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This paper addresses the problem of voltage collapse in power systems. More precisely,
we exhibit a voltage collapse in a power system with two buses. This study is carried out
with the help of two approaches. The first is a dynamical approach where a saddle-node
bifurcation is analyzed and the second is an algebraic approach. Both approaches deal
with the static behavior of the power system, but some dynamic aspects may be observed.
An equivalence between the algebraic and dynamical approaches is obtained. The need
to use both models comes from the fact that they are usually exploited in the literature,
but a deep theoretical justification is still pending. Such a justification is meant in this
work.
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under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Studying saddle-node in dynamical systems may help to understand and prevent some
problems. This is because unlike other kinds of bifurcation, saddle-node is associated
with an absence of equilibrium points beyond the bifurcation point. Therefore, analyzing
a system during the bifurcation path may help to foresee a parameter value associated
with the saddle-node point.

The study of saddle-node in power systems has increased in recent years. Such inves-
tigations help in understanding how a system may become unstable as a consequence of
successive small parameter variations. This problem is known as voltage collapse, and de-
serves special attention from engineers and operators around the world [1]. Identifying
the point of bifurcation plays a crucial role on power system analysis, since it may help
the operator to avoid instability problems. For this purpose, continuation methods may
be accurate and useful, since they identify the saddle-node point and trace the bifurcation
diagram.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2006, Article ID 91367, Pages 1–11
DOI 10.1155/MPE/2006/91367

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192755171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1155/S1024123X06913672


2 Dynamical studies from a static formulation

Other methods are meant to determine this bifurcation point in a short computational
time and interesting results have been obtained [5, 6]. In some cases, conflicting results
have been reported, rendering some indices as better than others. For instance, the meth-
ods studied in [2] tend to produce different results, which seems to be a contradiction,
since they are all based on the same set of equations. This problem has been investigated
in [8], where it is shown that, under certain conditions, all the indices tend to provide the
same behavior. This is particularly important when dealing with modal analysis, since a
saddle-node is associated with a zero real eigenvalue.

Based on this knowledge, several works attempt to detect saddle-node bifurcations by
tracking the least eigenvalue along the system loading. The literature shows, however, that
monitoring the least eigenvalue may lead to frustrating results, since the bifurcation point
is not predicted. This is because the least tracked eigenvalue may present a sharp variation
at the bifurcation point. On the other hand, it is shown that tangent vector and the zero
right eigenvector (the eigenvector associated with the vanishing eigenvalue, or the center
manifold) provide an index associated with a quadratic behavior.

The literature shows that if a proper reduction of the set of equations is executed, the
decoupled or normal form of a saddle-node may be obtained [7]. This kind of decompo-
sition has not been derived for power systems, so far. On the other hand, it is possible to
observe a saddle-node without the reduction of the set of equations to the normal form.

A set of algebraic equations models the power flow in electrical systems. It is impor-
tant to mention that, in this paper, “algebraic” is just a substitute for a “nondifferential”.
However, those equations can seem to be differential equations, and analytical tools for
those objects can be used.

This characteristic is exploited in this paper. In Section 2, we apply the saddle-node
bifurcation theory to a simple power system. In Section 3, we present a detailed study of
the saddle-node bifurcation in the analyzed power system. From a geometrical point of
view of saddle-node bifurcation, we exhibit an algebraic approach for the initial problem
in Section 4. An equivalence of the two approaches is obtained in Section 5.

2. Saddle-node bifurcation in a power system

Power systems are huge electrical systems. The name arises because of the huge amount
of power required by the load. During the modeling, for simplicity, a set of generators is
grouped in a single point, and the same is applied for a group of loads. This is called a bus,
as illustrated in Figure 2.1. This kind of system is modeled by a set of differential-algebraic
equations, and it is subject to several disturbances that tend to change its equilibrium
points. In general, a power system may be driven to instability as a consequence of a
transmission line tripping or a generator outage. Recently, it has been shown that a power
system may also be driven to instability because of successive small load variations. In this
case, the load variation is considered as the system parameter, and a power system may
experiment Hopf or saddle-node bifurcations. Hopf bifurcations are characterized by the
existence of a purely imaginary pair of eigenvalues. The effects in a power system are
oscillations in the generator machines. In this paper, saddle-node is particularly focused
on, and the consequences in a power system are discussed.
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1 2

Figure 2.1. Two-bus system.

Consider the sample lossless power system shown in Figure 2.1.
For this system, the power flow algebraic equations associated with Bus 2 are

P2 = V2 sinδ2

X
,

Q2 =−V2 cosδ2

X
+
V 2

2

X
,

(2.1)

where P2 and Q2 are the active and reactive powers at Bus 2, whereas V2 and δ2 are the
voltage level and the phase angle at the same bus, respectively. Considering that the power
factor is equals to 1, P2 is equal to V2. Taking P2 = Q2 = λ, and setting α = λX , x = V2,
y = δ2 one has

x sin y +α= 0,

−xcos y + x2 +α= 0,
(2.2)

where x ∈ (0,∞), y ∈ [−π/2,π/2] and α∈ [0,∞).
Equations (2.2) define the equilibrium points of a system of differential equations,

according to [3]. Thus

ẋ = x sin y +α,

ẏ = x2− xcos y +α.
(2.3)

We have the following theorem.

Theorem 2.1. The one-parameter family of ordinary differential equations (2.3) has a
saddle-node bifurcation.

For the proof of Theorem 2.1, we use the following theorem due to J. Sotomayor (see
[4, page 148]).

Theorem 2.2. Let x′ = f (x,α) be a system of differential equations in Rn depending on the
single parameter α. When α = α∗, assume that there is an equilibrium point p∗ satisfying
the following:
(SN1) the Jacobian matrix at (p∗,α∗) presents a zero eigenvalue (only one) with right and

left eigenvectors v∗ and w∗, respectively;
(SN2) w∗ · (d/dα) f (p∗,α∗) �= 0;
(SN3) w∗ ·D2

x f (p∗,α∗)(v∗,v∗) �= 0.
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Then, there is a smooth curve of equilibrium points in Rn×R passing through (p∗,α∗),
tangent to the hyperplane Rn×{α∗}. Depending on the signs in (SN2) and (SN3), there is
no equilibrium point near (p∗,α∗) when α < α∗ (α > α∗), and there are two equilibrium
points near (p∗,α∗) for each value α > α∗ (α < α∗). Both equilibrium points of x′ = f (x,α)
near (p∗,α∗) are hyperbolic. Such equilibrium points coalesce at α= α∗.

Theorem 2.2 states that the saddle-node bifurcation behaves qualitatively as

x′ = ±(x− x∗
)2± (α−α∗

)
(2.4)

along the direction given by the eigenvector associated with the zero eigenvalue. For other
directions, it presents a hyperbolic behavior.

Hence, the analysis of x′ = f (x,α), where x ∈Rn, near (p∗,α∗) may be reduced to the
study of the equation x′ = ±(x− x∗)2± (α− α∗), as long as x belongs to the eigenspace
associated with the vanishing eigenvalue.

Proof of Theorem 2.1. Write the ordinary differential equations (2.3) in the form

ẋ = f (x,α)= ( f1(x,α), f2(x,α)
)= (x1 sinx2 +α,x2

1 − x1 cosx2 +α
)
, (2.5)

where x = (x1,x2). When α= α∗ = 0.207106, (2.5) has only one equilibrium point at

p∗ = (0.541196,−0.392699). (2.6)

The Jacobian matrix of f at (p∗,α∗) is

J
(
p∗,α∗

)=
[−0.382683 0.500000

0.158512 −0.207106

]

(2.7)

whose eigenvalues are

λ∗ = 0, η∗ = −0.589790. (2.8)

The right and the left eigenvectors belonging to λ∗ are

v∗ = (1,0.765366),

w∗ = (1,2.414213),
(2.9)

respectively. As

d

dα
f
(
p∗,α∗

)= (1,1), (2.10)

we have

w∗ · d

dα
f
(
p∗,α∗

)= (1,2.414213) · (1,1)= 3.414213 �= 0. (2.11)
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Now

D2
x f
(
p∗,α∗

)(
v∗,v∗

)=
⎛

⎝
2∑

j,k=1

∂2 f1
∂xk∂xj

(
p∗,α∗

)
βjβk,

2∑

j,k=1

∂2 f2
∂xk∂xj

(
p∗,α∗

)
βjβk

⎞

⎠ ,

(2.12)

where

(
β1,β2

)= v∗ = (1,0.765366). (2.13)

Thus, we have

D2
x f
(
p∗,α∗

)(
v∗,v∗

)= (1.535533,1.707106). (2.14)

Therefore,

w∗ ·D2
x f
(
p∗,α∗

)(
v∗,v∗

)= (1,2.414213) · (1.535533,1.707106) �= 0. (2.15)

The conditions (SN1), (SN2), and (SN3) are satisfied in (2.8), (2.11) and (2.15), respec-
tively. Theorem 2.1 is proved. �

3. Study of the saddle-node bifurcation

In this section, we exhibit a detailed study of the saddle-node bifurcation in a power
system given by (2.3).

For 0≤ α < 0.207106, there are two equilibrium points of (2.3) determined by

p0 =
(
x0, y0

)=
(√

−2α+ 1−√Δ
2

,sin−1

(

−
√

2α
√
−2α+ 1−√Δ

))

,

p1 =
(
x1, y1

)=
(√

−2α+ 1 +
√
Δ

2
,sin−1

(

−
√

2α
√
−2α+ 1 +

√
Δ

))

,

(3.1)

where Δ=−4α2− 4α+ 1.
For 0.194788≤ α < 0.207106, p0 is a stable node and p1 is a saddle point. Setting

β(α)=
√

−2α+ 1−√Δ
2

, γ(α)=
√

−2α+ 1 +
√
Δ

2
, (3.2)
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the Jacobian matrices at p0 and p1 become

J
(
p0
)=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− α

β(α)

√(
β(α)

)2−α2

2β(α)−
√(

β(α)
)2−α2

β(α)
−α

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

J
(
p1
)=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− α

γ(α)

√(
γ(α)

)2−α2

2γ(α)−
√(

γ(α)
)2−α2

γ(α)
−α

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

(3.3)

From (3.3), one can see that J(p0) presents two negative eigenvalues,

λ01 =−
(
α+α/

√
(−2α+ 1−√Δ)/2

)
+
√
Δ′

2
,

λ02 =−
(
α+α/

√
(−2α+ 1−√Δ)/2

)
−√Δ′

2
,

(3.4)

where

Δ′ =
⎛

⎝α+
α

√
(−2α+ 1−√Δ)/2

⎞

⎠

2

− 4

√

−2α+ 1−√Δ
2

√

−2α+ 1−√Δ
2

−α2, (3.5)

whereas J(p1) presents one positive and another negative,

λ11 =−
(
α+α/

√
(−2α+ 1 +

√
Δ)/2

)
+
√
Δ′′

2
,

λ12 =−
(
α+α/

√
(−2α+ 1 +

√
Δ)/2

)
−√Δ′′

2
,

(3.6)

where

Δ′′ =
(

α+
α

√
(−2α+ 1 +

√
Δ)/2

)2

− 4

√

−2α+ 1 +
√
Δ

2

√

−2α+ 1 +
√
Δ

2
−α2. (3.7)

For α= α∗ = 0.207106, (2.3) have only one equilibrium point at

p∗ =
(
x∗, y∗

)= (0.541196,−0.392699), (3.8)

which is a saddle-node point. This is confirmed by the analysis developed in the previous
section.
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There is no equilibrium point for α > 0.207106.

4. The significance of the use of differential equations

In Sections 2 and 3, the saddle-node bifurcation of the one-parameter family of ordi-
nary differential equations (2.3) was analyzed. Recall that these differential equations are
obtained from the one-parameter family of algebraic equations (2.2), which models the
two-bus power system of Figure 2.1.

Note that we are not interested in the dynamical properties of (2.3). We are only inter-
ested in the evolution of the equilibrium points of (2.3) as the parameter varies.

An operating point of the power system is defined as the point that satisfies (2.2). From
the geometrical point of view, an operating point of the power system is a point where
the curves A= A(x, y,α)= 0 and B = B(x, y,α)= 0, defined by

A(x, y,α)= x sin y +α, B(x, y,α)=−xcos y + x2 +α, (4.1)

have intersection.
Let p0 = (x0, y0) be an operating point of the power system. We say that p0 is a transver-

sal operating point at α= α0 if

J(A,B)
(
p0,α0

)= ∂(A,B)
∂(x, y)

(
p0,α0

)= det

⎡

⎢
⎢
⎢
⎢
⎣

∂A

∂x

(
p0,α0

) ∂A

∂y

(
p0,α0

)

∂B

∂x

(
p0,α0

) ∂B

∂y

(
p0,α0

)

⎤

⎥
⎥
⎥
⎥
⎦
�= 0. (4.2)

This condition means that the curves A= 0 and B = 0 are regular and meet transversally
at p0 when α= α0. It follows that transversal operating points are isolated. Therefore, p0

is a transversal operating point at α= α0 if and only if the vectors

∇A(p0,α0
)=

(
∂A

∂x

(
p0,α0

)
,
∂A

∂y

(
p0,α0

)
)

,

∇B(p0,α0
)=

(
∂B

∂x

(
p0,α0

)
,
∂B

∂y

(
p0,α0

)
) (4.3)

are linearly independent.
We say that an operating point p0 is a tangential operating point at α= α0 if the curves

A = 0 and B = 0 are regular and the vectors ∇A(p0,α0) and ∇B(p0,α0) are linearly de-
pendent. This implies that the matrix

⎡

⎢
⎢
⎢
⎣

∂A

∂x
(p,α)

∂A

∂y
(p,α)

∂B

∂x
(p,α)

∂B

∂y
(p,α)

⎤

⎥
⎥
⎥
⎦

(4.4)

evaluated at (p0,α0) has a zero eigenvalue.
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A tangential bifurcation occurs at a tangential operating point p = p0 for the parameter
value α= α0 if the following hold:

(TB1) there are numbers t0 and ε > 0 and a smooth curve t 
→ γ(t) = (γ1(t),γ2(t)) in
R2×R such that γ(t0)= (p0,α0), A(γ(t))≡ 0, and B(γ(t))≡ 0, for |t− t0| < ε;

(TB2) the curve γ has a quadratic tangency with R2×{α0} at (p0,α0);
(TB3) if 0 < |t− t0| < ε, then∇A(γ(t)) and∇B(γ(t)) are linearly independent;
(TB4) if μ(t) is the eigenvalue of the matrix (4.4) evaluated at γ(t) such that μ(t0)= 0,

then μ(t) crosses the imaginary axis with nonzero speed at t = t0.
We have the following theorem.

Theorem 4.1. The one-parameter family of algebraic equations (2.2) has a tangential bi-
furcation.

Proof. The point

p0 = (0.541196,−0.392699) (4.5)

is a tangential operating point at α0 = 0.207106. From A= 0 and B = 0, we have

α=−x sin y, α=−x2 + xcos y, (4.6)

respectively. Thus,

α=−x sin y =−x2 + xcos y, x = sin y + cos y. (4.7)

Therefore,

α=−x sin y =−(sin y + cos y)sin y. (4.8)

Setting t = y, we have from the above equations

x(t)= sin t+ cos t, α(t)=−(sin t+ cos t)sin t. (4.9)

Define the curve

γ(t)= (x(t), y(t),α(t)
)= (sin t+ cos t, t,−sin t(sin t+ cos t)

)
, (4.10)

for |t− t0| < ε, where t0 =−0.392699 and ε > 0 is small. Thus, we have

γ
(
t0
)= (p0,α0

)
, A

(
γ(t)

)≡ 0, B
(
γ(t)

)≡ 0, (4.11)

for |t− t0| < ε. Now,

γ2
(
t0
)= 0.207106, γ′2

(
t0
)= 0, γ′′2

(
t0
)=−2.828427 �= 0. (4.12)

This implies that the curve γ has a quadratic tangency with R2×{α0} at (p0,α0). As the
matrix (4.4), evaluated at γ(t), is given by

[
sin t cos t(sin t+ cos t)

2sin t+ cos t sin t(sin t+ cos t)

]

, (4.13)
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we have

J
(
A
(
γ(t)

)
,B
(
γ(t)

))= (sin t+ cos t)
(

sin2 t− 2sin t cos t− cos2 t
) �= 0, (4.14)

for 0 < |t− t0| < ε. This implies that the vectors ∇A(γ(t)) and ∇B(γ(t)) are linearly in-
dependent for 0 < |t− t0| < ε. Let μ(t) be the eigenvalue of the matrix (4.13) satisfying
μ(t0)= 0. We have

μ(t)

=1
2

[
sin t+sin2 t+sin t cos t

+
√

sin2 t−2sin3 t+6sin2 t cos t+sin4 t+2sin3 t cos t+sin2 t cos2 t+12sin t cos2 t+4cos3 t
]
.

(4.15)

Thus

μ′
(
t0
)= 2.595386 �= 0. (4.16)

The theorem is proved. �

From Theorems 2.1 and 4.1, we have the following main theorem, whose proof is
immediate.

Theorem 4.2. The one-parameter family of algebraic equations (2.2) has a tangential bi-
furcation if and only if the one-parameter family of ordinary differential equations (2.3) has
a saddle-node bifurcation.

Hence, studying the loss of transversality of the curves A = 0 and B = 0 may provide
some important pieces of information about voltage collapse in power systems. This oc-
curs exactly at the saddle-node point of the dynamical model. This is observed with the
help of (4.2), whose rows are the components of the gradient vectors of the functions A
and B.

At the saddle-node point, the Jacobian matrix is singular (has a zero eigenvalue). But
this implies that the matrix shown in (4.2) is also singular. Thus the gradients of the func-
tions A and B are parallels and this point is a tangential operating point of the algebraic
model.

5. Tangential versus saddle-node bifurcation

Consider two C1 functions F,G : U × I ⊂ R2 ×R→ R, where (x, y) ∈ U and α ∈ I . The
following theorem generalizes Theorem 4.2.

Theorem 5.1. The one-parameter family of algebraic equations

F(x, y,α)= 0, G(x, y,α)= 0 (5.1)

has a tangential bifurcation at p0 = (x0, y0) ∈ U for α = α0 ∈ I if and only if the
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one-parameter family of ordinary differential equations

x′ = F(x, y,α), y′ =G(x, y,α) (5.2)

has a saddle-node bifurcation at p0 for α0.

Proof. Suppose that (5.2) has a saddle-node bifurcation at p0 for α0. Without loss of
generality, we can take (5.2) in the saddle-node normal form

x′ = x2 +α, y′ = −y, (5.3)

which has a saddle-node bifurcation at p0 = (0,0) for α0 = 0. Therefore, F(x, y,α)= x2 +
α and G(x, y,α)=−y. Define γ(t)= (t,0,−t2), t ∈R. Let t0 = 0. Thus,

γ
(
t0
)= γ(0)= (0,0,0)= (p0,α0

)
,

F
(
γ(t)

)= F
(
t,0,−t2)= t2− t2 ≡ 0,

G
(
γ(t)

)=G
(
t,0,−t2)≡ 0.

(5.4)

Condition (TB1) is satisfied. As γ2(t)=−t2,

γ2(0)= 0, γ′2(0)= 0, γ′′2 (0)=−2 �= 0, (5.5)

and condition (TB2) is satisfied. Now,

J
(
A
(
γ(t)

)
,B
(
γ(t)

))= det

[
2t 0
0 −1

]

=−2t �= 0, (5.6)

for t �= t0 = 0. This implies condition (TB3). Condition (TB4) is immediate since μ(t)=
2t, μ(0)= 0, and μ′(0)= 2 �= 0. Therefore, (5.1) has a tangential bifurcation at p0 for α0.

On the other hand, as the curve γ(t) satisfies F(γ(t))≡ 0 and G(γ(t))≡ 0, (TB1), each
operating point γ(t) of (5.1) is an equilibrium point of (5.2). As the curve γ has a qua-
dratic tangency with R2 ×{α0} at (p0,α0), (TB2), depending on the sign of γ′′2 (t0) �= 0,
there is no equilibrium point near (p0,α0) when α < α0 (α > α0), and there are two equi-
librium points near (p0,α0) for each value α > α0 (α < α0). Both equilibrium points of
(5.2) near (p0,α0) are hyperbolic, (TB3). Such equilibrium points coalesce at α= α0. Note
that (TB2) and (TB4) imply nondegeneracy conditions of saddle-node bifurcation. The
theorem is proved. �

6. Conclusions

This paper dealt with the important problem of saddle-node bifurcation in power sys-
tems. This problem is usually studied in power systems with the help of an algebraic set
of equations. Such a model may be justified by comparing the results obtained by both
algebraic and differential-algebraic methods.

In this paper, it is shown that saddle-node takes place when the transversality of the
curves obtained from the system model no longer occurs. This is described by the paral-
lelism of the gradient vectors associated with a reduced set of equations.
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The results obtained for the sample system analyzed are easily extended to bigger
power systems, since the reduction to the equations of interest is straightforward. The
theorem proposed here may also be applied for similar dynamical systems, enabling one
to employ simplified system models, while understanding the pieces of information ob-
tained.
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