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Obesity is one of the major global health problems. Melatonin deficiency has been demonstrated to correlate with obesity. The aim
of the study was to estimate the effect of melatonin on oxidative stress and adipokine levels in obese patients on a calorie-restricted
diet. Thirty obese patients were supplemented with a daily dose of 10mg of melatonin (n = 15) or placebo (n = 15) for 30 days with a
calorie-restricted diet. Serum levels of melatonin, 4-hydroxynonenal (HNE), adiponectin, omentin-1, leptin, and resistin, as well as
erythrocytic malondialdehyde (MDA) concentration and Zn/Cu-superoxide dismutase, catalase, and glutathione peroxidase (GPx)
activities, were measured at baseline and after supplementation. Significant body weight reduction was observed only in the
melatonin group. After melatonin supplementation, the adiponectin and omentin-1 levels and GPx activities statistically
increased, whereas the MDA concentrations were reduced. In the placebo group, a significant rise in the HNE and a drop in the
melatonin concentrations were found. The results show evidence of increased oxidative stress accompanying calorie restriction.
Melatonin supplementation facilitated body weight reduction, improved the antioxidant defense, and regulated adipokine
secretion. The findings strongly suggest that melatonin should be considered in obesity management. This trial is registered
with CTRI/2017/07/009093.

1. Introduction

Obesity and its medical consequences are major health
problems worldwide [1–3]. A body mass index (BMI) over
30 kg/m2 is one of the main risk factors for morbidity and
mortality from many chronic diseases, including cardiovas-
cular diseases, diabetes mellitus type II, and some types of
cancer [3–6]. The problem is growing alarmingly in both
genders and all age populations not only in high-income
countries but also in the poorer regions of the world [1, 2].
The reduction of obesity prevalence and the development

of new strategies for the treatment of obesity and its medical
complications are undoubtedly a public health priority. To
fight this global pandemic, the mechanisms underlying the
pathogenesis of obesity and the related chronic diseases are
under intensive investigation.

Excessive adiposity is a multifactorial disorder, generally
resulting from the interaction of high dietary energy intake,
low physical activity, genetic factors, eating disorders, envi-
ronmental and socioeconomic factors, and societal influence
[7]. Adipose tissue is an organ composed of adipocytes,
connective tissue matrix, nerve tissue, stromovascular cells,
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and macrophages [8]. White adipose tissue (WAT) is a
predominant form of fat in adults. In addition to its role as
a site of triglyceride storage and fatty acid release, WAT has
an important endocrine function and secretes more than
six hundred bioactive molecules, the adipokines [9]. Adipo-
kines participate in the regulation of numerous processes,
including lipid metabolism, appetite and energy balance,
insulin sensitivity, angiogenesis, blood pressure, hemostasis
and coagulation, immunity, and inflammation [10]. Hyper-
plasia and hypertrophy of adipose cells, characteristic of
obesity, impair the endocrine action of WAT [11]. This
dysfunction manifests as changes in the adipokine profile,
including the elevated levels of leptin and resistin and the
reduced release of adiponectin and omentin-1 [10, 12]. The
disturbed pattern of adipokine secretion is involved in the
chronic inflammatory state and in the augmented oxidative
stress observed in obesity [12]. Obesity induces numerous
proinflammatory changes in immune system, including
activation of B and T cells and decline in the population of
anti-inflammatory eosinophils [13]. As a result of obesity,
blood monocytes are recruited in WAT, where they become
polarized to the highly proinflammatory state [13]. Further-
more, the balance between pro- and anti-inflammatory
adipokines is then strongly shifted to a pro-inflammatory
status [10].

Chronic inflammation, tissue dysfunction, increased
plasma levels of glucose and lipids, hyperleptinemia, and
decreased antioxidant defense belong to the factors disturb-
ing the oxidant-antioxidant balance in the obese state. Dur-
ing obesity, the generation of reactive oxygen species (ROS)
is induced via various biochemical mechanisms, including
activation of NADPH oxidases and protein kinase C, oxida-
tive phosphorylation, glyceraldehyde auto-oxidation, and
polyol and hexosamine pathways [7, 14]. Moreover, ROS
have been found to participate in the body weight control
by exerting an effect on hypothalamic neurons, which regu-
late energy homeostasis [15]. The chronic low-grade inflam-
mation and the excessive amounts of ROS are undeniably
involved in the pathogenesis of medical problems related
to obesity.

An optimal candidate to diminish the deleterious
consequences of excessive adiposity would be an agent that
simultaneously exhibits anti-inflammatory and antioxidant
properties, as well as having an impact on the adipokine
secretion. A molecule which meets these conditions is mela-
tonin (N-acetyl-5-methoxytryptamine). This indoleamine,
secreted mainly by pinealocytes, is a derivative of tryptophan.
Its synthesis/secretion is highest during the dark phase of the
light/dark cycle [16]. Melatonin is an important chronobiotic
involved in the regulation of internal biological clock,
which organizes seasonal and circadian rhythms [17]. As
a chronobiological agent, melatonin also participates in
the regulation of metabolism and the energy balance in
the organism [18, 19]. Moreover, melatonin may increase
the energy expenditure by activating brown adipose tissue
[20]. It also preserves mitochondrial functions [16, 21, 22].
A wide range of melatonin physiological functions
includes its anti-inflammatory and immunomodulatory
actions, as well as its potent direct and indirect antioxidant

properties [16, 21, 23]. Many metabolic processes in adi-
pose tissue, including the expression and secretion of some
adipokines, are under circadian control [24, 25]. This
regulation may be at least partly mediated by melatonin,
which could have actions onWAT bymeans of its membrane
receptors or via an action on the sympathetic nervous
system [26, 27].

Obesity has been related to the chronic sleep disruption,
another epidemic of the industrialized world [28–30]. The
modern lifestyle is associated with reduced time of sleep
and the excessive use of artificial light; these factors disturb
circadian rhythms. The deficiency of melatonin may well
contribute to obesity and its complications [19, 30]. Numer-
ous studies in animal models point to the beneficial action of
melatonin in the prevention of adiposity [31–36]. There are
only limited data concerning the melatonin’s effect on
obesity in humans [37–39]. The aim of the present study
was to determine the effect of melatonin supplementation
on the antioxidant status and the levels of circulating adipo-
kines involved in the energy homeostasis in obese human
subjects on a calorie-restricted diet.

2. Material and Methods

2.1. Participants. Thirty volunteers with BMI≥ 30 kg/m2 were
included in the study. The participants were evaluated by a
standard physical examination and routine clinical labora-
tory tests. According to the International Classification of
Diseases, 10th revision [40], all subjects were diagnosed with
obesity due to excess calories (E66.0). The exclusion criteria
were metabolic syndrome (according to the WHO criteria)
[41], addiction to alcohol and/or tobacco, diabetes mellitus,
primary hypertension, ischemic heart disease, history of
stroke, renal failure, or other conditions of known free radical
etiology. All subjects were made aware of the content of the
study and provided informed consent to participate in the
research. The study was approved by the Local Ethics
Committee at Collegium Medicum, Nicolaus Copernicus
University (Bydgoszcz, Poland).

2.2. Study Design. The eligible participants with obesity class I
or class II [42] were randomly allocated into the melatonin
(MEL) or placebo (PL) groups. Patients and investigators
were unaware of treatment allocation at all times. The
randomization codes remained sealed until after data collec-
tion and processing and completion of a masked analysis.
During the experimental period, 10mg melatonin (LE–
KAM, Zakroczym, Poland) or placebo (equivalent amount
of lactose) was supplied in identical cachets to be taken orally
in a single dose for 30 days, 1 hr before bedtime. All partici-
pants used a calorie-restricted diet (1000–1200 kcal/day for
women and 1400–1600 kcal/day for men). No unexpected
adverse events were reported during the study.

The anthropometric measurements were performed
twice, at baseline and after 30 days of melatonin/placebo
supplementation. Body weight and height of the subjects
were measured using a medical weighing scale with a
height rod. The accuracy of measurements was 0.1 kg
and 0.5 cm, respectively. The weight in kg was divided

2 Oxidative Medicine and Cellular Longevity



by the square of the height in m to obtain the BMI value.
Waist and hip circumferences were recorded using an
anthropometric tape accurate to 0.5 cm. The waist circum-
ference was measured in the horizontal plane directly
above the umbilicus, whereas the hip circumference was
measured at the largest part of the hips. The waist-hip ratio
was calculated as the waist circumference divided by the
hip circumference.

Blood samples were collected in the morning
(08 : 00 hr) after overnight fasting from the median cubital
vein into polypropylene tubes (6mL) without anticoagu-
lant to obtain serum or in EDTA-containing tubes
(9mL) to obtain plasma and erythrocytes at baseline and
after 30 days of melatonin/placebo treatment. All samples
were centrifuged (6,000g for 10min at 4°C). The serum
and plasma were separated and stored at −80°C for further
analysis. Subsequently, the erythrocytes were washed three
times with a phosphate-buffered saline (PBS) solution at a
ratio of 1 : 3 with a simultaneous centrifugation of the
sample after each wash (6,000g for 10min at 4°C). The
washed red blood cells were mixed with a PBS solution
to obtain erythrocytic suspension with a 50% hematocrit
index. The suspension was used to determine the parameters
of oxidative stress.

2.3. Biochemical Analysis. The commercially available
enzyme immune assay kits were used to estimate the
serum concentrations of melatonin (enzyme-linked immu-
nosorbent assay kit for melatonin; Cloud-Clone Corp.,
Houston, TX, USA), 4-hydroxynonenal (HNE) (Human
4-Hydroxynonenal ELISA Kit; Cusabio, College Park,
MD, USA), adiponectin (Human Adiponectin ELISA, High
Sensitivity; BioVendor, Brno, Czech Republic), leptin
(Human Leptin ELISA, Clinical Range; BioVendor, Brno,
Czech Republic), resistin (Human Resistin ELISA; Bio-
Vendor, Brno, Czech Republic), and omentin-1 (Human
Omentin-1 ELISA; BioVendor, Brno, Czech Republic),
according to the manufacturers’ instructions.

Erythrocytic malondialdehyde (MDA) concentration
and the activities of Zn/Cu-superoxide dismutase (SOD-1;
EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), and cytosolic gluta-
thione peroxidase (GPx; EC 1.11.1.9) were assayed according
to the methods of Buege and Aust [43] in the modification of
Esterbauer and Cheeseman [44], Misra and Fridovich [45],
Beers and Sizer [46], and Paglia and Valentine [47], respec-
tively. Briefly, the MDA level was expressed as the concentra-
tion of thiobarbituric acid-reactive substances (TBARS),
measured at 532 nm. The SOD-1 activity measurement was
based on the inhibition of adrenaline oxidation to adreno-
chrome in alkaline environment, which induced a change
in the absorbance at 480nm. The CAT activity was assessed
by recording H2O2 decomposition at 240nm. The principle
of the method for GPx activity measurement was based on
recording the decrease in absorbance of NADPH at 340 nm
using H2O2 and reduced glutathione as substrates, in the
presence of yeast glutathione reductase and NaN3 to
inhibit the pseudoperoxidase activity of Hb. The Hb
concentration was estimated at 540 nm according to the
method of Drabkin [48].

2.4. Statistical Analysis. All results are expressed as the
means± S.E.M. Statistical analysis included Student’s t-test
for the comparison of the MEL and PL groups and a
paired t-test for the comparison of the same group before
and after supplementation. The hypothesis of normal distri-
bution was assessed by the Shapiro-Wilk test. In turn, the
homogeneity of variances was verified using the Levene’s test.
Pearson’s correlation coefficient was used to quantify the
relationship between the parameters measured. The level of
significance was set at P < 0 05.

3. Results

Demographic, anthropometric, and clinical characteristics of
the study participants are presented in Table 1. No significant
differences were found at baseline between the examined
groups. As a result of a calorie-restricted diet, the subject in
the MEL and PL groups lost weight, BMI, and waist circum-
ference, but the changes were statistically significant only in
the case of body weight in the MEL group (Table 2).

The results of biochemical measurements at baseline and
after 30 days of calorie-restricted diet subjects with the
melatonin or placebo supplementation are summarized in
Table 3. Thirty days of melatonin supplementation resulted
in the significant increases in the serum adiponectin and
omentin-1 concentrations, as well as the erythrocytic GPx
activities. The levels of erythrocytic MDA significantly
decreased after melatonin treatment. In the PL group, the
serum HNE levels statistically increased, whereas the serum
levels of melatonin were significantly reduced after 30 days
of a calorie-restricted diet. The remaining parameters did
not change in both examined groups.

When data from all subjects were pooled, the interesting
correlations were revealed. Statistically significant negative
correlations were noted between body weight and adiponec-
tin (r = −0 393; P < 0 05), BMI and adiponectin (r = −0 385;
P < 0 05), and leptin and omentin-1 (r = −0 355; P < 0 05).

Table 1: Demographic, anthropometric, and clinical characteristics
at baseline of the study participants, according to treatment with
melatonin (MEL group) or placebo (PL group).

Parameter MEL group PL group P value

n (male/female) 15 (5/10) 15 (5/10)

Age (yrs) 37.7± 3.40 36.3± 4.18 0.79

Body weight (kg) 113.6± 4.74 114.4± 7.31 0.93

Height (m) 1.74± 0.024 1.72± 0.025 0.74

BMI (kg/m2) 37.8± 1.51 38.2± 1.94 0.85

Waist circumference (cm) 112.4± 3.50 112.6± 4.13 0.97

Hip circumference (cm) 121.5± 2.78 123.4± 4.42 0.71

Waist-hip ratio 0.93± 0.04 0.92± 0.04 0.82

SBP 124.2± 2.32 125.0± 4.36 0.87

DBP 75.8± 1.73 76.7± 2.35 0.78

Total cholesterol (mg/dL) 196.7± 5.99 196.6± 7.02 0.99

Glucose (mg/dL) 94.0± 1.90 99.9± 4.70 0.15

Each value is mean ± S.E.M. BMI: body mass index; SBP: systolic blood
pressure; DBP: diastolic blood pressure.
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Significant positive correlation was found between BMI and
leptin (r = 0 492; P < 0 001). MDA concentration was nega-
tively correlated with GPx activity (r = −0 337; P < 0 05),
but surprisingly, it was positively correlated with SOD-1
(r = 0 358; P < 0 05) and CAT (r = 0 380; P < 0 05) activities.

4. Discussion

Taking into account the promising results of animal model
studies, the present study was conducted to estimate the
effect of a 30-day supplementation of melatonin (10mg
daily) on redox status and circulating adipokines in obese
human subjects on a calorie-restricted diet. As mentioned,
there exist only a few reports related to the impact of exoge-
nous melatonin on obesity in humans. Koziróg et al. [38]
investigated the effect of 5mg melatonin given daily for 2
months on blood pressure, lipid profile, and oxidative stress
in patients with metabolic syndrome. In the study of
Chojnacki et al. [37], designed to assess the drug influence
on mood, sleep quality, and BMI in overweight/obese post-
menopausal women, melatonin (5mg daily) was adminis-
trated in addition to an antidepressant fluoxetine for 24
weeks. By comparison, Mesri Alamdari et al. [39] supple-
mented 6mg melatonin daily with a low-calorie diet for 40
days in healthy obese women to evaluate the changes of
oxidative stress and the inflammatory state. The present
study is the first trial utilizing healthy obese participants of
both genders on calorie restriction. It is also worth noting
that the dose of melatonin administered in the trial is larger

than those in the earlier reports. In animal model studies,
melatonin was supplemented to rats at an average dose
0.5–30mg/kg/day [31–36]. However, in the case of human
studies, the safety and possible side effects should be taken
under consideration. The dose of 10mg of the indoleamine
per day is twice as large as recommended by the Office for
Registration of Medical Products, Medical Devices and Bio-
cidal Products in Poland to treat sleeping problems. Ethical
approval of such a dose of melatonin was obtained from
the local Ethics Committee. As no adverse effects were
reported during the present study, higher doses of hormone
may be considered in the subsequent experiments.

A 30-day calorie-restricted diet combined with melato-
nin supplementation resulted in a statistically significant
weight loss, whereas a low-calorie diet per se yielded only a
slight reduction in body weight. This is in accordance with
the results of many animal studies [32–34, 36]. In these
studies, melatonin supplementation reduced body weight or
attenuated weight gain in diet-induced obese rats, especially
on a high-fat diet. The results are also consistent with the
human studies of Chojnacki et al. [37] and Koziróg et al.
[38]. However, Mesri Alamdari et al. [39] observed no
difference of weight loss degree between women taking
melatonin in addition to a low-calorie diet and women on
the diet receiving placebo. These apparent differences may
depend on a dose of melatonin given, the duration of treat-
ment, and the differences between the groups examined.
The effect of exogenous melatonin on weight reduction
may be explained by numerous physiologic actions of the

Table 2: Anthropometric parameters in the obese subjects on calorie-restricted diet after 30 days of melatonin (MEL; 10mg/day) or placebo
(PL) administration.

Parameter MEL group (n = 15) The percentage change P value∗ PL group (n = 15) The percentage change P value∗

Body weight (kg) 105.9± 6.43 7% 0.039 109.8± 8.57 4% 0.69

BMI (kg/m2) 35.5± 1.52 6% 0.42 36.3± 2.22 5% 0.54

Waist circumference (cm) 107.1± 4.60 5% 0.38 107.2± 4.74 5% 0.41

Each value is mean ± S.E.M. BMI: body mass index. ∗ within-group comparison: baseline versus day 30.

Table 3: Effects of 30 days of melatonin (MEL; 10mg/day) or placebo (PL) administration on the biochemical parameters in the obese
subjects on calorie-restricted diet.

Parameter
MEL group (n = 15) PL group (n = 15)

Baseline After treatment P value Baseline After treatment P value

Serum

Melatonin (ng/L) 30.7± 6.37 33.7± 4.96 0.44 34.0± 2.55 25.0± 1.79 0.014

HNE (μg/L) 8.19± 1.36 8.48± 1.20 0.51 7.86± 0.68 18.4± 6.1 0.044

Adiponectin (mg/L) 2.82± 0.17 3.46± 0.18 0.029 3.17± 0.36 3.05± 0.56 0.70

Omentin-1 (μg/L) 380.1± 16.2 468.9± 16.7 0.0044 383.2± 20.8 396.4± 30.4 0.82

Leptin (μg/L) 33.1± 4.85 36.6± 5.76 0.70 36.9± 3.36 32.1± 6.86 0.58

Resistin (μg/L) 4.70± 0.42 4.45± 0.54 0.97 5.36± 0.41 5.16± 0.60 0.86

Erythrocyte

MDA (nmol/g Hb) 34.3± 2.44 24.5± 2.16 0.042 30.1± 2.89 27.4± 2.19 0.65

SOD-1 (IU/g Hb) 747.7± 19.4 762.0± 54.4 0.29 697.0± 16.7 687.9± 32.0 0.94

CAT (104× IU/g Hb) 68.5± 2.94 64.7± 4.23 0.66 63.1± 2.89 65.0± 4.52 0.61

GPx (IU/g Hb) 5.49± 0.48 7.92± 0.56 0.0049 6.19± 0.58 7.19± 0.34 0.29

Each value is mean ± S.E.M. HNE: 4-hydroxynonenal; MDA: malondialdehyde; SOD-1: Zn/Cu-superoxide dismutase; CAT: catalase; GPx: glutathione
peroxidase.
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indoleamine, including the browning of WAT, the regulation
of energy balance and metabolism rate, or chronoregulatory
impact on adipocyte functions [19, 20, 22, 30]. In addition,
the regulation of appetite and the improvement of sleep
quality should be also taken into consideration [30, 37].

Obesity is associated with an altered redox state, includ-
ing both enhanced reactive oxygen species (ROS) generation
and inadequate antioxidant defense [49]. These conditions
favor the deleterious processes that lead to obesity-related
complications. Weight reduction seems to be a profitable
strategy to improve metabolic and cardiovascular risk fac-
tors, among others, the proantioxidant status of the organism
[50]. Weight loss due to a low-calorie diet and exercise has a
positive influence on pro- and antioxidant balance [51–55].
On the contrary, the elevated HNE and the lowered melato-
nin concentrations, documented in the present study,
indicate that a 30-day calorie-restricted diet per se caused
an increase of oxidative stress. This may be at least partly a
result of inadequate dietary intake of antioxidants [49]. An
additional explanation may be the increased blood levels of
potentially toxic pollutants released from adipose tissue
along with mobilized lipids as subjects lost weight [56, 57].
These toxins, including organochlorine insecticides, induce
ROS production [58]. The observed decreased morning
melatonin levels support this hypothesis. Undoubtedly,
melatonin could be used to neutralize the elevated amounts
of ROS [21, 23]. However, it should be noted that a calorie-
restricted diet may contain limited amounts of melatonin
or its precursor tryptophan [59, 60]. Accordingly, Duggan
et al. [61] observed the elevated amounts of fluorescent
products of DNA, protein, and lipid oxidation (FOPs) after
a 12-month treatment of both reduced calorie diet and
reduced calorie diet combined with exercise.

The results of the present study indicate that exogenous
melatonin may prevent the rise in oxidative stress in the ini-
tial stage of weight loss. When melatonin was supplemented
to the subjects, there were no changes in the HNE and
melatonin concentrations after 30 days of a low-calorie diet.
Exogenous melatonin could be used to counteract the
increased oxidative stress accompanying the weight loss.
HNE is a major product of nonenzymatic peroxidation of
polyunsaturated fatty acids [62]. HNE is known to have
mutagenic, cytotoxic, and carcinogenic effects, but in the
physiologic levels, it may exert a lipohormetic action,
enabling cells to adapt to stress-induced mediators [63]. High
levels of HNE are strongly associated with the development of
obesity and its complications, leading to pathogenic cellular
changes and promoting numerous disease processes [64].
Herein, exogenous melatonin stabilized the HNE level in
the subjects on a low-calorie diet and prevented a decrease
in morning endogenous melatonin concentrations. More-
over, the erythrocytic MDA level significantly decreased and
GPx activity increased as a result of melatonin administration
in addition to a low-calorie diet; thus, the redox state of
these subjects was improved. Mesri Alamdari et al. [39]
observed a significant drop in MDA levels in obese women
on a low-calorie diet with melatonin supplementation, but
the total antioxidant capacity remained unchanged. Simi-
larly, a 2-month melatonin supplementation caused a

reduction in TBARS concentration and a rise in SOD activity
in the metabolic syndrome patients [38]. In other studies,
melatonin supplementation improved the proantioxidant
state in patients suffering from diseases linked to obesity,
including diabetes mellitus [65], hypertension [66], and
chronic obstructive pulmonary disease [67]. The direct and
indirect antioxidant properties of melatonin and its metab-
olites are well documented [18, 21, 23]. It was shown in
numerous in vivo and in vitro studies that melatonin scav-
enges oxygen- and nitrogen-reactive species [21, 23, 68, 69],
protects against lipid peroxidation [70, 71], and stimulates
mRNAs and activities of antioxidant enzymes [72, 73].

Positive correlations between erythrocytic MDA con-
centration and the activities of SOD-1 and CAT are
important observations in the present study. In the early
stages of obesity, compensatory mechanisms stimulate the
activities of antioxidant enzymes to counteract the aug-
mented synthesis of ROS, but they are insufficient to prevent
oxidative damage [14, 49]. The present study included obese
people with no known health complications; thus, we pre-
sume that their antioxidant defense was activated to limit
oxidative stress, but it was insufficient to totally prevent
oxidative damage.

Excessive adiposity is a condition characterized by a
severe dysfunction of WAT, including the alterations of
tissue composition and the modifications of its endocrine
function [74]. The disruption of adipokine secretion pattern
seems to be pivotal in the pathophysiology of obesity-
induced metabolic dysfunctions, including metabolic syn-
drome, diabetes mellitus type II, and atherosclerosis [10, 12].
This disruption may be associated with the differences in
adipokine secretion found between the subcutaneous and
visceral WAT depots [5, 75]. In obesity, the characteristic
predominance of visceral WAT is a factor that increases
mortality and risk for obesity-related disorders [75]. Adipo-
kines involved in the regulation of energy production and
expenditure seem to be of special importance. Adiponectin,
omentin-1, leptin, and resistin, measured in the present
study, participate in these processes.

Adiponectin is a hormone strongly involved in the
regulation of lipid and glucose metabolism. It improves insu-
lin sensitivity, regulates appetite and energy expenditure, and
exerts anti-inflammatory, antiproliferative, and antiapoptotic
actions [76]. Adiponectin is produced in higher amounts in
subcutaneous than in visceral WAT [77]. In the present
study, a negative correlation was found either between body
weight and adiponectin and between BMI and adiponectin.
This is in agreement with other studies, which reported a
negative correlation of circulating adiponectin and BMI,
metabolic syndrome, insulin resistance, and diabetes mellitus
type 2 [78–80]. Interestingly, the circadian rhythm of adipo-
nectin expression was observed to be attenuated in obesity
[81], whereas weight loss was found to be associated with a
rise in plasma adiponectin and the recovery of its secretion
pattern [78, 82].

In the present study, a 30-day low-calorie diet resulted
in no change of the circulating morning levels of adipo-
nectin, whereas the supplementation of melatonin signifi-
cantly increased the concentration of this adipokine.
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Gonciarz et al. [83] also found a positive effect of exogenous
melatonin (5mg twice a day) on the levels of circulating
adiponectin in overweight patients with nonalcoholic steato-
hepatitis. Moreover, it was demonstrated that adiponectin
positively correlated with circadian amplitude of melatonin
secretion in healthy women, but not in the metabolic syn-
drome women [84]. Many animal model studies confirmed
the stimulatory effect of melatonin treatment on circulating
adiponectin [31, 32, 85], but there exist some inconsistencies
in other experiments [76]. Several mechanisms may partici-
pate in melatonin’s influence on adiponectin secretion,
including the impact of indoleamine on adiponectin signaling
pathways, its antioxidant and anti-inflammatory properties,
mitochondrial function improvement, and changes in other
adipokine levels [23, 76, 86, 87].

Omentin-1 is another insulin-sensitizing and anti-
inflammatory adipokine [10, 74]. It is synthesized mainly in
visceral WAT and was found to enhance insulin-stimulated
glucose uptake in adipocytes [88, 89]. No circadian rhythm
of omentin-1 secretion has been observed in humans [90].
Omentin-1 was demonstrated to be decreased in obesity
and inversely correlated with BMI, insulin resistance, and
metabolic syndrome [91–93]. Moreno-Navarrete et al. [94]
observed elevated omentin-1 levels after hypocaloric weight
loss. However, in the present study, the elevated serum
omentin-1 concentrations were found only in the low-
calorie diet group supplemented with melatonin. As known
so far, this is the first report concerning the influence of mel-
atonin on circulating omentin-1. The possible mechanisms
of melatonin action on omentin-1 may be corresponding to
its effect on the levels of adiponectin.

Both adiponectin and omentin-1 were found to
improve insulin sensitivity [74, 76]. Increased levels of these
adipokines after melatonin supplementation, observed in
the present study, are consistent with the research of
McMullan et al. [95]. They found a positive association of
high-nocturnal-melatonin secretion with greater insulin sen-
sitivity and a lower prevalence of insulin resistance in healthy
young women. This relationship may be at least partly
explained by the influence of melatonin on the adiponectin
and omentin-1 secretion. These results strongly support the
use of melatonin in the treatment of obesity and prevention
of its complications, especially diabetes mellitus. It should
be mentioned that Rubio-Sastre et al. [96] observed impaired
glucose tolerance in healthy young women after morning
and evening acute melatonin administration. Considering
numerous animal model studies [76], it should be empha-
sized that prolonged supplementation of melatonin, mimick-
ing the conditions of normal sleep, is necessary to obtain the
beneficial effects of the hormone in the treatment and pre-
vention of obesity. Thus, a physiological pattern of melatonin
supplementation should be absolutely considered, avoiding
acute administration.

Leptin- and resistin-exhibited elevated levels are
positively correlated with obesity and its complications
[7, 12, 88]. Leptin is a hormone produced mainly in adipo-
cytes in a circadian manner [80]. Subcutaneous WAT depots
secrete larger amounts of leptin than visceral WAT [97].
Leptin is strongly involved in the regulation of food intake

and energy balance [76]. However, in obesity, elevated levels
of the hormone fail to regulate the body weight due to leptin
resistance [98]. According to other reports, a significant
positive correlation was found between BMI and leptin in
the present study. Moreover, similar to the de Souza Batista
et al. study [91], leptin and omentin-1 were negatively corre-
lated, indicating the regulatory relationship between synthe-
sis and secretion of these two adipokines. In most animal
model studies, exogenous melatonin was found to decrease
the circulating leptin levels [31, 33, 36]. In human studies,
the results are inconsistent [83, 99, 100]. Herein, leptin levels
remained unchanged after a 30-day low-calorie diet in both
melatonin and placebo groups.

Similar results were obtained in the case of resistin. Resis-
tin is a proinflammatory adipokine, which is associated with
the development of insulin resistance [12, 101]. The results of
studies concerning the possible links between resistin and
obesity are rather disputable [88], but some reports demon-
strated reduced resistin levels following the loss of body
weight in humans [102]. Similar to the results of the present
study, Gonciarz et al. [83] found no change of circulating
resistin after melatonin supplementation. However, in
the Favero et al. study [103], melatonin supplementation
reduced resistin levels in obese (ob/ob) mice. The links
between resistin and obesity need further investigations.

5. Conclusions

The positive impact of exogenous melatonin on weight
reduction, observed in the present study, strongly supports
that administration of this agent may be a useful adjunct
in obesity treatment. In addition, melatonin significantly
reduced oxidative stress and regulated the circulating adipo-
kines beneficial for energy homeostasis in obese subjects on a
low-calorie diet. Thus, exogenous melatonin may facilitate
the health improvement during obesity management. These
results confirm that melatonin supplementation, mimicking
the conditions of normal sleep, could have a desirable effect
in humans during dietary weight loss.

The present study has some limitations. The small num-
ber of participants is a limiting factor; thus, it may be treated
as a pilot study. However, to the best of the authors’ knowl-
edge, it is the first report related to the effects of melatonin
supplementation on human obesity with such large doses of
the hormone. Another limitation is the study design—the
blood samples were taken only once a day, in the morning.
It was sufficient to observe the changes in the circulating
levels of the selected adipokines. Nevertheless, in the case of
adipokines with the circadian pattern of secretion, it would
be interesting to examine their maximum release after
melatonin supplementation. Undoubtedly, the results of the
present study are very promising but raised new questions
requiring further research.
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