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The aim of this paper is to construct a novel implicit iterative algorithm for the split common fixed point problem for the demi-
contractive operators 𝑈, 𝑇, and 𝑥𝑛 = 𝛼𝑛𝑓(𝑥𝑛) + (1 − 𝛼𝑛)𝑈𝜆(𝑥𝑛 − 𝜌𝑛𝐴∗(𝐼 − 𝑇)𝐴𝑥𝑛), 𝑛 ≥ 0, where 𝑈𝜆 = (1 − 𝜆)𝐼 + 𝜆𝑈, and we
obtain the sequence which strongly converges to a solution �̂� of this problem, and the solution �̂� satisfies the variational inequality.⟨�̂� − 𝑓(�̂�), �̂� − 𝑧⟩ ≤ 0, ∀𝑧 ∈ 𝑆, where 𝑆 denotes the set of all solutions of the split common fixed point problem.

1. Introduction

The split feasibility problem (SFP) is to find a point

𝑥 ∈ 𝐶 such that 𝐴𝑥 ∈ 𝑄, (1)

where𝐶 is a nonempty closed convex subset of aHilbert space𝐻1, 𝑄 is a nonempty closed convex subset of a Hilbert space𝐻2, and 𝐴 : 𝐻1 → 𝐻2 is a bounded linear operator.
This problem was proposed by Censor and Elfving [1] in

1994.
Since the SFP can extensively be applied in fields such

as intensity-modulated radiation therapy, signal processing,
and image reconstruction, then the SFP has received somuch
attention by so many scholars; see [2–23].

In 1994, Censor and Elfving [1] proposed the original
algorithm in 𝑅𝑛,

𝑥𝑛+1 = 𝐴−1𝑃𝑄𝑃𝐴(𝐶)𝐴𝑥𝑛, (2)

where 𝐶 and 𝑄 are nonempty closed convex subsets of 𝑅𝑛, 𝐴
in the finite-dimensional 𝑅𝑛 is a 𝑛 × 𝑛 matrix, and 𝑃𝑄 is the
projection operator from𝐻2 onto 𝑄.

As we know, the computation of the inverse 𝐴−1 is not
easy if the inverse of𝐴 existed. So, the algorithm (2) does not
become popular.

In 2002 and 2004, Byrne [2, 3] gave the so-called 𝐶𝑄
algorithm as follows:

𝑥𝑛+1 = 𝑃𝐶 (𝑥𝑛 − 𝛾𝐴∗ (𝐼 − 𝑃𝑄) 𝐴𝑥𝑛) , 𝑛 ≥ 0, (3)

where 0 < 𝛾 < 2/𝜌 with 𝜌 taken as the largest eigenvalue
of the operator 𝐴∗𝐴 and 𝑃𝐶 and 𝑃𝑄 denote the projection
operators from𝐻1 and𝐻2 onto the sets 𝐶, 𝑄, respectively.

For the stepsize of algorithm (3) is fixed and closely
related to spectral radius of 𝐴∗𝐴, then the projection oper-
ators 𝑃𝐶 and 𝑃𝑄 are not easily calculated usually.

The split common fixed point problem (SCFP) is to find
a point

𝑥 ∈ Fix (𝑈) such that 𝐴𝑥 ∈ Fix (𝑇) , (4)

where 𝑈 : 𝐻1 → 𝐻1 and 𝑇 : 𝐻2 → 𝐻2, and Fix(𝑈) and
Fix(𝑇) denote the fixed point sets of 𝑈 and 𝑇.

This problem was proposed by Censor and Segal [12] in
2009. Note that the SCFP is closely related to SFP and it is a
particular case of SFP.

In 2009, Censor and Segal [12] introduced the original
algorithm for directed operators as follows:

𝑥𝑛+1 = 𝑈 (𝑥𝑛 − 𝜌𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛) , 𝑛 ≥ 0, (5)

where the step size 𝜌 satisfies 0 < 𝜌 < 2/‖𝐴‖2, and they
obtained that {𝑥𝑛}weakly converges to a solution of the SCFP
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(4) if the solution of SCFP exists. But it is obvious that the
choice of the step size 𝜌 depends on the norm of operator, 𝐴,
which is the disadvantage of this algorithm.

The next two years, some extension results on the opera-
tors are obtained, such asMoudafi (2010) [24],Moudafi (2011)
[25], and Wang and Xu (2011) [14].

In order to overcome this disadvantage, Cui and Wang
[26] proposed the following algorithm in 2014:

𝑥𝑛+1 = 𝑈𝜆 (𝑥𝑛 − 𝜌𝑛𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛) , 𝑛 ≥ 0, (6)

where 𝑈𝜆 = (1 − 𝜆)𝐼 + 𝜆𝑈 and the step size 𝜌𝑛 is chosen by
the following way:

𝜌𝑛 = {{{{{
(1 − 𝜏) (𝐼 − 𝑇)𝐴𝑥𝑛22 𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛2 , 𝐴𝑥𝑛 ̸= 𝑇 (𝐴𝑥𝑛) ,0, otherwise

(7)

and they proved that the sequence {𝑥𝑛} converges weakly to
a solution of the SCFP (4). Note that the advantage of this
algorithm is that the step size 𝜌𝑛 searches automatically and
does not depend on the norm of operator 𝐴.

Recently, Byrne et al. [27] introduced the split common
null point problem (SCNPP) for set-valued maximal mono-
tone mappings in Hilbert spaces. Given set-valued mappings𝐵𝑖 : 𝐻1 → 2𝐻1 , 1 ≤ 𝑖 ≤ 𝑝, and 𝐹𝑗 : 𝐻2 → 2𝐻2 , 1 ≤ 𝑗 ≤ 𝑟,
respectively, and the bounded linear operators 𝐴𝑗 : 𝐻1 →𝐻2, 1 ≤ 𝑗 ≤ 𝑟, the SCNPP is formulated as follows:

find 𝑥 ∈ 𝐻1
such that 0 ∈ 𝑝⋂

𝑖=1

𝐵𝑖 (𝑥)
such that 𝑦𝑗 = 𝐴𝑗 (𝑥) ∈ 𝐻2

solve 0 ∈ 𝑟⋂
𝑗=1

𝐹𝐽 (𝑦𝑗) .
(8)

As we know, the SCNPP generalizes the split common fixed
point problem and the split variational inequality problem
[28, 29].

Motivated by the viscosity idea of [30], in this paper, we
construct a novel algorithm for demicontractive operators
to approximate the solution of the SCFP (4), that is, the
following implicit iterative algorithm:

𝑥𝑛 = 𝛼𝑛𝑓 (𝑥𝑛) + (1 − 𝛼𝑛) 𝑈𝜆 (𝑥𝑛 − 𝜌𝑛𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛) ,
𝑛 ≥ 0, (9)

where 𝑈𝜆 = (1 − 𝜆)𝐼 + 𝜆𝑈 and the step size 𝜌𝑛 is also chosen
as (7).

The research highlight of this paper is that the strong
convergence of the SCFP (4) is constructed; that is to say
the sequence {𝑥𝑛} generated by (9) converges strongly to a
solution of the SCFP.

2. Preliminaries

Throughout this paper, we denote the set of all solutions of the
SCFP (4) by 𝑆. We use 𝑥𝑛 ⇀ 𝑥 to indicate that {𝑥𝑛} converges
weakly to 𝑥. Similarly, 𝑥𝑛 → 𝑥 symbolizes the sequence {𝑥𝑛}
which converges strongly to 𝑥.

Let 𝐻, 𝐻1, and 𝐻2 be Hilbert spaces endowed with the
inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖, and 𝐶 and𝑄 are nonempty
closed convex subsets of𝐻1 and𝐻2, respectively.

Some concepts and lemmas are given in the following and
they are useful in proving our main results.

Definition 1. A operator 𝑇 : 𝐻 → 𝐻 is said to be
(i) nonexpansive if𝑇𝑥 − 𝑇𝑦 ≤ ‖𝑥 − 𝑧‖ , ∀𝑥, 𝑦 ∈ 𝐻 (10)

(ii) quasi-nonexpansive if

‖𝑇𝑥 − 𝑧‖ ≤ ‖𝑥 − 𝑧‖ , ∀𝑥 ∈ 𝐻, ∀𝑧 ∈ Fix (𝑇) (11)

(iii) directed if

⟨𝑧 − 𝑇𝑥, 𝑥 − 𝑇𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝐻, ∀𝑧 ∈ Fix (𝑇) (12)

(iv) 𝜏-demicontractive with 𝜏 < 1 if
‖𝑇𝑥 − 𝑧‖2 ≤ ‖𝑥 − 𝑧‖2 + 𝜏 ‖𝑥 − 𝑇𝑥‖2 ,

∀𝑥 ∈ 𝐻, ∀𝑧 ∈ Fix (𝑇) (13)

Note that (12) is equivalent to

‖𝑧 − 𝑇𝑥‖2 + ‖𝑥 − 𝑇𝑥‖2 − ‖𝑥 − 𝑧‖2 ≤ 0,
∀𝑥 ∈ 𝐻, ∀𝑧 ∈ Fix (𝑇) (14)

Definition 2. Let𝑇 : 𝐻 → 𝐻 be an operator, then 𝐼−𝑇 is said
to be demiclosed at zero, if for any {𝑥𝑛} in 𝐻, the following
implication holds

𝑥𝑛 ⇀ 𝑥
(𝐼 − 𝑇) 𝑥𝑛 → 0

⇓
𝑥 = 𝑇𝑥

(15)

As we know, the nonexpansive mappings are demiclosed
at zero [31].

Definition 3. Let 𝐶 be a nonempty closed convex subset of
a Hilbert space 𝐻, the metric (nearest point) projection 𝑃𝐶
from 𝐻 to 𝐶 is defined as follows: Given 𝑥 ∈ 𝐻, 𝑃𝐶𝑥 is the
only point in 𝐶 with the property𝑥 − 𝑃𝐶𝑥 = inf {𝑥 − 𝑦 : 𝑦 ∈ 𝐶} . (16)

Lemma 4 (see [32]). Let𝐶 be a nonempty closed convex subset
of a Hilbert space 𝐻, 𝑃𝐶 is a nonexpansive mapping from 𝐻
onto 𝐶 and is characterized as: Given 𝑥 ∈ 𝐻, there holds the
inequality

⟨𝑥 − 𝑃𝐶𝑥, 𝑦 − 𝑃𝐶𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐶. (17)
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Figure 1: The relations of 𝑘-demicontractive operator, directed operator, quasi-nonexpansive operator, and nonexpansive operator.

Lemma 5 (see [32]). Let 𝐻 be a Hilbert space, then the
following inequality holds,

𝑥 + 𝑦2 ≤ ‖𝑥‖2 + 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐻. (18)

Lemma6 (Cui andWang [26]). Let𝐴 : 𝐻1 → 𝐻2 be a bound-
ed linear operator and 𝑇 : 𝐻2 → 𝐻2 a 𝜏-demicontractive
operator with 𝜏 < 1. If 𝐴−1𝐹𝑖𝑥(𝑇) ̸= 0, then

(a) (𝐼 − 𝑇)𝐴𝑥 = 0 ⇔ 𝐴∗(𝐼 − 𝑇)𝐴𝑥 = 0, ∀𝑥 ∈ 𝐻1.
(b) In addition, for 𝑧 ∈ 𝐴−1𝐹𝑖𝑥(𝑇)

𝑥 − 𝜌𝐴∗ (𝐼 − 𝑇)𝐴𝑥 − 𝑧2
≤ ‖𝑥 − 𝑧‖2 − (1 − 𝜏)24 ‖(𝐼 − 𝑇)𝐴𝑥‖4‖𝐴∗ (𝐼 − 𝑇)𝐴𝑥‖2

(19)

where 𝑥 ∈ 𝐻1, 𝐴𝑥 ̸= 𝑇(𝐴𝑥) and
𝜌 fl 1 − 𝜏2 ‖(𝐼 − 𝑇)𝐴𝑥‖2‖𝐴∗ (𝐼 − 𝑇)𝐴𝑥‖2 . (20)

Lemma 7 (Cui and Wang [26]). Let 𝑈 : 𝐻1 → 𝐻1 be a 𝑘-
demicontractive operator with 𝑘 < 1. Denote 𝑈𝜆 fl (1 − 𝜆)𝐼 +𝜆𝑈 for 𝜆 ∈ (0, 1 − 𝑘). Then for any 𝑥 ∈ 𝐻1 and 𝑧 ∈ 𝐹𝑖𝑥(𝑈),𝑈𝜆𝑥 − 𝑧2 ≤ ‖𝑥 − 𝑧‖2 − 𝜆 (1 − 𝑘 − 𝜆) ‖𝑥 − 𝑈𝑥‖2 . (21)

3. Main Results

Proposition 8. Based on the definitions in preliminaries,
the classes of 𝑘-demicontractive operators, directed operators,
quasi-nonexpansive operators, and nonexpansive operators
have close relations. We can visually use the following Venn
diagram (Figure 1) to denote their relations.

Proof. From Definition 1, the following conclusion is
obtained easily.

(i) The nonexpansive operator is quasi-nonexpansive
operator.

(ii) The quasi-nonexpansive operator is 0-demicontract-
ive operator.

(iii) Thedirected operator is−1-demicontractive operator.

Next, we give the novel implicit algorithm to solve the
SCFP (4) for demicontractive operators. In the sequel, the
assumptions are given as follows:

(i) 𝑈 : 𝐻1 → 𝐻1 is a 𝑘-demicontractive operator with𝑘 < 1.
(ii) 𝑇 : 𝐻2 → 𝐻2 is a 𝜏-demicontractive operator with𝜏 < 1.
(iii) Both 𝐼 − 𝑈 and 𝐼 − 𝑇 are demiclosed at zero.

Algorithm 9. Choose an initial guess 𝑥0 ∈ 𝐻1 arbitrarily. Let𝑓 be a fixed contraction on Fix(𝑈)with coefficient 𝛼 (0 < 𝛼 <1), 𝜆 ∈ (0, 1 − 𝜏). Assume that the 𝑛th iteration 𝑥𝑛 has been
constructed. Then the (𝑛 + 1)th iteration is via the following
formula:

𝑥𝑛 = 𝛼𝑛𝑓 (𝑥𝑛)
+ (1 − 𝛼𝑛) 𝑈𝜆 (𝑥𝑛 − 𝜌𝑛𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛) ,

𝑛 ≥ 0,
(22)

where𝐴∗ is the adjoint of bounded linear operator𝐴 and the
step size 𝜌𝑛 is chosen in the following way:

𝜌𝑛 = {{{{{
(1 − 𝜏) (𝐼 − 𝑇)𝐴𝑥𝑛22 𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛2 , 𝐴𝑥𝑛 ̸= 𝑇 (𝐴𝑥𝑛)0, otherwise. (23)

Theorem 10. Assume the solution set of the SCFP (4) 𝑆 ̸= 0. If𝛼𝑛 ∈ (0, 1) satisfies lim𝑛→∞ 𝛼𝑛 = 0 and∑∞𝑛=0 𝛼𝑛 = ∞, then the
sequence {𝑥𝑛} generated by implicit algorithm (22) converges
strongly to a point �̂� ∈ 𝑆, and �̂� = 𝑃𝑆𝑓(�̂�); that is, �̂� satisfies
the following variational inequality:

⟨�̂� − 𝑓 (�̂�) , �̂� − 𝑧⟩ ≤ 0, ∀𝑧 ∈ 𝑆. (24)

Proof. The proof is divided into three steps.

Step 1. We show that {𝑥𝑛} is bounded.
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Denote 𝑦𝑛 fl 𝑥𝑛 − 𝜌𝑛𝐴∗(𝐼 − 𝑇)𝐴𝑥𝑛 and take 𝑧 ∈ 𝑆; it
follows from (22) that𝑥𝑛 − 𝑧 = 𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑧) + (1 − 𝛼𝑛) (𝑈𝜆𝑦𝑛 − 𝑧)

≤ 𝛼𝑛 𝑓 (𝑥𝑛) − 𝑓 (𝑧) + (1 − 𝛼𝑛) 𝑈𝜆𝑦𝑛 − 𝑧
+ 𝛼𝑛 𝑓 (𝑧) − 𝑧

≤ 𝛼𝛼𝑛 𝑥𝑛 − 𝑧 + (1 − 𝛼𝑛) 𝑈𝜆𝑦𝑛 − 𝑧
+ 𝛼𝑛 𝑓 (𝑧) − 𝑧 .

(25)

(i) If 𝜌𝑛 = 0. Then 𝑦𝑛 = 𝑥𝑛; from (21), we get𝑈𝜆𝑥𝑛 − 𝑧 ≤ 𝑥𝑛 − 𝑧 . (26)

Thus 𝑥𝑛 − 𝑧 ≤ 𝛼𝛼𝑛 𝑥𝑛 − 𝑧 + (1 − 𝛼𝑛) 𝑥𝑛 − 𝑧
+ 𝛼𝑛 𝑓 (𝑧) − 𝑧 . (27)

Hence

𝑥𝑛 − 𝑧 ≤ 11 − 𝛼 𝑓 (𝑧) − 𝑧 . (28)

So, {𝑥𝑛} is bounded, so is {𝑓(𝑥𝑛)}.
(ii) If 𝜌𝑛 ̸= 0. It follows from (19) and (21) that we get

𝑈𝜆𝑦𝑛 − 𝑧2 ≤ 𝑦𝑛 − 𝑧2 − 𝜆 (1 − 𝜆 − 𝑘) 𝑦𝑛 − 𝑈𝑦𝑛2
= 𝑥𝑛 − 𝜌𝑛𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛 − 𝑧2
− 𝜆 (1 − 𝜆 − 𝑘) 𝑦𝑛 − 𝑈𝑦𝑛2

≤ 𝑥𝑛 − 𝑧2
− (1 − 𝜏)24

(𝐼 − 𝑇)𝐴𝑥𝑛4𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑛2
− 𝜆 (1 − 𝜆 − 𝑘) 𝑦𝑛 − 𝑈𝑦𝑛2 .

(29)

Thus, 𝑈𝜆𝑦𝑛 − 𝑧 ≤ 𝑥𝑛 − 𝑧 . (30)

Combining with (30) and (25), we get (28). So, {𝑥𝑛} is
bounded, so is {𝑓(𝑥𝑛)}.
Step 2.We show that there exists a subsequence {𝑥𝑛𝑗} ⊆ {𝑥𝑛}
such that 𝑥𝑛𝑗 → �̂� as 𝑗 → ∞, and �̂� ∈ 𝑆 solves the variational
inequality (24).

By the reflexivity of Hilbert space 𝐻1 and the bounded-
ness of {𝑥𝑛}, there exists a weakly convergence subsequence{𝑥𝑛𝑗} ⊆ {𝑥𝑛} such that 𝑥𝑛𝑗 ⇀ �̂�, as 𝑗 → ∞.

First, we show that 𝑥𝑛𝑗 → �̂�, as 𝑗 → ∞.
Next, we denote 𝑥𝑛𝑗 by 𝑥𝑗.

(i) If 𝜌𝑛𝑗 = 0. From (18) and (21), we have

𝑥𝑗 − �̂�2
≤ (1 − 𝛼𝑗) 𝑈𝜆𝑥𝑗 − �̂�2
+ 2𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩

≤ (1 − 𝛼𝑗) [𝑥𝑗 − �̂�2 − 𝜆 (1 − 𝑘 − 𝜆) 𝑥𝑗 − 𝑈𝑥𝑗2]
+ 2𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩

≤ (1 − 𝛼𝑗) 𝑥𝑗 − �̂�2 + 2𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩ .

(31)

Hence𝑥𝑗 − �̂�2 ≤ 2⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩
≤ 2⟨𝑓 (𝑥𝑗) − 𝑓 (�̂�) , 𝑥𝑗 − �̂�⟩
+ 2 ⟨𝑓 (�̂�) − �̂�, 𝑥𝑗 − �̂�⟩

≤ 2𝛼 𝑥𝑗 − �̂�2 + 2 ⟨𝑓 (�̂�) − �̂�, 𝑥𝑗 − �̂�⟩ .
(32)

So

𝑥𝑗 − �̂�2 ≤ 21 − 2𝛼 ⟨𝑓 (�̂�) − �̂�, 𝑥𝑗 − �̂�⟩ . (33)

For {𝑥𝑗} ⇀ �̂� as 𝑗 → ∞, the above inequality implies that

𝑥𝑗 → �̂� as 𝑗 → ∞. (34)

(ii) If 𝜌𝑛𝑗 ̸= 0. From (18), (19) and (21), we have

𝑥𝑗 − �̂�2 ≤ (1 − 𝛼𝑗) 𝑈𝜆𝑦𝑗 − �̂�2
+ 2𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑛+1 − �̂�⟩ ≤ (1 − 𝛼𝑗)
⋅ (𝑦𝑗 − �̂�2 − 𝜆 (1 − 𝑘 − 𝜆) 𝑦𝑗 − 𝑈𝑦𝑗2)
+ 2𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑛+1 − �̂�⟩ ≤ (1 − 𝛼𝑗)
⋅ (𝑥𝑗 − �̂�2 − (1 − 𝜏)24

(𝐼 − 𝑇)𝐴𝑥𝑗4𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑗2)
− (1 − 𝛼𝑗) 𝜆 (1 − 𝑘 − 𝜆) 𝑦𝑗 − 𝑈𝑦𝑗2
+ 2𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩ ≤ (1 − 𝛼𝑗) 𝑥𝑗 − �̂�2
+ 2𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩ .

(35)

Then, (33) is obtained. By the similar proofs of the case of𝜌𝑛𝑗 = 0, we conclude that
𝑥𝑗 → �̂� as 𝑗 → ∞. (36)
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Second, we show that �̂� ∈ 𝑆.
(i) If 𝜌𝑛𝑗 = 0. From (31), we get

𝜆 (1 − 𝑘 − 𝜆) 𝑥𝑗 − 𝑈𝑥𝑗2
≤ 𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩ − 𝛼𝑗 𝑥𝑗 − �̂�2
≤ 𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩ .

(37)

Hence 𝑥𝑗 − 𝑈𝑥𝑗 → 0 as 𝑗 → ∞. (38)

For the case 𝜌𝑛𝑗 = 0, then it is clear we obtain

(𝐼 − 𝑇)𝐴𝑥𝑗 → 0 as 𝑗 → ∞. (39)

From (37) and the demiclosedness of 𝐼 − 𝑈 at zero, then

�̂� ∈ Fix (𝑈) . (40)

Since 𝐴 is bounded linear operator, then 𝐴 is weak
continuity; then

𝑥𝑗 ⇀ �̂� ⇒
𝐴𝑥𝑗 ⇀ 𝐴�̂�, as 𝑗 → ∞. (41)

From (39) and the demiclosedness of 𝐼 − 𝑇 at zero, then

𝐴�̂� ∈ Fix (𝑇) . (42)

Hence, �̂� ∈ 𝑆 by (40) and (42).

(ii) If 𝜌𝑛𝑗 ̸= 0. From (35), we get

𝜆 (1 − 𝑘 − 𝜆) 𝑦𝑗 − 𝑈𝑦𝑗2
+ (1 − 𝜏)24

(𝐼 − 𝑇)𝐴𝑥𝑗4𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑗2
≤ 2 𝛼𝑗1 − 𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩ − 𝛼𝑗 𝑥𝑗 − �̂�2
≤ 2 𝛼𝑗1 − 𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩ .

(43)

So, we have

0 ≤ 𝜆 (1 − 𝑘 − 𝜆) 𝑦𝑗 − 𝑈𝑦𝑗2
≤ 2 𝛼𝑗1 − 𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩ ,

(1 − 𝜏)24
(𝐼 − 𝑇)𝐴𝑥𝑗4𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑗2

≤ 2 𝛼𝑗1 − 𝛼𝑗 ⟨𝑓 (𝑥𝑗) − �̂�, 𝑥𝑗 − �̂�⟩ .

(44)

Take 𝑗 → ∞, we have𝑦𝑗 − 𝑈𝑦𝑗 → 0 as 𝑗 → ∞, (45)

(𝐼 − 𝑇)𝐴𝑥𝑗2𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑗 → 0 as 𝑗 → ∞. (46)

Moreover,

(𝐼 − 𝑇)𝐴𝑥𝑗 = ‖𝐴‖ ⋅
(𝐼 − 𝑇)𝐴𝑥𝑗‖𝐴‖

= ‖𝐴‖
⋅ (𝐼 − 𝑇)𝐴𝑥𝑗

(𝐼 − 𝑇)𝐴𝑥𝑗‖𝐴‖ (𝐼 − 𝑇)𝐴𝑥𝑗≤ ‖𝐴‖
⋅ (𝐼 − 𝑇)𝐴𝑥𝑗

(𝐼 − 𝑇)𝐴𝑥𝑗𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑗
= ‖𝐴‖ (𝐼 − 𝑇)𝐴𝑥𝑗2𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑗 .

(47)

Hence, from (46)(𝐼 − 𝑇)𝐴𝑥𝑗 → 0, as 𝑗 → ∞. (48)

By 𝑦𝑗 fl 𝑥𝑗 − 𝜌𝑗𝐴∗(𝐼 − 𝑇)𝐴𝑥𝑗, we have𝑥𝑗 − 𝑦𝑗 = 𝜌𝑗 𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑗
= 1 − 𝜏2

(𝐼 − 𝑇)𝐴𝑥𝑗2𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑗 .
(49)

So, 𝑥𝑗 − 𝑦𝑗 → 0, as 𝑗 → ∞. (50)

For 𝑥𝑗 → �̂�, then 𝑦𝑗 → �̂� by (50).
From (45) and the demiclosedness of 𝐼 − 𝑈 at zero, then

�̂� ∈ Fix (𝑈) . (51)

From (48) and the demiclosedness of 𝐼 − 𝑇 at zero, then

𝐴�̂� ∈ Fix (𝑇) . (52)

So, �̂� ∈ 𝑆 by (51) and (52).
Third, we show that �̂� ∈ 𝑆 solves the variational inequality

(24).
Indeed, from (22), we get

(𝐼 − 𝑓) 𝑥𝑗
= −1 − 𝛼𝑗𝛼𝑗 [𝑥𝑗 − 𝑈𝜆 (𝑥𝑗 − 𝜌𝑛𝐴∗ (𝐼 − 𝑇)𝐴𝑥𝑗)]
= −1 − 𝛼𝑗𝛼𝑗 (𝑥𝑗 − 𝑈𝜆𝑦𝑗) .

(53)
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The above equality and (30) imply that

⟨(𝐼 − 𝑓) 𝑥𝑗, 𝑥𝑗 − 𝑧⟩ = −1 − 𝛼𝑗𝛼𝑗 ⟨𝑥𝑗 − 𝑈𝜆𝑦𝑗, 𝑥𝑗 − 𝑧⟩
= −1 − 𝛼𝑗𝛼𝑗 ⟨𝑥𝑗 − 𝑧 − (𝑈𝜆𝑦𝑗 − 𝑧) , 𝑥𝑗 − 𝑧⟩ ≤ 0.

(54)

Since

⟨𝑥𝑗 − 𝑧 − (𝑈𝜆𝑦𝑗 − 𝑧) , 𝑥𝑗 − 𝑧⟩
= 𝑥𝑗 − 𝑧2 − ⟨𝑈𝜆𝑦𝑗 − 𝑧, 𝑥𝑗 − 𝑧⟩
≥ 𝑥𝑗 − 𝑧2 − 𝑈𝜆𝑦𝑗 − 𝑧 ⋅ 𝑥𝑗 − 𝑧
≥ 𝑥𝑗 − 𝑧2 − 𝑥𝑗 − 𝑧 ⋅ 𝑥𝑗 − 𝑧 = 0,

(55)

take the limit through 𝑗 → ∞ and we obtain

⟨�̂� − 𝑓 (�̂�) , �̂� − 𝑧⟩ ≤ 0, ∀𝑧 ∈ 𝑆. (56)

Step 3.We show that 𝑥𝑛 → �̂� as 𝑛 → ∞.
To show that 𝑥𝑛 → �̂� as 𝑛 → ∞, we only need to show

that any subsequence of {𝑥𝑛} converges strongly to �̂�.
Assuming the above conclusion does not hold, that is to

say, there exists another subsequence {𝑥𝑛𝑘} ⊆ {𝑥𝑛}, which
converges strongly to �̃� ̸= �̂� as 𝑘 → ∞. Similarly, we know�̃� ∈ 𝑆 solves the variational inequality

⟨�̃� − 𝑓 (�̃�) , �̃� − 𝑧⟩ ≤ 0, ∀𝑧 ∈ 𝑆. (57)

Replacing 𝑧 ∈ 𝑆 with �̃� ∈ 𝑆 in (56) and replacing 𝑧 ∈ 𝑆
with �̂� ∈ 𝑆 in (57), we obtain

⟨�̂� − 𝑓 (�̂�) , �̂� − �̃�⟩ ≤ 0,
⟨�̃� − 𝑓 (�̃�) , �̃� − �̂�⟩ ≤ 0. (58)

Adding up the above variational inequality yields

(1 − 𝛼) ‖�̂� − �̃�‖2 ≤ ⟨�̂� − �̃�, (𝐼 − 𝑓) �̂� − (𝐼 − 𝑓) �̃�⟩
≤ 0. (59)

Thus �̂� = �̃�. This is contradicting with the assumption�̂� ̸= �̃�, so {𝑥𝑛} converges strongly to �̂�.
The proof is completed.

4. Applications

In this section, we consider some special cases as the applica-
tions of Theorem 10.

Based on the relations of 𝑘-demicontractive opera-
tors, directed operators, and quasi-nonexpansive operators
(Proposition 8), the following corollaries are obtained easily.

Corollary 11. Let 𝑈 : 𝐻1 → 𝐻1 and 𝑇 : 𝐻2 → 𝐻2 be quasi-
nonexpansive operators and 𝐼 − 𝑈 and 𝐼 − 𝑇 be demiclosed at

zero. Assume the SCFP (4) is consistent (𝑆 ̸= 0). If 𝛼𝑛 ∈ (0, 1)
satisfies lim𝑛→∞ 𝛼𝑛 = 0 and ∑∞𝑛=0 𝛼𝑛 = ∞, then the sequence{𝑥𝑛} generated by implicit algorithm (22) converges strongly to
a point �̂� ∈ 𝑆, and �̂� = 𝑃𝑆𝑓(�̂�); that is, �̂� satisfies the following
variational inequality (24).

Corollary 12. Let 𝑈 : 𝐻1 → 𝐻1 and 𝑇 : 𝐻2 → 𝐻2 be
directed operators and 𝐼 − 𝑈 and 𝐼 − 𝑇 be demiclosed at zero.
Assume the SCFP (4) is consistent (𝑆 ̸= 0). If 𝛼𝑛 ∈ (0, 1)
satisfies lim𝑛→∞ 𝛼𝑛 = 0 and ∑∞𝑛=0 𝛼𝑛 = ∞, then the sequence{𝑥𝑛} generated by implicit algorithm (22) converges strongly to
a point �̂� ∈ 𝑆, and �̂� = 𝑃𝑆𝑓(�̂�); that is, �̂� satisfies the following
variational inequality (24).

Corollary 13. Let 𝑈 : 𝐻1 → 𝐻1 be a directed operator, 𝑇 :𝐻2 → 𝐻2 be a quasi-nonexpansive operator, and 𝐼 − 𝑈 and
I − 𝑇 be demiclosed at zero. Assume the SCFP (4) is consistent(𝑆 ̸= 0). If 𝛼𝑛 ∈ (0, 1) satisfies lim𝑛→∞ 𝛼𝑛 = 0 and ∑∞𝑛=0 𝛼𝑛 =∞, then the sequence {𝑥𝑛} generated by implicit algorithm (22)
converges strongly to a point �̂� ∈ 𝑆, and �̂� = 𝑃𝑆𝑓(�̂�); that is, �̂�
satisfies the following variational inequality (24).

Corollary 14. Let 𝑈 : 𝐻1 → 𝐻1 be a directed operator,𝑇 : 𝐻2 → 𝐻2 be a 𝜏-demicontractive operator, and 𝐼 − 𝑈 and𝐼 − 𝑇 be demiclosed at zero. Assume the SCFP (4) is consistent(𝑆 ̸= 0). If 𝛼𝑛 ∈ (0, 1) satisfies lim𝑛→∞ 𝛼𝑛 = 0 and ∑∞𝑛=0 𝛼𝑛 =∞, then the sequence {𝑥𝑛} generated by implicit algorithm (22)
converges strongly to a point �̂� ∈ 𝑆, and �̂� = 𝑃𝑆𝑓(�̂�); that is, �̂�
satisfies the following variational inequality (24).

Corollary 15. Let 𝑈 : 𝐻1 → 𝐻1 be a quasi-nonexpansive
operator, 𝑇 : 𝐻2 → 𝐻2 be a 𝜏-demicontractive operator, and𝐼 − 𝑈 and 𝐼 − 𝑇 be demiclosed at zero. Assume the SCFP (4)
is consistent (𝑆 ̸= 0). If 𝛼𝑛 ∈ (0, 1) satisfies lim𝑛→∞ 𝛼𝑛 = 0
and∑∞𝑛=0 𝛼𝑛 = ∞, then the sequence {𝑥𝑛} generated by implicit
algorithm (22) converges strongly to a point �̂� ∈ 𝑆, and �̂� =𝑃𝑆𝑓(�̂�); that is, �̂� satisfies the following variational inequality
(24).

5. Conclusions

In this paper, the research highlights that the strong conver-
gence of the SCFP (4) is constructed. We construct a novel
implicit algorithm for demicontractive operator to solve the
split common fixed points problem SCFP, and we prove that
the sequence {𝑥𝑛} strongly converges to a solution of the
SCFP. These results further complete the theory of the SCFP,
and some relevant work can be extended in the future.
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