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This paper develops a hybrid demon algorithm for a two-dimensional orthogonal strip packing problem.This algorithm combines
a placement procedure based on an improved heuristic, local search, and demon algorithm involved in setting one parameter. The
hybrid algorithm is tested on a wide set of benchmark instances taken from the literature and compared with other well-known
algorithms. The computation results validate the quality of the solutions and the effectiveness of the proposed algorithm.

1. Introduction

Cutting and packing are a very active field of research within
operational research, computer science, mathematics, and
management science.The two-dimensional cutting and pack-
ing problem is widely applied in optimally cutting raw mate-
rials such as glass, textile, steel, and paper and transportation
and logistics fields. For example, in textile or glass industries,
rectangular components have to be cut from large sheets of
material. In warehousing, goods have to be placed on shelves.
In newspapers paging, articles and advertisements have to
be arranged in pages [1]. In order to raise the profitability
of the manufacturing or logistics company, the consumption
of the raw materials or the cost of transportation should be
minimized. Obviously, if an enterprise designs a production
scheme using the least waste raw material, it can reduce the
manufacturing costs and increase the product’s competitive-
ness in the market.

The two-dimensional orthogonal strip packing problems
(2SP) addressed in this paper consist of packing rectangular
pieces into a large rectangular sheet of fixed width and
unlimited height in order to minimize the used height,
where the rectangular pieces are placed orthogonally without
overlap and no rotations are allowed. This problem is of
significance both from a theoretical and a practical point

of view because it arises in various production processes
and has many applications in the glass, steel, paper, and
textile industries, and they also have indirect applications in
other fields [2] such as layout designing, transportation, and
logistics. More extensive survey and classification on cutting
and packing problemsmay refer to Lodi et al. [1] andWäscher
et al. [3].

2SP is known to be NP-hard, some exact algorithms are
proposed by Martello et al. [4] and Kenmochi et al. [5],
but the size of instances that exact algorithms can handle
tends to be small. Therefore, many heuristic algorithms have
been suggested in the literature. Baker et al. [6] proposed a
bottom-left-fill (BLF) algorithm for 2SP and variants of BLF
[7]. Different types of construction heuristics have also been
proposed recently, for example, the best-fit heuristic [8], a
recursive heuristic [9], a bricklaying heuristic [10], a least
waste heuristic [11], and a scoring heuristic [12].

In comparison to the literature on construction heuristic
algorithms to packing problems, metaheuristic algorithms
are paid more and more attention recently. Bortfeldt [13]
proposed a genetic algorithm. The above two algorithms
explore placements directly and allow infeasible solutions.
However, most metaheuristic algorithms have been devel-
oped by incorporating a construction heuristic to improve
the quality of solutions.Hopper andTurton [14] implemented
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Table 1: New scoring function score (𝑖, ℎ
1
, ℎ
2
, 𝑤) for ℎ

1
≥ ℎ
2
.

Conditions 𝑓 𝑓new 𝑚

ℎ
1
≥ ℎ
2

Case (1): 𝑤 = 𝑟[𝑖]⋅width and ℎ
1
= 𝑟[𝑖]⋅length 4 4 −2 or −1

Case (2): 𝑤 = 𝑟[𝑖]⋅width and ℎ
1
< 𝑟[𝑖]⋅length 3 3 0

Case (3): 𝑤 = 𝑟[𝑖]⋅width and ℎ
1
> 𝑟[𝑖]⋅length 2 1 0

Case (4): 𝑤 > 𝑟[𝑖]⋅width and ℎ
1
= 𝑟[𝑖]⋅length 1 2 0

Case (5): 𝑤 > 𝑟[𝑖]⋅width 0 0 +1

a simulated annealing, tabu search, and genetic algorithm
by incorporating BLF, respectively. Lesh et al. [15] proposed
new heuristic and interactive approaches based on BLF for
2SP. Alvarez-Valdes et al. [16] presented a greedy randomized
adaptive search procedure (GRASP) that involves learning
some instances to determine the desirable parameter settings
for 2SP. Wei et al. [11] presented a least waste algorithm
by combining a simulated annealing algorithm for rectangle
packing problem. Burke et al. [17] implemented a simulated
annealing, tabu search, and genetic algorithm by incorpo-
rating BF. Leung et al. [18] proposed a simulated annealing
algorithm based on a scoring rule heuristic. Some other
algorithms based on different types of strategies have also
been proposed, for example, SVC [19] and SWL [20]. Zhang
et al. [21] developed a binary search heuristic algorithm based
on randomized local search for the rectangular strip packing
problem. In particular, an efficient algorithm for strip packing
problem can be extended to solve other problems such as bin
packing problem [22, 23]. In this paper, we present a hybrid
demon algorithm for 2SPwhich combines a demon algorithm
with local search and an improved heuristic. This paper
mainly has three contributions: firstly, a new scoring rule is
presented; secondly, a least waste strategy is proposed; at last,
a demon algorithm with fewer parameters than simulated
annealing algorithm is applied to solve 2SP.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the hybrid algorithm: an improved scoring
rule and demon algorithm. Section 3 investigates the effect
of the parameter of demon algorithm and the least waste
strategy. Section 4 reports the experimental results. Section 5
summarizes the conclusions and proposes future work.

2. Hybrid Algorithm

2.1. Improved Construction Heuristic Algorithm. It has been
reported that construction heuristic algorithm is one of the
best heuristics while combining with a simulated annealing
algorithm [18]. Construction heuristic algorithm is stated as
follows: give a rectangle piece sequence, the algorithm finds
an unplaced piece with themaximum score for the lowest and
themost left space, and then place it. Repeat the above process
until all the pieces are placed. Leung et al. [18] proposed the
scoring rules as Table 1 which is very important to select one
unplaced piece, where 𝑤 is the width of the available space
and ℎ
1
and ℎ
2
are the height of the left and right, respectively,

wall of the available space. 𝑟[𝑖] ⋅ width and 𝑟[𝑖] ⋅ length
denote width and length, respectively, of rectangular piece
𝑖, 𝑚 denotes the change number of spaces, and 𝑓 is fitness
value as Leung et al. [18]. However, they do not explain why

case (3) in Table 1 has higher score than case (4). In fact, the
two cases have the same 𝑚; namely, the number of available
spaces does not increase. Due to the fact that the objective of
the problem is to minimize the height of the sheet, the result
obtained by the scoring rule in Table 1 may be bad, while
case (3) has higher score than case (4). For example, given
a piece sequence: red, blue, yellow, and green, the packing
result is shown in Figure 1, the yellow piece will be first placed
according to the original scoring rule𝑓 after the red piece and
blue piece are placed, and then the green piece is placed as
Figure 1(a), so the height obtained is 11. However, the height
obtained is 9 if the new scoring rule 𝑓new is used that the
green piece should be placed earlier than the yellow piece.
The above example shows that the new scoring rule may lead
to a better result than the original scoring rule. So the new
scoring rule𝑓new for ℎ1 ≥ ℎ2 as shown in Table 1 is used in this
paper; for ℎ

1
< ℎ
2
, the new scoring rule𝑓new can be calculated

similarly.
In addition, one piece 𝑟 is selected by case (4) in Table 1,

and we can try to place it into the current available space 𝑠; if
it leads to the waste of the remainder space, then find another
piece 𝑞 with the maximal width from all the unplaced pieces
that meets ℎ

𝑞
= ℎ
𝑟
and can be packed into 𝑠. For example,

given a piece sequence: red, yellow, blue, green, black, and
grey, the packing result is shown in Figure 2(a), the width of
the current available space 𝑠 is 4 after the red, yellow, blue,
and green pieces are placed, the black piece 𝑟 (ℎ

𝑟
= 5 and

𝑤
𝑟
= 2) is selected by the scoring rule, and after it is placed,

the width of the remainder space is 2. If the width of all the
unpacked piece is larger than 2, the remainder space 2 × 3
will be wasted. The grey piece is placed after the black piece
is placed. The height obtained is 13. However, the obtained
height is 11 if we use the least waste strategy. Namely, we can
find another piece 𝑞 (ℎ

𝑞
= 5 and𝑤

𝑞
= 3) fromall the unplaced

pieces. Obviously, placing the piece 𝑞 makes waste least and
obtains the smaller height. Similarly, if one piece 𝑟 is selected
by case (5) in Table 1, and placing it leads to the waste of the
remainder space, then find another unplaced piece 𝑞with the
maximal width from all the unplaced pieces thatmeets 𝑐

𝑞
≥ 𝑐
𝑟

and can be packed into 𝑠, where 𝑐
𝑞
and 𝑐
𝑟
denote the perimeter

of the pieces 𝑞 and 𝑟, respectively.

2.2. HybridDemonAlgorithm. Thesimulated annealing algo-
rithm (SA) was invented to allow computer simulation of
equilibria in statistical physics. It is a powerful randomized
search algorithm, and the computational results have shown
that ISA [18] based on SA is the best algorithm for 2SP.
However, SA has to set the initial temperature, the annealing
rate, and the Markov chain length. These parameters have
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(a) Case (3) has higher score than case (4) (b) Case (4) has higher score than case (3)

Figure 1: Placement by the different scoring rules.

(a) (b)

Figure 2: The least waste strategy.

significant effect on the performance of SA, but they have
no general setting rule. Therefore, some variants with fewer
parameters are paid attention by some researchers.

Demon algorithm is a simulated annealing based algo-
rithm that uses computationally simpler acceptance function.
This paper applies demon algorithm for 2SP. In order to
solve it, the hybrid demon algorithm can be stated as in
Algorithm 1, where LS() is similar to that in Leung et al. [18]
and is stated as in Algorithm 2, where 𝐿 is the number of
pieces, besth saves the best solution during the search process,
and currenth is the height returned by HeuristicPacking(𝑋󸀠).
The process of HeuristicPacking(𝑋󸀠) is the same as that of
Leung et al. [18] except that a new scoring rule and a least

waste strategy are used. Line 14 means keeping the old
sequence𝑋.𝐷 is a key parameter that controls the acceptance
function.

HDA first searches a better solution according to a local
search algorithm LS() and then makes use of demon algo-
rithm to improve the solution.Multistart ingredient (lines 16–
20) is employed to help HDA to escape from possible local
minima.

3. Effect of Parameter 𝐷

HDAonly involves in setting one parameter𝐷, so it is simpler
than simulated annealing algorithm. This section gives some
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HDA()
(1) LS();
(2) give an initial value𝐷 and 𝑏𝑒𝑠𝑡 = 𝑏𝑒𝑠𝑡ℎ;
(3) while the stop criterion is not yet satisfied do
(4) for 𝑖 ← 1 to 𝐿 do
(5) randomly select two pieces 𝑗 and 𝑘 in𝑋;
(6) swap the order of pieces 𝑗 and 𝑘;
(7) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡ℎ ←HeuristicPacking(𝑋󸀠);
(8) Δ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡ℎ − 𝑏𝑒𝑠𝑡;
(9) if Δ < 𝐷 then
(10) 𝑏𝑒𝑠𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡ℎ;
(11) if 𝑏𝑒𝑠𝑡 < 𝑏𝑒𝑠𝑡ℎ then
(12) 𝑏𝑒𝑠𝑡ℎ ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡ℎ;
(13) 𝐷 = 𝐷 − Δ;
(14) else
(15) swap the order of pieces 𝑗 and 𝑘;
(16) randomly flip a coin;
(17) if coin comes up heads then
(18) sort all the pieces by non-increasing ordering of perimeter size to obtain 𝑋;
(19) else
(20) sort all the pieces by non-increasing ordering of width size and obtain 𝑋;
(21) return 𝑏𝑒𝑠𝑡ℎ;

Algorithm 1: Hybrid demon algorithm.

LS()
(1) sort all unpacked pieces by non-increasing ordering of length size to obtain X;
(2) 𝑏𝑒𝑠𝑡ℎ ←HeuristicPacking(X);
(3) for 𝑖 ← 1 to 𝑛 − 1 do
(4) for 𝑗 ← 𝑖 + 1 to 𝑛 do
(5) swap the order of pieces 𝑖 and 𝑗 in𝑋 and obtain a new ordering𝑋󸀠;
(6) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡ℎ ←HeuristicPacking(𝑋󸀠);
(7) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡ℎ < 𝑏𝑒𝑠𝑡ℎ then
(8) 𝑏𝑒𝑠𝑡ℎ ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡ℎ;
(9) 𝑋 ← 𝑋

󸀠;

Algorithm 2

experiments to further select the value of 𝐷. In order to add
the effect of demon algorithm, we only use some small and
medium instances to save more time for demon algorithm
to improve the solution. Several difficult data sets NT, gcut,
Nice1∼6, and Path1∼6 are selected because they contain zero-
waste instances and nonzero-waste instances. Figures 3∼5
give the results of demon algorithm on the above instances,
where 𝑥-axis denotes the different value of 𝐷 and 𝑦-axis
denotes the average gap over 10 runs. Although there exists
some slight difference for different data sets, we note that Gap
will increase as 𝐷 increases. Therefore, 𝐷 = 1 is selected for
the experiments in next section.

Figures 6, 7, and 8 report the results of hybrid demon
algorithm with and without the least waste strategy, where
𝑥-axis denotes the problem instance and 𝑦-axis denotes the
average gap over 10 runs. From these figures, we can note
that the results obtained by the algorithm without the least
waste strategy are slightly better than that obtained by the
algorithm with the least waste strategy for zero-waste data
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Figure 3: Effect of𝐷 on the data set NT.

sets C.The algorithm with the least waste strategy can obtain
the better results than that without the least waste strategy
for nonzero-waste data sets. Because nonzero-waste data sets
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Figure 4: Effect of𝐷 on the data set gcut.
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Figure 5: Effect of𝐷 on the data set Nice1∼6 and Path1∼6.

contain more instances, so we use the least waste strategy in
the experiments in next section.

4. Experimental Results

In this section, we present the results obtained in a set of
experiments we conducted in order to evaluate the perfor-
mance of the hybrid demon algorithm (HDA) proposed in
this paper. This paper uses the same data sets C, N, NT and
CX, 2sp, BWMV, Nice, and Path as Leung et al. [18]. All the
data sets are publicly available at http://algorithm.xmu.edu
.cn:10000/Download.aspx#p4. These data sets include zero-
waste instances and nonzero-waste instances from the litera-
ture. Zero-waste instances were created from known optimal
solutions, and nonzero-waste instances do not necessarily
have an optimal solution and their optimal solutions involve
some waste regions.

The algorithmwas implemented inVisual C++6.0 and the
experimental tests were run on a computer with an Intel core
2 CPU 2.13GHz and 0.99GB RAM. GRASP [16], SVC [19],
and ISA [18] are among the supposedly excellent algorithms
in the current literature, so they are selected to compare with
HDA. Computational results of GRASP, SVC, and ISA were
taken from Leung et al. [18]. They were run on a computer
with Intel Xeon CPU E5405 2.00GHz 1.99GB RAM and
were run 10 times with a time limit of 60 seconds per run
for each instance. HDA was allowed 60-second duration
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Figure 6: Effect of the least waste strategy on the data set 𝐶.
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Figure 7: Effect of the least waste strategy on the data set Nice1∼6
and Path1∼6.

too. The computational results are reported in Tables 2∼9,
where Instance denotes problem instance, 𝑛 is the number of
rectangular pieces,𝑊 is the width of the rectangular sheet, LB
is the optimal height for zero-waste instances and is the lower
bound for nonzero-waste instances, and 𝑚𝑒𝑎𝑛ℎ denotes the
average height obtained by each algorithm, running 10 times
for each instance, respectively. Gap is defined as follows:
Gap = 100 × (𝑚𝑒𝑎𝑛ℎ − LB)/LB. The detailed results on the
best and worst cases are available from the authors after this
paper is published.

4.1. Zero-Waste Instances. Tables 2∼9 report the results of
four algorithms on zero-waste problem instances. In each
table, the best results obtained by four algorithms are marked
by boldface. The first four columns describe the characteris-
tics of each instance. Columns 5∼8 correspond to the average
height obtained by GRASP, SVC, ISA, andHDA, respectively.
Columns 9∼12 correspond to the Gap obtained by GRASP,
SVC, ISA, and HDA, respectively.

Table 2 shows the results of four algorithms for the data
set C [14], which have been used by many authors. From
Table 2, GRASP, SVC, and ISA return an average gap of 0.95,
1.03, and 0.76, respectively. HDA with an average gap of 0.71
performs better than GRASP, SVC, and ISA. In addition, we
can observe that HDA performs well for large instances.
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Table 2: Results obtained by GRASP, SVC, ISA, and HDA on C.

Instance meanh Gap
𝑛 𝑊 LB GRASP SVC ISA HDA GRASP SVC ISA HDA

C11 16 20 20 20 20 20.0 20 0.0 0.0 0.0 0.0
C12 17 20 20 20 21 20.0 20 0.0 5.0 0.0 0.0
C13 16 20 20 20 20 20.0 20 0.0 0.0 0.0 0.0
C21 25 40 15 15 15 15.0 15 0.0 0.0 0.0 0.0
C22 25 40 15 15 15 15.0 15 0.0 0.0 0.0 0.0
C23 25 40 15 15 15 15.0 15 0.0 0.0 0.0 0.0
C31 28 60 30 30 30 30.0 30 0.0 0.0 0.0 0.0
C32 29 60 30 31 31 31.0 30.9 3.3 3.3 3.3 3.0
C33 28 60 30 30 30 30.0 30 0.0 0.0 0.0 0.0
C41 49 60 60 61 61 61.0 61 1.7 1.7 1.7 1.7
C42 49 60 60 61 61 61.0 61 1.7 1.7 1.7 1.7
C43 49 60 60 61 61 60.9 61 1.7 1.7 1.5 1.7
C51 73 60 90 91 91 91.0 91 1.1 1.1 1.1 1.1
C52 73 60 90 91 91 90.8 91 1.1 1.1 0.9 1.1
C53 73 60 90 91 91 91.0 91 1.1 1.1 1.1 1.1
C61 97 80 120 122 121 121.0 121 1.7 0.8 0.8 0.8
C62 97 80 120 121 121 121.0 121 0.8 0.8 0.8 0.8
C63 97 80 120 122 121 121.0 121 1.7 0.8 0.8 0.8
C71 196 160 240 244 242 242.0 241 1.7 0.8 0.8 0.4
C72 197 160 240 243 242 241.0 241 1.3 0.8 0.4 0.4
C73 196 160 240 243 242 242.0 241 1.3 0.8 0.8 0.4

Average 83.19 82.95 82.84 82.76 0.95 1.03 0.76 0.71

Table 3: Results obtained by GRASP, SVC, ISA, and HDA on N.

Instance meanh Gap
𝑛 𝑊 LB GRASP SVC ISA HDA GRASP SVC ISA HDA

N1 10 40 40 40 40 40.0 40 0.0 0.0 0.0 0.0
N2 20 30 50 50 50 50.0 50 0.0 0.0 0.0 0.0
N3 30 30 50 51 50 50.1 50 2.0 0.0 0.2 0.0
N4 40 80 80 81 81 80.0 80 1.3 1.3 0.0 0.0
N5 50 100 100 102 101 101.0 100 2.0 1.0 1.0 0.0
N6 60 50 100 101 101 100.9 100.7 1.0 1.0 0.9 0.7
N7 70 80 100 101 101 100.0 100 1.0 1.0 0.0 0.0
N8 80 100 80 81 81 81.0 81 1.3 1.3 1.3 1.3
N9 100 50 150 151 151 150.9 151 0.7 0.7 0.6 0.7
N10 200 70 150 151 151 150.8 151 0.7 0.7 0.5 0.7
N11 300 70 150 151 151 150.7 150.8 0.7 0.7 0.5 0.5
N12 500 100 300 304 301 301.0 301 1.3 0.3 0.3 0.3
N13 3152 640 960 965 963 960.0 960 0.5 0.3 0.0 0.0

Average 179.15 178.62 178.18 178.12 0.95 0.63 0.41 0.32

Table 3 shows the results of four algorithms for the data
set N generated by Burke et al. [8]. From Table 3, GRASP,
SVC, and ISA return an average gap of 0.95, 0.63, and 0.41,
respectively. HDA with an average gap of 0.32 performs
better than GRASP, SVC, and ISA.What is more, the optimal
solution of N13 is obtained by ISA and HDA.

Table 4 shows the results of four algorithms for the data
set NT, which is generated by Hopper and Turton [14]. From

Table 4, GRASP, SVC, and ISA return an average gap of 2.32,
2.27, and 2.24, respectively. HDA with an average gap of 1.91
performs better than GRASP, SVC, and ISA. In addition, we
can observe that HDA performs the same or better for large
instances n7a∼e and t7a∼e.

Table 5 shows the results of four algorithms for the extra-
large data set CX, which is generated by Pinto and Oliveira
[24]. From Table 5, GRASP, SVC, and ISA return an average
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Table 4: Results obtained by GRASP, SVC, ISA, and HDA on NT.

Instance meanh Gap
𝑛 𝑊 LB GRASP SVC ISA HDA GRASP SVC ISA HDA

n1a 17 200 200 200 202 200.0 200 0.0 1.0 0.0 0.0
n1b 17 200 200 209 200 211.2 200 4.5 0.0 5.6 0.0
n1c 17 200 200 200 200 200.0 200 0.0 0.0 0.0 0.0
n1d 17 200 200 200 200 200.0 200 0.0 0.0 0.0 0.0
n1e 17 200 200 200 200 200.0 200 0.0 0.0 0.0 0.0
n2a 25 200 200 206 205 204.0 201.3 3.0 2.5 2.0 0.7
n2b 25 200 200 206 209 209.4 210 3.0 4.5 4.7 5.0
n2c 25 200 200 208 209 208.5 206.3 4.0 4.5 4.3 3.2
n2d 25 200 200 209 207 207.8 205.9 4.5 3.5 3.9 3.0
n2e 25 200 200 206 205 206.7 206.1 3.0 2.5 3.3 3.1
n3a 29 200 200 209 208 206.1 206.3 4.5 4.0 3.1 3.2
n3b 29 200 200 208 207 209.0 208.9 4.0 3.5 4.5 4.5
n3c 29 200 200 205 207 206.1 205 2.5 3.5 3.1 2.5
n3d 29 200 200 207 208 204.3 204.5 3.5 4.0 2.2 2.3
n3e 29 200 200 207 207 208.0 208.1 3.5 3.5 4.0 4.1
n4a 49 200 200 206 205 206.0 205.9 3.0 2.5 3.0 3.0
n4b 49 200 200 207 205 205.0 204.7 3.5 2.5 2.5 2.3
n4c 49 200 200 205 205 206.0 205.3 2.5 2.5 3.0 2.7
n4d 49 200 200 206 205 204.8 204.9 3.0 2.5 2.4 2.5
n4e 49 200 200 205 205 206.0 206.1 2.5 2.5 3.0 3.1
n5a 73 200 200 205 204 205.1 205.5 2.5 2.0 2.6 2.8
n5b 73 200 200 204 204 203.6 203.1 2.0 2.0 1.8 1.6
n5c 73 200 200 206 204 204.4 204.5 3.0 2.0 2.2 2.3
n5d 73 200 200 204 205 205.0 204.7 2.0 2.5 2.5 2.3
n5e 73 200 200 206 205 204.7 204.9 3.0 2.5 2.3 2.5
n6a 97 200 200 204 203 202.8 202.7 2.0 1.5 1.4 1.3
n6b 97 200 200 204 204 203.0 202.9 2.0 2.0 1.5 1.5
n6c 97 200 200 204 204 203.6 203.2 2.0 2.0 1.8 1.6
n6d 97 200 200 204.1 202 203.8 203 2.1 1.0 1.9 1.5
n6e 97 200 200 204 203 203.5 203 2.0 1.5 1.8 1.5
n7a 199 200 200 202 202 201.0 201 1.0 1.0 0.5 0.5
n7b 199 200 200 203 202 202.0 201 1.5 1.0 1.0 0.5
n7c 199 200 200 203 202 201.9 201 1.5 1.0 1.0 0.5
n7d 199 200 200 203 202 201.9 201 1.5 1.0 1.0 0.5
n7e 199 200 200 203 202 201.9 201 1.5 1.0 1.0 0.5
t1a 17 200 200 200 200 200.0 200 0.0 0.0 0.0 0.0
t1b 17 200 200 200 211 200.0 200 0.0 5.5 0.0 0.0
t1c 17 200 200 200 210 200.0 200 0.0 5.0 0.0 0.0
t1d 17 200 200 200 200 211.8 200 0.0 0.0 5.9 0.0
t1e 17 200 200 200 209 200.0 200 0.0 4.5 0.0 0.0
t2a 25 200 200 204 207 207.0 206.3 2.0 3.5 3.5 3.2
t2b 25 200 200 208 205 207.0 205.8 4.0 2.5 3.5 2.9
t2c 25 200 200 208 206 206.0 207.4 4.0 3.0 3.0 3.7
t2d 25 200 200 206 207 209.3 204.4 3.0 3.5 4.7 2.2
t2e 25 200 200 206 207 207.4 205.9 3.0 3.5 3.7 3.0
t3a 29 200 200 207 208 209.0 209 3.5 4.0 4.5 4.5
t3b 29 200 200 209 207 208.1 207.9 4.5 3.5 4.1 4.0
t3c 29 200 200 206 207 206.6 206.3 3.0 3.5 3.3 3.2
t3d 29 200 200 207 208 206.4 206.4 3.5 4.0 3.2 3.2
t3e 29 200 200 208 206 205.0 205 4.0 3.0 2.5 2.5
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Table 4: Continued.

Instance meanh Gap
𝑛 𝑊 LB GRASP SVC ISA HDA GRASP SVC ISA HDA

t4a 49 200 200 205 205 205.0 204.7 2.5 2.5 2.5 2.3
t4b 49 200 200 205 205 206.1 205.9 2.5 2.5 3.1 3.0
t4c 49 200 200 206 205 204.9 204.7 3.0 2.5 2.5 2.3
t4d 49 200 200 206 205 205.7 205.4 3.0 2.5 2.8 2.7
t4e 49 200 200 207 205 205.2 205.5 3.5 2.5 2.6 2.8
t5a 73 200 200 206 204 204.4 204.5 3.0 2.0 2.2 2.3
t5b 73 200 200 204 204 204.0 204.4 2.0 2.0 2.0 2.2
t5c 73 200 200 205 204 205.0 205.5 2.5 2.0 2.5 2.8
t5d 73 200 200 204 205 204.9 204.7 2.0 2.5 2.5 2.3
t5e 73 200 200 204 204 204.0 204.7 2.0 2.0 2.0 2.3
t6a 97 200 200 204 204 203.2 203.7 2.0 2.0 1.6 1.8
t6b 97 200 200 204 202 203.4 203.2 2.0 1.0 1.7 1.6
t6c 97 200 200 204 204 203.0 202.7 2.0 2.0 1.5 1.3
t6d 97 200 200 204 204 203.5 203.7 2.0 2.0 1.8 1.8
t6e 97 200 200 205 204 203.5 203.5 2.5 2.0 1.8 1.8
t7a 199 200 200 203 201 201.2 201 1.5 0.5 0.6 0.5
t7b 199 200 200 203 202 201.0 201 1.5 1.0 0.5 0.5
t7c 199 200 200 204 202 201.0 201 2.0 1.0 0.5 0.5
t7d 199 200 200 202 202 202.0 201 1.0 1.0 1.0 0.5
t7e 199 200 200 203 202 201.7 201 1.5 1.0 0.8 0.5

Average 204.64 204.54 204.48 203.83 2.32 2.27 2.24 1.91

Table 5: Results obtained by GRASP, SVC, ISA, and HDA on CX.

Instance meanh Gap
𝑛 𝑊 LB GRASP SVC ISA HDA GRASP SVC ISA HDA

50cx 50 400 600 613 603 620.2 607.3 2.2 0.5 3.4 1.2
100cx 100 400 600 617 616 615.8 617.3 2.8 2.7 2.6 2.9
500cx 500 400 600 605 604 601.0 601 0.8 0.7 0.2 0.2
1000cx 1000 400 600 602 601 600.0 600 0.3 0.2 0.0 0.0
5000cx 5000 400 600 600 600 600.0 600 0.0 0.0 0.0 0.0
10000cx 10000 400 600 600 600 600.0 600 0.0 0.0 0.0 0.0
15000cx 15000 400 600 600 600 600.0 600 0.0 0.0 0.0 0.0

Average 605.29 603.43 605.29 603.66 0.88 0.57 0.88 0.61

gap of 0.88, 0.57, and 0.88, respectively. HDA with an average
gap of 0.61 performs better than GRASP and ISA and slightly
worse than SVC.

4.2. Nonzero-Waste Instances. Section 4.1 has discussed the
results on the zero-waste instances with known optimal
solutions. In some practical applications, the optimal solu-
tions often include some wasted regions. So nonzero-waste
instances are more general and are widely used in the litera-
ture.We can compute the lower bound of these instances, and
the optimal solutions of some instances are known because
they are confirmed by other algorithms. In this section, we
investigate if HDA can still be successfully employed to solve
such instances. Tables 6∼9 summarize the computational
results on nonzero-waste instances.

Table 6 shows the results of nonzero-waste data sets 2sp
which include ngcut [25], gcut [26], cgcut [27], andBeng [28].
The problem size of 2sp is very small; namely, 𝑛 is less than

200, so it is used by many authors to test the performance of
the algorithms. From Table 6, GRASP, SVC, and ISA return
an average gap of 2.68, 2.8, and 3.02, respectively. HDA with
an average gap of 3.04 performs slightly worse than GRASP,
SVC, and ISA. However, HDA can obtain smaller average
meanh 1538.16 than GRASP, SVC, and ISA, so HDA is still
efficient for 2sp.

Table 7 shows the results of nonzero-waste data sets
BWMV which include C01∼C06 [29], C07∼C10 [30]. The
problem size of BWMV is very small (𝑛 ≤ 100), so it is used
by many authors to test the performance of the algorithms.
From Table 7, GRASP, SVC, and ISA return an average gap of
1.77, 1.80, and 1.66, respectively. HDA with an average gap of
1.63 performs better than GRASP, SVC, and ISA. So HDA is
superior to GRASP, SVC, and ISA.

Table 8 shows the results of data sets Nice and Path which
are floating-point data sets and are generated by Valenzuela
and Wang [31], where Nice1∼Nice5t are the sets of similarly
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Table 6: Results obtained by GRASP, SVC, ISA, and HDA on 2sp.

Instance meanh Gap
𝑛 𝑊 LB GRASP SVC ISA HDA GRASP SVC ISA HDA

cgcut1 16 10 23 23 23 23.0 24 0.0 0.0 0.0 4.3
cgcut2 23 70 63 65 65 65.0 65 3.2 3.2 3.2 3.2
cgcut3 62 70 636 661 661 660.2 662.2 3.9 3.9 3.8 4.1
gcut1 10 250 1016 1016 1016 1016.0 1016 0.0 0.0 0.0 0.0
gcut2 20 250 1133 1191 1187 1187.0 1187 5.1 4.8 4.8 4.8
gcut3 30 250 1803 1803 1803 1803.0 1803 0.0 0.0 0.0 0.0
gcut4 50 250 2934 3002 3017 3010.5 3002 2.3 2.8 2.6 2.3
gcut5 10 500 1172 1273 1273 1273.0 1273 8.6 8.6 8.6 8.6
gcut6 20 500 2514 2627 2632 2632.0 2629.5 4.5 4.7 4.7 4.6
gcut7 30 500 4641 4693 4693 4693.0 4693.8 1.1 1.1 1.1 1.1
gcut8 50 500 5703 5912 5876 5890.4 5884.2 3.7 3.0 3.3 3.2
gcut9 10 1000 2022 2317 2317 2317.0 2317 14.6 14.6 14.6 14.6
gcut10 20 1000 5356 5964 5973 5964.8 5964.9 11.4 11.5 11.4 11.4
gcut11 30 1000 6537 6899 6891 6884.4 6883.6 5.5 5.4 5.3 5.3
gcut12 50 1000 12522 14690 14690 14690.0 14690 17.3 17.3 17.3 17.3
gcut13 32 3000 4772 4994 4977 4965.9 4963.2 4.7 4.3 4.1 4.0
ngcut1 10 10 23 23 23 23.0 23 0.0 0.0 0.0 0.0
ngcut2 17 10 30 30 30 31.0 31 0.0 0.0 3.3 3.3
ngcut3 21 10 28 28 28 28.0 28 0.0 0.0 0.0 0.0
ngcut4 7 10 20 20 20 20.0 20 0.0 0.0 0.0 0.0
ngcut5 14 10 36 36 36 36.0 36 0.0 0.0 0.0 0.0
ngcut6 15 10 29 31 31 31.0 31 6.9 6.9 6.9 6.9
ngcut7 8 20 20 20 20 20.0 20 0.0 0.0 0.0 0.0
ngcut8 13 20 32 33 34 34.0 34 3.1 6.3 6.3 6.3
ngcut9 18 20 49 50 51 52.0 51 2.0 4.1 6.1 4.1
ngcut10 13 30 80 80 80 80.0 80 0.0 0.0 0.0 0.0
ngcut11 15 30 50 52 52 52.0 52 4.0 4.0 4.0 4.0
ngcut12 22 30 87 87 87 87.0 87 0.0 0.0 0.0 0.0
beng1 20 25 30 30 30 31.0 30.7 0.0 0.0 3.3 2.3
beng2 40 25 57 57 57 57.0 57 0.0 0.0 0.0 0.0
beng3 60 25 84 84 84 84.0 84 0.0 0.0 0.0 0.0
beng4 80 25 107 107 107 107.0 107 0.0 0.0 0.0 0.0
beng5 100 25 134 134 134 134.0 134 0.0 0.0 0.0 0.0
beng6 40 40 36 36 36 36.0 36 0.0 0.0 0.0 0.0
beng7 80 40 67 67 67 67.0 67 0.0 0.0 0.0 0.0
beng8 120 40 101 101 101 101.0 101 0.0 0.0 0.0 0.0
beng9 160 40 126 126 126 126.0 126 0.0 0.0 0.0 0.0
beng10 200 40 156 156 156 156.0 156 0.0 0.0 0.0 0.0

Average 1539.95 1539.05 1538.64 1538.16 2.68 2.8 3.02 3.04

dimensioned pieces and Path1∼Path5t are of vastly differing
dimensions. Nice and Path are regarded as nonzero-waste
instances because the integer data are obtained bymultiplying
the original data by 10 and rounding to the nearest integer
[16]. Nice and Path are more difficult because the optimal
solutions of many instances are not known. From Table 8,
GRASP, SVC, and ISA return an average gap of 1.65, 0.96, and
0.72, respectively. HDA with an average gap of 0.63 performs

better than GRASP, SVC, and ISA. HDA performs the same
or better for 65 out of 72 instances, so its advantage is very
obvious.

Table 9 reports results of large data set ZDF which is
generated by combining zero-waste and nonzero-waste data
[12]. ZDF includes several extra-large instances ZDF14∼16
(𝑛 > 15000). Generally, it is very difficult to obtain the
optimal solutions of ZDF14∼16 within a reasonable time.
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Table 7: Results obtained by GRASP, SVC, ISA, and HDA on BWMV.

Instances meanh Gap
𝑛 𝑊 LB GRASP SVC ISA HDA GRASP SVC ISA HDA

C01

20 10 60.3 61.4 61.4 61.3 61.3 1.8 1.8 1.7 1.7
40 10 121.6 121.9 122 121.8 121.8 0.2 0.3 0.2 0.2
60 10 187.4 188.6 188.6 188.6 188.6 0.6 0.6 0.6 0.6
80 10 262.2 262.6 262.6 262.6 262.6 0.2 0.2 0.2 0.2
100 10 304.4 305 304.9 304.9 304.9 0.2 0.2 0.2 0.2

C02

20 30 19.7 19.8 19.8 19.9 19.8 0.5 0.5 1.0 0.5
40 30 39.1 39.1 39.1 39.1 39.1 0.0 0.0 0.0 0.0
60 30 60.1 60.3 60.1 60.1 60.1 0.3 0.0 0.0 0.0
80 30 83.2 83.3 83.2 83.2 83.2 0.1 0.0 0.0 0.0
100 30 100.5 100.6 100.5 100.5 100.5 0.1 0.0 0.0 0.0

C03

20 40 157.4 163.5 164.6 164.0 163.7 3.9 4.6 4.2 4.0
40 40 328.8 334.2 333.9 333.8 333.8 1.6 1.6 1.5 1.5
60 40 500 506.6 506.9 505.8 505.9 1.3 1.4 1.2 1.2
80 40 701.7 709.7 710.1 709.2 709.5 1.1 1.2 1.1 1.1
100 40 832.7 840.2 839.9 837.8 838.4 0.9 0.9 0.6 0.7

C04

20 100 61.4 63.3 63.8 63.9 63.4 3.1 3.9 4.1 3.3
40 100 123.9 126.2 126.2 126.1 125.8 1.9 1.9 1.8 1.5
60 100 193 196.6 195.6 195.5 195.5 1.9 1.3 1.3 1.3
80 100 267.2 272 270.5 269.8 270.1 1.8 1.2 1.0 1.1
100 100 322 327.3 325.3 324.6 324.6 1.6 1.0 0.8 0.8

C05

20 100 512.2 533.9 537.9 534.6 534.1 4.2 5.0 4.4 4.3
40 100 1053.8 1074.4 1076.4 1073.6 1073.5 2.0 2.1 1.9 1.9
60 100 1614 1645.5 1647.6 1643.4 1644.0 2.0 2.1 1.8 1.9
80 100 2268.4 2290.5 2288.9 2289.0 2289.3 1.0 0.9 0.9 0.9
100 100 2617.4 2651.1 2653.5 2644.4 2646.4 1.3 1.4 1.0 1.1

C06

20 10 159.9 167.2 169.6 169.6 168.7 4.6 6.1 6.1 5.5
40 10 323.5 333.4 332.6 334.0 333.2 3.1 2.8 3.2 3.0
60 10 505.1 519.9 517.2 519.0 518.5 2.9 2.4 2.8 2.6
80 10 699.7 718.4 714.7 715.5 715.4 2.7 2.1 2.3 2.2
100 10 843.8 865.1 860.6 861.1 861.2 2.5 2.0 2.1 2.1

C07

20 30 490.4 501.9 501.9 501.9 501.9 2.3 2.3 2.3 2.3
40 30 1049.7 1059 1059.9 1059.0 1059.4 0.9 1.0 0.9 0.9
60 30 1515.9 1529.6 1530 1529.6 1529.6 0.9 0.9 0.9 0.9
80 30 2206.1 2222.2 2222.1 2222.1 2222.1 0.7 0.7 0.7 0.7
100 30 2627 2644 2644 2645.4 2644.1 0.6 0.6 0.7 0.7

C08

20 40 434.6 458.3 461.2 458.6 458.0 5.5 6.1 5.5 5.4
40 40 922 954.3 956.5 951.9 951.8 3.5 3.7 3.2 3.2
60 40 1360.9 1405 1403.5 1399.4 1403.1 3.2 3.1 2.8 3.1
80 40 1909.3 1971.5 1965 1954.7 1960.9 3.3 2.9 2.4 2.7
100 40 2362.8 2436.8 2425 2410.8 2418.3 3.1 2.6 2.0 2.4

C09

20 100 1106.8 1106.8 1106.8 1106.8 1106.8 0.0 0.0 0.0 0.0
40 100 2189.2 2190.6 2190.6 2190.6 2191.1 0.1 0.1 0.1 0.1
60 100 3410.4 3410.4 3410.4 3410.4 3410.4 0.0 0.0 0.0 0.0
80 100 4578.6 4588.1 4588.1 4588.1 4588.1 0.2 0.2 0.2 0.2
100 100 5430.5 5434.9 5434.9 5434.9 5434.9 0.1 0.1 0.1 0.1

C10

20 100 337.8 350.5 351.5 350.4 350.1 3.8 4.1 3.7 3.6
40 100 642.8 664.4 667 664.0 663.7 3.4 3.8 3.3 3.3
60 100 911.1 934.7 936.6 933.1 933.2 2.6 2.8 2.4 2.4
80 100 1177.6 1209.9 1212.4 1204.1 1205.2 2.7 3.0 2.3 2.3
100 100 1476.5 1512.3 1514 1504.2 1506.5 2.4 2.5 1.9 2.0

Average 1043.34 1043.19 1041.53 1041.92 1.77 1.80 1.66 1.63
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Table 8: Results obtained by GRASP, SVC, ISA, and HDA on Nice and Path.

Instance meanh Gap
𝑛 𝑊 LB GRASP SVC ISA HDA GRASP SVC ISA HDA

Nice1 25 1000 1000 1034 1037 1040.7 1034.8 3.4 3.7 4.1 3.5
Nice2 50 1000 1001 1047 1038 1047.2 1037.7 4.6 3.7 4.6 3.7
Nice3 100 1000 1001 1041 1035 1036.5 1030.9 4.0 3.4 3.5 3.0
Nice4 200 1000 1001 1037 1026 1030.9 1023 3.6 2.5 2.9 2.2
Nice5 500 1000 1000 1024 1017 1015.0 1008 2.4 1.7 1.5 0.8
Nice6 1000 1000 999 1020 1014 1011.0 1004 2.1 1.5 1.2 0.5

Nice1t

1000 1000 1001 1026 1015 1011.0 1006 2.5 1.4 1.0 0.5
1000 1000 1001 1022 1016 1010.0 1005 2.1 1.5 0.9 0.4
1000 1000 1000 1020 1013 1011.0 1005 2.0 1.3 1.1 0.5
1000 1000 1000 1019 1013 1010.0 1005 1.9 1.3 1.0 0.5
1000 1000 1000 1022 1014 1010.0 1005 2.2 1.4 1.0 0.5
1000 1000 1001 1020 1014 1010.0 1005 1.9 1.3 0.9 0.4
1000 1000 1000 1022 1014 1010.0 1006 2.2 1.4 1.0 0.6
1000 1000 1001 1021 1016 1012.0 1007 2.0 1.5 1.1 0.6
1000 1000 1000 1022 1017 1012.0 1005 2.2 1.7 1.2 0.5
1000 1000 1001 1027 1016 1012.0 1007 2.6 1.5 1.1 0.6

Nice2t

2000 1000 1001 1016 1008 1006.0 1004 1.5 0.7 0.5 0.3
2000 1000 1001 1015 1011 1005.0 1005 1.4 1.0 0.4 0.4
2000 1000 1000 1016 1008 1007.0 1005 1.6 0.8 0.7 0.5
2000 1000 1000 1014 1007 1006.0 1003 1.4 0.7 0.6 0.3
2000 1000 1000 1015 1008 1006.0 1003 1.5 0.8 0.6 0.3
2000 1000 1000 1016 1002 1005.0 1004 1.6 0.2 0.5 0.4
2000 1000 1001 1016 1007 1007.0 1004 1.5 0.6 0.6 0.3
2000 1000 1001 1014 1006 1006.0 1003 1.3 0.5 0.5 0.2
2000 1000 1001 1016 1008 1007.0 1006 1.5 0.7 0.6 0.5
2000 1000 1001 1016 1009 1007.0 1005 1.5 0.8 0.6 0.4

Nice5t

5000 1000 1000 1010 1003 1003.0 1003 1.0 0.3 0.3 0.3
5000 1000 1001 1011 1005 1003.0 1003 1.0 0.4 0.2 0.2
5000 1000 1001 1010 1002 1003.0 1003 0.9 0.1 0.2 0.2
5000 1000 1000 1009 1005 1002.0 1003 0.9 0.5 0.2 0.3
5000 1000 1001 1011 1006 1003.0 1004 1.0 0.5 0.2 0.3
5000 1000 1000 1009 1001 1002.0 1001 0.9 0.1 0.2 0.1
5000 1000 1001 1011 1004 1003.0 1003 1.0 0.3 0.2 0.2
5000 1000 1000 1011 1004 1002.0 1003 1.1 0.4 0.2 0.3
5000 1000 1001 1010 1004 1003.0 1003 0.9 0.3 0.2 0.2
5000 1000 1000 1010 1005 1003.0 1003 1.0 0.5 0.3 0.3

Path1 25 1000 1001 1042 1042 1042.0 1041.8 4.1 4.1 4.1 4.1
Path2 50 1000 1000 1019 1014 1014.7 1011.9 1.9 1.4 1.5 1.2
Path3 100 1000 1000 1027 1022 1022.6 1025.1 2.7 2.2 2.3 2.5
Path4 200 1000 1002 1023 1018 1017.7 1013 2.1 1.6 1.6 1.1
Path5 500 1000 1000 1034 1022 1020.0 1016 3.4 2.2 2.0 1.6
Path6 1000 1000 1002 1026 1018 1011.0 1010 2.4 1.6 0.9 0.8

Path1t

1000 1000 999 1019 1011 1007.0 1003 2.0 1.2 0.8 0.4
1000 1000 1001 1018 1010 1006.0 1005 1.7 0.9 0.5 0.4
1000 1000 1001 1018 1013 1008.0 1006 1.7 1.2 0.7 0.5
1000 1000 1000 1016 1009 1006.0 1003 1.6 0.9 0.6 0.3
1000 1000 1003 1024 1017 1010.0 1010 2.1 1.4 0.7 0.7
1000 1000 1002 1018 1013 1010.0 1005 1.6 1.1 0.8 0.3
1000 1000 999 1019 1012 1008.0 1004 2.0 1.3 0.9 0.5
1000 1000 1000 1020 1012 1008.0 1006 2.0 1.2 0.8 0.6
1000 1000 999 1019 1012 1006.0 1003 2.0 1.3 0.7 0.4
1000 1000 1002 1018 1011 1008.0 1006 1.6 0.9 0.6 0.4
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Table 8: Continued.

Instance meanh Gap
𝑛 𝑊 LB GRASP SVC ISA HDA GRASP SVC ISA HDA

Path2t

2000 1000 1000 1015 1009 1006.0 1002 1.5 0.9 0.6 0.2
2000 1000 1002 1016 1010 1007.0 1004 1.4 0.8 0.5 0.2
2000 1000 1000 1015 1011 1006.0 1003 1.5 1.1 0.6 0.3
2000 1000 999 1014 1007 1003.0 1000 1.5 0.8 0.4 0.1
2000 1000 1002 1018 1012 1008.0 1006 1.6 1.0 0.6 0.4
2000 1000 1002 1016 1011 1007.0 1003 1.4 0.9 0.5 0.1
2000 1000 998 1011 1007 1004.0 1001 1.3 0.9 0.6 0.3
2000 1000 998 1014 1010 1004.0 1003 1.6 1.2 0.6 0.5
2000 1000 1001 1017 1010 1008.0 1003 1.6 0.9 0.7 0.2
2000 1000 1003 1018 1009 1009.0 1005 1.5 0.6 0.6 0.2

Path5t

5000 1000 1000 1010 1002 1003.0 1001 1.0 0.2 0.3 0.1
5000 1000 998 1009 1003 1001.0 1001 1.1 0.5 0.3 0.3
5000 1000 1000 1011 1002 1003.0 1002 1.1 0.2 0.3 0.2
5000 1000 995 1006 998 997.0 997 1.1 0.3 0.2 0.2
5000 1000 1004 1016 1005 1006.0 1006 1.2 0.1 0.2 0.2
5000 1000 1000 1009 1003 1002.0 1001 0.9 0.3 0.2 0.1
5000 1000 998 1009 1001 1001.0 1000 1.1 0.3 0.3 0.2
5000 1000 996 1007 998 999.0 998 1.1 0.2 0.3 0.2
5000 1000 997 1007 999 999.0 998 1.0 0.2 0.2 0.1
5000 1000 1002 1013 1004 1004.0 1005 1.1 0.2 0.2 0.3

Average 1016.63 1009.75 1007.36 1006.57 1.65 0.96 0.72 0.63

Table 9: Results obtained by GRASP, SVC, ISA, and HDA on ZDF.

Instance meanh Gap
𝑛 𝑊 LB GRASP SVC ISA HDA GRASP SVC ISA HDA

zdf1 580 100 330 333 331 330.0 330 0.9 0.3 0.0 0
zdf2 660 100 357 360 358 357.0 357 0.8 0.3 0.0 0
zdf3 740 100 384 387 385 384.0 384 0.8 0.3 0.0 0
zdf4 820 100 407 410 408 407.0 407 0.7 0.2 0.0 0
zdf5 900 100 434 437 434 434.0 434 0.7 0.0 0.0 0
zdf6 1532 3000 4872 5251 5085 5081.8 5066 7.8 4.4 4.3 4
zdf7 2432 3000 4852 5163 5083 5084.7 5017 6.4 4.8 4.8 3.4
zdf8 2532 3000 5172 5544 5386 5549.0 5397 7.2 4.1 7.3 4.4
zdf9 5032 3000 5172 5476 5468 5404.0 5408 5.9 5.7 4.5 4.6
zdf10 5064 6000 5172 5570 5462 5419.0 5433 7.7 5.6 4.8 5
zdf11 7564 6000 5172 5562 5516 5419.0 5439 7.5 6.7 4.8 5.2
zdf12 10064 6000 5172 — 5651 5454.0 5403 — 9.3 5.5 4.5
zdf13 15096 9000 5172 — 5600 5415.0 5415 — 8.3 4.7 4.7
zdf14 25032 3000 5172 — 5468 5286.0 5353 — 5.7 2.2 3.5
zdf15 50032 3000 5172 — 5960 5172.0 5273 — 15.2 0.0 2
zdf16 75032 3000 5172 — 5931 5172.0 5203 — 14.7 0.0 0.6

Average 3907.88 3773.03 3769.94 5.34 2.67 2.62

Thesymbol “—” denotes that theGRASP executable program
cannot return the results, so its average gap is not given. From
Table 9, we can observe that SVC and ISA return an average
gap of 5.34 and 2.67, respectively. HDA with an average gap
of 2.62 performs better than SVC and ISA. ISA and HDA
perform well for large instances.

5. Conclusions

A hybrid demon algorithm for 2SP is presented in this paper.
This algorithm improves the scoring rule presented by Leung
et al. [18] and a demon algorithm with one parameter is used
to improve the quality of the solutions. Computational results
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Figure 8: Effect of the least waste strategy on the data set gcut.

have shown that HDA outperforms well-known GRASP,
SVC, and ISA.The experiments in Section 3 show thatHDA is
more stable and efficient for different𝐷 value. HDAperforms
well for large instances; future work is to further improve
the quality of the solutions by combining exact algorithms or
other metaheuristic algorithms.
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