set of
339 dermoscopy images (113melanomas and 226melanocytic
nevi). For this analysis, simple numerical parameters such
as region area and average intensity were computed from
the detected dark areas for each lesion. Results suggested
a statistically significant difference between the two classes
(melanoma versus melanocytic nevi).

Sforza et al. [82] proposed an adaptive segmentation of
grey areas in dermoscopy images. It seems that by “grey”
the authors meant blue-grey (or blue-white) areas. The paper
achieved this by thresholding on the B component of HSB
colour space. The threshold values are induced “adaptively”
although the paper is unclear on how this adaptive process
was carried. The paper also lacks quantitative evaluation;
results are shown qualitatively for only five dermoscopy
images.

8.2. Decision Tree. Celebi et al. [80, 81] automatically seg-
mented blue-white veil areas in dermoscopy images. Their
approach involved pixel classification using explicit thresh-
olding, where a trained decision tree induced the threshold
values. They used a set of 105 dermoscopy images, consisting
of 43 images containing sizeable blue-white veil areas with the
remaining 62 free of this feature. For each image, a number of
small circular regions that contain either veil or nonveil pixels
were manually determined by a dermatologist and used for
training. A decision tree classifier with C4.5 [119] induction

algorithm was employed to classify each pixel in the training
stage into two classes: veil and nonveil. Among the 18 different
colour and texture features, only two features appeared in the
induced decision rules: The classification was conducted by
thresholding on a normalized-blue channel (𝐵/{𝑅 + 𝐺 + 𝐵})
and relative-red feature (defined as 𝑅 − 𝑅𝑠, where 𝑅𝑠 is the
mean of red channel values for healthy skin areas only). Celebi
et al. further developed a second decision tree classifier to
use detected blue-white veil areas for discriminating between
melanoma and benign lesions. The detected veil areas were
characterized using simple numerical parameters such as
region area, circularity, and ellipticity measures. Experiments
on a set of 545 dermoscopy images yielded 69.35% sensitivity
and 89.97% specificity.

De Vita et al. [16, 83] detected image regions containing
blue-white veil, irregular pigmentation, or regression fea-
tures. To this aim, first, the lesion is segmented into homo-
geneous colour regions. Next, simple statistical parameters
such as mean and standard deviation are extracted from
HSI colour components for each region. Finally, a Logistic
Model Tree (LMT) is trained to detect each colour. LMT
is a supervised learning classification model that combines
logistic regression and decision tree learning. De Vita et al.
detected these colour features as part of their system [16]
for automatic diagnosis of melanoma based on the 7-point
checklist clinical guideline. They also evaluated the perform-
ance of their colour detectionmethod over a set of 287 images
(150 images were used for training and 137 for testing). It
is not clear whether the test was aimed to identify (pres-
ence/absence) or to localise the colour features. Nevertheless,
results were shown with average specificity and sensitivity of
about 80%.

8.3. Other Methods. Wadhawan et al. [84] detected blue-
white veil areas in dermoscopy images. Their method relied
on a linear SVM to classify image patches to veil or nonveil.
Image patches were extracted over the lesion area using a reg-
ular grid sampling. For each image patch, a feature vector was
computed by concatenating histogram representation of pixel
values in various colour channels of different colour spaces.
They evaluated their method by performing 10-fold cross-
validation on a set of 489 dermoscopy images (163 containing
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the veil and remaining 326 free of this feature). For training,
images were manually segmented and annotated by one of
the authors. For testing, only presence/absence of the feature
is considered. Results are reported with an average sensitivity
of about 95% and an average specificity of about 70%.

Lingala et al. [85] detected blue areas in dermoscopy
images and further classified them to three shades of laven-
der and dark and light blue using fuzzy sets membership
functions. Their colour detection method builds on a simple
thresholding approach similar to Ogorzałek et al. [15]. A pixel
is considered as “blue” if its normalized RGB values were
within a certain range determined empirically (the threshold
values were not reported). These blue areas were further
classified into lavender and light and dark blue by thresh-
olding their intensity value. This thresholding scheme was
used to generate training data using 22 dermoscopy images.
The training data was then used to determine the parameters
of fuzzy set membership functions for three shades of blue.
The method was evaluated over a set of 866 images (173
melanoma and 693 benign). There is no indication of how
successful the colour detection was. The evaluation was
conducted by classifying lesions to melanoma versus benign,
by extracting simple statistical features over blue areas.
Interestingly, the effect of using fuzzy set membership versus
simple thresholding is evaluated and the improvement in
classification is reported to be less than 0.5%. Although the
idea of Lingala et al. [85] is interesting, their study suffers
from a number of flaws. One example is that since parameters
of fuzzy sets were identical for dark and light blue, authors
performed thresholding (again) over intensity channel to
separate these. This could have been foreseen since intensity
thresholding was used to generate training data but for fuzzy
set representation, colours were represented in normalized
RGB space where the intensity information is discarded.

8.4. Summary and Discussion. All the studies reported in this
section can be described as using discriminative algorithms.
Moreover, these studies follow the classical paradigm of
supervised learning that requires extensive annotation of
training images using instances of each colour feature. This
is difficult (or even impossible) to be carried accurately and
consistently due to the subjectivity of feature definition and
poor interobserver agreements. Since ground-truth annota-
tions were always made by an expert rather via a consensus
of experts’ opinions, it is hard to make outright claims about
the success of these algorithms especially as all of these studies
have failed to provide a comparison to other algorithms.

In terms of categorization, these works could be divided
into two categories: pixel-based and region-based methods
(see Table 4). Region-basedmethods often segment the lesion
into homogeneous colour regions before further analysis. In
all these cases, the emphasis is to use colour features while
structural information such as texture is either ignored [15,
16, 83–85] or found futile [80, 81].

9. Colour Calibration

For colour image processing, the fidelity of colour throughout
image acquisition process is vital. Colour can dramatically

change as a result of changes in imaging setup, such as
varying illumination or altering acquisition device. Thus, an
image processing algorithm that relies on colour information
is subject to disruption. In many applications, an accurate
colour calibration, therefore, appears to be necessary, to
provide an image with reproducible colours, independent of
the capturing system and the illuminant characteristics. This
is often achieved by finding a relationship between the device-
dependent output colour values of a camera (usually in RGB)
and a standard colour space (such as the CIE𝑋𝑌𝑍 or sRGB).
The process usually involves imaging a calibrated target, often
a colour checker, and then performing a least-squares regres-
sion to find a transformation matrix that maps the camera’s
RGB of each colour checker patch to their corresponding
(standard) colour values. The measurements should be done
under a known lighting system (typically D65). If the lighting
cannot be controlled, then a measurement of the illuminant
irradiance at each patch is needed.

Colour calibration is of double concern for dermatology
since the acquisition of repeatable and high-quality images
in terms of colour fidelity and resolution is essential for the
comparison of time-series images during follow-up studies.
However, to date, colour calibration in dermatology has
been little investigated. One of the early studies that focused
on colour calibration for dermatology was conducted by
Haeghen et al. [120] inwhich a complete setup and calibration
of an imaging system for use in dermatology was thoroughly
described. Haeghen et al.’s calibration process involved esti-
mation of camera-specific parameters (such as camera offset,
colour gain, and aperture) and colour transformation matrix
for standardisation. The latter was computed by acquiring
images of theMacbeth colour checker chart and determining
the relationship between the images and the CIE LAB values
of the colour patches, acquired with a spectrophotometer.
This calibration was reported to require 5–10minutes’ time of
manual effort, which would remain valid for weeks of normal
operation.

10. Contrast Enhancement

Contrast enhancement, here, refers to increasing visual dis-
crepancy of the lesion from the normal skin surrounding
it. This is often practiced as a preprocessing step aiming to
improve the task of lesion segmentation. Lesion segmentation
is regarded as a crucial step in dermoscopy image analysis that
could affect all downstream processes to the final diagnosis.
The most trivial segmentation technique is the application of
grey-level thresholding methods such as Otsu’s [121]. These
techniques rely on the assumption that a typical dermato-
logical image consists of two classes of pixels: the lesion
and the normal skin. Therefore, the histogram of grey-level
values would have twomodes. Almost every method that has
been proposed in the literature attempts to ensure the histo-
gram of pixel values is bimodal and the concavity between the
two modes is maximal.

Among the various proposed techniques, one of the
most common practices is selecting a colour channel that
maximizes the discrepancy of the lesion from the normal skin
surrounding it. Ganster et al. [30], for instance, performed
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Table 4: Colour detection studies.

Author Year Method Approach Target
Pellacani et al. [79] 2004 Thresholding Pixel-based Dark areas
Celebi et al. [80] 2006 Decision tree Pixel-based Blue-white veil
Seidenari et al. [71] 2006 Thresholding Pixel-based Dark areas
Celebi et al. [81] 2008 Decision tree Pixel-based Blue-white veil
Ogorzałek et al. [15] 2010 Thresholding Pixel-based White, black, and blue-grey
Sforza et al. [82] 2011 Thresholding Pixel-based Grey areas
De Vita et al. [83] 2012 LMT Region-based Blue-white veil
Wadhawan et al. [84] 2012 SVM Region-based Blue-white veil
Fabbrocini et al. [16] 2014 LMT Region-based Blue-white veil
Lingala et al. [85] 2014 Fuzzy sets Pixel-based Blue areas

thresholding over the blue channel of RGB for lesion seg-
mentation. Madooei et al. [31, 122] found empirically that
using the geometric mean of RGB channels (𝜇 = 3√𝑅 ⋅ 𝐺 ⋅ 𝐵)
highlights the lesion from its surrounding and can aid
segmentation based on grey-level thresholding. Schaefer et al.
[123, 124] used the luminance 𝐿 = 𝑅 + 𝐺 + 𝐵 but also applied
Automatic Colour Equalization (ACE) [125] to compensate
for poor contrast and lack of colour calibration. The ACE
is a colour normalization technique which (in a nutshell)
combines two classical techniques of max-RGB and Grey-
world normalization (refer to [125] for details.). Celebi et al.
[126] created a greyscale image as a weighted sum of the input
RGB (𝐼 = 𝑤1𝑅 + 𝑤2𝐺 + 𝑤3𝐵; ∑𝑖 𝑤𝑖 = 1). They carried an
exhaustive search over a set of possible 𝑤𝑖 values that max-
imized class separability or histogram bimodality.

Hintz-Madsen et al. [127] employed principal component
analysis (PCA) of RGB data. After applying PCA, the first
principal component best explains the variance in the image
data. Assuming most variation occurs at the edges of the
lesion, by retaining the first principal component, we shall
have a greyscale of the input image that is optimal for border
extraction. Madooei et al. [128] also employed PCA for
contrast enhancement although the PCA was carried out in
the optical density space of image data: log (RGB). PCA is a
simple technique, easy to implement and fast to compute. On
the downside, it can be speculated that PCA-based contrast
enhancement would be affected by the presence of other
structures such as hair or vessels in the image.

Gómez et al. [129] proposed independent histogram
pursuit (IHP) that, similar to PCA, linearly transforms the
original data into an uncorrelated orthogonal space. How-
ever, unlike PCA, which attempts to condense the infor-
mation (variability) of measured data explained by the first
component, IHP specifically aims to findprojections inwhich
the lesion and the background (healthy skin) are maximally
separated. Their method is iterative and greedy (similar
to that of Celebi et al. [126]). The computation of greedy
techniques is more cumbersome than PCA-based meth-
ods. Gómez et al. [129] and Madooei et al. [128] are among
the fewwho reported experimental procedure and results that
showed the improvement of segmentation as a result of con-
trast enhancement, with a comparison to prior art. It remains
to be experimentally confirmed, however, whether contrast

enhancement or better segmentation offers an advantage for
the task of skin lesion image analysis.

11. Attenuation of Shading

Shading is, to put simply, variations in image intensity due to
the geometry of the scene (e.g., curvature of object surface).
The effect of shading can be caused by other factors such as
nonuniform illumination or as the result of a variable gain
and offset in camera’s sensor. In clinical images, shading is
typically caused by imaging non-flat skin surfaces. In dermo-
scopic images, shading is usually induced by intensity falloff
near the edges of the image (natural vignetting around the
center of the optical axis). As a result, the image might be
bright in the center and decreases in brightness as one goes
to the edge of the field of view. In some other cases, the image
might be darker on one side or one corner and brighter on
the other side. Shading may obscure skin surface details and
appear as additional features that are not intrinsic to the
lesion. It can also disrupt lesion segmentation. In the liter-
ature of skin lesion analysis, most efforts are centered over
postprocessing of the image to remove the shading effect.

Norton et al. [130] used adaptive histogram equalization
to reduce the shading effect on the green channel before
applying grey-level thresholding for segmentation of lesion.
Tanaka et al. [131] subtracted each image from a background
brightness that accounted for shading due to body curvature.
This background image was computed by a moving average
operation on each row of image data. Møllersen et al. [132]
used the illumination of an empty field as a correction filter
(white shading correction). In this technique, a “bright-field”
image was captured before imaging the lesions by placing a
“white surface” that covered camera’s entire field of view in the
scene.The intensity values of the image were then divided (or
subtracted) from the intensity values of the bright-field image
to correct the shading defect.

Madooei et al. [128] attempted to attenuate shading by
normalizing the value channel of HSV colour space. They
employed a photometric model to form a 1D illumination-
invariant image (from sRGB input), called the intrinsic
image [133].The intensity normalization was then induced by
matching the histogram of the V channel to the histogram of
the intrinsic image.
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12. Conclusion

A colour image is represented as an array of pixels, where
each pixel contains numerical components (usually a triple)
that defines a colour according to a colour space. Variety of
colour spaces are available; they are often made for different
applications (such as for display, printing, colour matching,
and television broadcasting). Descriptions of different colour
spaces can be found in [36].

Once the colour space is specified, colour features can
be extracted from images or image regions. Some studies
used pixel values directly as colour features [17, 20, 28, 134]
whereas most others employed colour moments (§3) and
colour histograms (§4). These are primitive or low-level
features that, for example, parametrize the distribution of
colour value in an image. A growing trend in recent years is in
developing high-level (clinically meaningful) visual features
such as colour asymmetry (§5), colour variegation (§6),
colour classification (§7), and colour detection (§8).

Among other studies, there are those that focused on
“colour quantization” [15, 17, 18, 23, 28, 30, 71, 135, 136] and
those aimed at “colour segmentation” [132, 137–141]. Colour
quantization is aimed at reducing the number of colours
[88]. True-colour images typically contain thousands of
colours, whichmakes their display, storage, transmission, and
processing problematic. For this reason, colour quantization
is commonly used as a preprocessing step for various graphics
and image processing tasks. Most quantization methods are
essentially based on data clustering algorithms. Note that
colour histogram involves colour quantization.

It is worth noting that few studies [71, 75, 142–144]
focused on “colour quantitation,” an attempt to quantify the
colour such that it can be objectively and quantitatively mea-
sured and compared. It is important to remind ourselves that
colour cameras are not built for measurement of colour.They
are designed to capture an image of a scene with acceptable
appearance for human viewing.

When an image is captured, it may not have the opti-
mal quality for subsequent analysis. Image enhancement is
the preprocessing step that serves to compensate for the
imperfections of image acquisition. Good performance of the
methods at this stage not only ensures correct behaviour of
the algorithms in the following stages of analysis but also
relaxes the constraints on the image acquisition process. In
this review paper, we also focus on those image enhancement
techniques that affect the use of colour features: colour
calibration (§9), contrast enhancement (§10), and shading
attenuation (§11).
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