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Unsteady Couette flow of a viscous incompressible fluid between two horizontal porous
flat plates is considered. The stationary plate is subjected to a periodic suction and the
plate in uniform motion is subjected to uniform injection. Approximate solutions have
been obtained for the velocity and the temperature fields, skin friction by using pertur-
bation technique. The heat transfer characteristic has also been studied on taking viscous
dissipation into account. It is found that the main flow velocity decreases with increase
in frequency parameter. On the other hand, the magnitude of the cross-flow velocity in-
creases with increase in frequency parameter. It is seen that the amplitude of the shear
stress due to main flow decreases while that due to cross-flow increases with increase in
frequency parameter. It is also seen that the tangent of phase shifts both due to the main
and cross-flows decrease with increase in frequency parameter. It is observed that the
temperature increases with increase in frequency parameter.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Couette flow is important in numerous mechanisms involving the relative motion of two
surfaces. The problem of Couette flow is considered important in transpiration cooling.
In this process several engines can be protected from the influence of hot gases. This
process is used in turbojet and rocket engines, like combustion chamber walls, exhaust
nozzles, and gas turbine blades. The solution is well known when both surfaces are flat
and moving in their own planes. An exact solution of Navier-Stokes equations between
two parallel plates without suction is well known in Schlichting [3]. Two-dimensional
plane Couette flow with transpiration cooling applying uniform injection and suction
at the porous plates is discussed by Eckert [1]. Gersten and Gross [2] studied the three-
dimensional flow and heat transfer along a flat plate by applying periodic suction. Singh
et al. [7] analyzed the three-dimensional flow and heat transfer past a vertical wall. Singh
et al. [6] and Singh [4] studied the three-dimensional flow and heat transfer past a porous
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plate. Recently Singh [5] discussed the Couette flow between two parallel plates with
transverse sinusoidal injection of the fluid at the stationary plate and the constant suction
at the plate in motion.

However, the application of the transverse sinusoidal injection or suction velocity in
the unsteady problem of transpiration cooling has not yet received much attention. In
the present paper we have studied the unsteady Couette flow and heat transfer between
two horizontal parallel porous flat plates with periodic suction at the stationary plate and
constant injection at the plate in motion. We assume that the periodic suction velocity
is time-dependent and perpendicular to the flow direction. Due to the periodic suction
the flow becomes three dimensional. The main flow velocity profile, cross-flow velocity
profile, and shear stress have been calculated and plotted. The heat transfer characteris-
tic has also been studied on taking viscous dissipation into account. It is found that the
main flow velocity increases with the increase in either Reynolds number or suction pa-
rameter, while it decreases with the increase in frequency parameter. On the other hand,
the magnitude of the cross-flow velocity increases with the increase in either suction pa-
rameter or frequency parameter, while it increases near the stationary plate and decreases
near the moving plate with the increase in Reynolds number. It is seen that the ampli-
tude of the shear stress due to main flow increases with the increase in Reynolds number
but decreases with the increase in frequency parameter. The phase shift decreases with
the increase in frequency parameter. But for very small values of Reynolds number, it
increases and decreases for large Reynolds number. Also it is seen that the amplitude of
the shear stress due to cross-flow increases with the increase in either Reynolds num-
ber or frequency parameter. The phase shift decreases with the increase in frequency pa-
rameter while it increases with the increase in Reynolds number. It is observed that the
temperature increases with the increase in frequency parameter, on the other hand, it in-
creases near the stationary plate and decreases near the moving plate with the increase in
Reynolds number.

2. Formulation of the problem

Consider the unsteady flow of a viscous incompressible fluid between two horizontal flat
porous plates separated by a distance d. The upper plate moves with a uniform velocity
U in the direction of the flow. We choose a cartesian coordinate system with its origin on
the lower stationary plate, x�-axis is in the direction of the flow, y�-axis is perpendicular
to the plate, and z�-axis normal to the x�y�-plane.

The upper plate is subjected to a constant injection−V0 and the lower plate to a trans-
verse sinusoidal suction velocity distribution of the form

v� =−V0

[
1 + εcos

(
πz�

d
− ct�

)]
, (2.1)

where ε (� 1) is the amplitude of the suction velocity. Denoting velocity components
u�, v�, w� in the directions x�-, y�-, and z�-axes, respectively, the flow is governed by
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the following equations:

∂v�

∂y�
+
∂w�

∂z�
= 0,

∂u�

∂t�
+ v�

∂u�

∂y�
+w�

∂u�

∂z�
= ν

(
∂2u�

∂y�2
+
∂2u�

∂z�2

)
,

∂v�

∂t�
+ v�

∂v�

∂y�
+w�

∂v�

∂z�
=−1

ρ

∂p�

∂y�
+ ν

(
∂2v�

∂y�2
+
∂2v�

∂z�2

)
,

∂w�

∂t�
+ v�

∂w�

∂y�
+w�

∂w�

∂z�
=−1

ρ

∂p�

∂z�
+ ν

(
∂2w�

∂y�2
+
∂2w�

∂z�2

)
,

(2.2)

where ν is the kinematic viscosity, ρ is the density, p� is the fluid pressure.
The boundary conditions of the problem are

u� = 0, v� =−V0

[
1 + cos

(
π

d
z�− ct�

)]
, w� = 0 at y� = 0,

u� =U , v� =−V0, w� = 0 at y� = d.

(2.3)

Introducing the nondimensional variables

y = y�

d
, z = z�

d
, t = ct�, p = p�

ρU2
, u= u�

U
, v = v�

U
, w = w�

U
, (2.4)

equation (2.2) becomes

∂v

∂y
+
∂w

∂z
= 0,

ω
∂u

∂t
+ Re

(
v
∂u

∂y
+w

∂u

∂z

)
= ∂2u

∂y2
+
∂2u

∂z2
,

ω
∂v

∂t
+ Re

(
v
∂v

∂y
+w

∂v

∂z

)
=−Re

∂p

∂y
+

(
∂2v

∂y2
+
∂2v

∂z2

)
,

ω
∂w

∂t
+ Re

(
v
∂w

∂y
+w

∂w

∂z

)
=−Re

∂p

∂z
+

(
∂2w

∂y2
+
∂2w

∂z2

)
,

(2.5)

where Re = Ud/ν, the Reynolds number; S = V0/U , the suction parameter; and ω =
cd2/ν, the frequency parameter. Using (2.4) the boundary conditions (2.3) become

u= 0, v =−S[1 + εcos(πz− t)], w = 0 at y = 0,

u= 1, v =−S, w = 0 at y = 1.
(2.6)
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3. Solution of the problem

In order to solve the differential equation (2.5), we assume the solution of the following
form:

u= u0(y) + εu1(y,z, t) + ε2u2(y,z, t) + ··· ,

v = v0(y) + εv1(y,z, t) + ε2v2(y,z, t) + ··· ,

w =w0(y) + εw1(y,z, t) + ε2w2(y,z, t) + ··· ,

p = p0(y) + εp1(y,z, t) + ε2p2(y,z, t) + ··· .

(3.1)

When ε = 0 the flow becomes two-dimensional with constant suction and injection at
both the plates. In this case (2.5) is reduced to

v′0 = 0,

u′′0 + SReu′0 = 0,
(3.2)

where the primes denote differentiation with respect to y, and the corresponding bound-
ary conditions are

u0 = 0, v0 =−S at y = 0,

u0 = 1, v0 =−S at y = 1.
(3.3)

The solutions of (3.2) using (3.3) become

v0(y)=−S, u0(y)= 1− e−SRe y

1− e−SRe
. (3.4)

When ε �= 0, for small values of ε, we take only upto O(ε). Substituting (3.1) in (2.5) and
comparing the coefficients of ε from both sides, we get

∂v1

∂y
+
∂w1

∂z
= 0, (3.5)

ω
∂u1

∂t
+ Re

(
− S

∂u1

∂y
+ v1

∂u0

∂y

)
= ∂2u1

∂y2
+
∂2u1

∂z2
, (3.6)

ω
∂v1

∂t
− SRe

∂v1

∂y
=−Re

∂p1

∂y
+
∂2v1

∂y2
+
∂2v1

∂z2
, (3.7)

ω
∂w1

∂t
− SRe

∂w1

∂y
=−Re

∂p1

∂z
+
∂2w1

∂y2
+
∂2w1

∂z2
. (3.8)
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The corresponding boundary conditions are reduced to

u1 = 0, v1 =−Scos(πz− t), w1 = 0 at y = 0,

u1 = 0, v1 = 0, w1 = 0 at y = 1.
(3.9)

These are the linear partial differential equations describing the three-dimensional flow.
To solve (3.6), (3.7), and (3.8) we assume u1, v1, w1, and p1 of the following form:

u1(y,z, t)= u11(y)ei(πz−t),

v1(y,z, t)= v11(y)ei(πz−t),

w1(y,z, t)= i

π
v′11(y)ei(πz−t),

p1(y,z, t)= p11(y)ei(πz−t).

(3.10)

The corresponding boundary conditions are

u11 = 0, v11 =−S, v′11 = 0 at y = 0,

u11 = 0, v11 = 0, v′11 = 0 at y = 1.
(3.11)

Substituting (3.10) in (3.6), (3.7), and (3.8), we get the following differential equations:

u′′11 + SReu′11−
(
π2− iω

)
u11 = Rev11u

′
0,

v′′11 + SRev′11−
(
π2− iω

)
v11 = Re p′11,

v′′′11 + SRev′′11−
(
π2− iω

)
v′11 = Reπ2p11.

(3.12)

Solving (3.12) under the boundary conditions (3.11), we get

u1(y,z, t)=
[
A3e

−r1 y +A4e
−r2 y +C1e

−(r1+SRe)y +C2e
−(r2+SRe)y

+C3e
(π−SRe)y +C4e

−(π+SRe)y
]
ei(πz−t),

(3.13)

v1(y,z, t)= [Ae−r1 y +Be−r2 y +Ceπy +De−πy
]
ei(πz−t), (3.14)

w1(y,z, t)=− i

π

[
Ar1e

−r1 y +Br2e
−r2 y −Cπeπy +Dπe−πy

]
ei(πz−t), (3.15)

p1(y,z, t)= [A1e
πy +A2e

−πy]ei(πz−t), (3.16)
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where

r1 =
SRe+

√
S2 Re2 +4

(
π2− iω

)
2

, r2 =
SRe−

√
S2 Re2 +4

(
π2− iω

)
2

,

A= Seπ
(
πr4 + r6

)
+ Se−π

(
r6−πr4

)
2
(
r3r6− r4r5

) , B = −Se
π
(
r5 +πr3

)− Se−π
(
r5−πr3

)
2
(
r3r6− r4r5

) ,

C =− 1
2π

[
A
(
π− r1

)
+B
(
π− r2

)
+ Sπ

]
, D =− 1

2π

[
A
(
π + r1

)
+B
(
π + r2

)
+ Sπ

]
,

r3 = e−r1 −
(
π− r1

)
2π

eπ −
(
π + r1

)
2π

e−π , r4 = e−r2 −
(
π− r2

)
2π

eπ −
(
π + r2

)
2π

e−π ,

r5 = r1e
−r1 +

1
2
eπ
(
π− r1

)− 1
2
e−π
(
π + r1

)
, r6 = r2e

−r2 +
1
2
eπ
(
π− r2

)− 1
2
e−π
(
π + r2

)
,

C1 = SRe2(
1− e−SRe

) A(
r2

1 + SRer1−π2 + iω
) , C2 = SRe2(

1− e−SRe
) B(

r2
2 + SRer2−π2 + iω

) ,

C3 = SRe2(
1− e−SRe

) C

(iω−πSRe
) , C4 = SRe2(

1− e−SRe
) D

(iω+πSRe)
,

A1 = SReπ + iω

Reπ
C, A2 = SReπ− iω

Reπ
D,

A3 =−
(
A4 +C1 +C2 +C3 +C4

)
,

A4 = 1(
e−r1 − e−r2

)[C1
(
e−r1−SRe− e−r1

)
+C2

(
e−r2−SRe− e−r1

)

+C3
(
eπ−SRe− e−r1

)
+C4

(
e−π−SRe− e−r1

)]
.

(3.17)

4. Result and discussion

We have presented the nondimensional main flow velocity u against y for different values
of Reynolds number Re, suction parameter S, and frequency parameter ω for z = 0.0,
t = 0.2, ε = 0.2 in Figures 4.1, 4.2, and 4.3. From the figure it is seen that the main flow
velocity u increases with increase in either Re or S, while it decreases with the increase in
ω. The cross-flow velocity profile is shown in Figures 4.4 and 4.5 against y for z = 0.5,
t = 0.2, ε = 0.2. It is observed that the magnitude of the cross-flow velocity w increases
with the increase in either S or ω but it increases near the stationary plate and decreases
near the moving plate with the increase in Re. This is due to the fact that suction at the
stationary plate and injection at the moving plate are two exactly opposite processes. Also
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Figure 4.1. Main velocity u for ω = 6.0, S= 1.0, t = 0.2, z = 0.0, ε = 0.2.
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Figure 4.2. Main velocity u for ω = 6.0, Re= 5.0, Z = 0.0, t = 0.2, ε = 0.2.
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Figure 4.3. Main velocity u for S= 1.0, Re= 5.0, t = 0.2, z = 0.0, ε = 0.2.
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Figure 4.4. Cross-velocity −10w for ω = 6.0, S= 1.0, z = 0.5, t = 0.2, ε = 0.2.

the variations of cross-velocity w for different values of ω are shown in Table 4.1. From
the table it is observed that the magnitude of w increases with increase in ω.
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Figure 4.5. Cross-velocity −10w for ω= 6.0, Re= 5.0, z = 0.5, t = 0.2, ε = 0.2.

The nondimensional shear stress components due to the main flow and cross-flow at
the plate y = 0 are, respectively,

τx = dτ∗x
μU

=
(
du0

dy

)
y=0

+ ε
(
du1

dy

)
y=0

=
(
du0

dy

)
y=0

+ ε
(
du11

dy

)
y=0

ei(πz−t)

= τu0 + εRe1 cos
(
πz− t+φ1

)
,

τz = dτ∗z
μU

=
(
dw0

dy

)
y=0

+ ε
(
dw1

dy

)
y=0

= ε i
π

(
dv′11

dy

)
y=0

ei(πz−t)

= εRe2 cos
(
πz− t+φ2

)
,

(4.1)

where

Re1 =
{
X2

1 +Y 2
1

}1/2
, tanφ1 = Y1

X1
,

Re2 =
{
X2

2 +Y 2
2

}1/2
, tanφ2 = Y2

X2
.

(4.2)
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Table 4.1. Cross-flow velocity for S= 1.0, Re= 5.0, z = 0.5, t = 0.2, ε = 0.2.

y −10w

ω= 2.0 ω = 6.0 ω = 10.0 ω= 14.0

0.00 0.000000 0.000000 0.00000 0.000000

0.20 1.109254 1.113393 1.118991 1.125880

0.40 0.907241 0.903539 0.898763 0.893008

0.60 0.568972 0.565611 0.561192 0.555843

0.80 0.282000 0.281842 0.281629 0.281395

1.00 0.000011 0.000000 −0.00500302 0.000001

Table 4.2. Shear stress due to main flow.

Re Re1 − tanφ1

ω= 5.0 ω = 10.0 ω= 15.0 ω= 5.0 ω = 10.0 ω = 15.0

0.4 0.3133 0.1787 0.1344 1.0171 1.2728 1.2516

0.6 0.4892 0.2891 0.2182 0.6059 0.9704 1.0421

0.8 0.6606 0.4119 0.3132 0.3236 0.7402 0.8681

1.0 0.8185 0.5452 0.4191 0.0970 0.5541 0.7193

Table 4.3. Shear stress due to cross-flow.

Re Re2 − tanφ2

ω = 5.0 ω= 10.0 ω= 15.0 ω = 5.0 ω= 10.0 ω = 15.0

0.4 3.9497 4.1925 4.5407 6.2946 3.3011 2.3627

0.6 4.0614 4.2989 4.6407 6.5018 3.4055 2.4331

0.8 4.1760 4.4080 4.7430 6.7209 3.5155 2.5070

1.0 4.2937 4.5198 4.8478 6.9523 3.6316 2.5847

The shear stresses due to main flow and cross-flow are shown in Tables 4.2 and 4.3 for
S = 1.0. From the table it is seen that the amplitude Re1 of the shear stress due to main
flow increases with the increase in Re but decreases with the increase in ω. The magnitude
of the tangent of phase shift tanφ1 decreases with the increase in ω while it increases for
small values of Re and decreases for large values of Re. It is also seen from Table 4.2 that
there is always a phase lag. Table 4.3 shows the shear stress due to cross-flow for S= 1.0.
It is observed that the amplitude Re2 of shear stress due to cross-flow increases with the
increase in either Re or ω. It is also seen that there is always a phase lag. The magnitude
of the tangent of phase angle increases with the increase in Re but decreases with the
increase in ω.
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5. Heat transfer

To find the temperature distribution we consider the energy equation

∂T�

∂t�
+ v�

∂T�

∂y�
+w�

∂T�

∂z�
= α

(
∂2T�

∂y2
+
∂2T�

∂z2

)
+

μ

ρCp
Φ�, (5.1)

where Φ� is the viscous dissipation function given by

Φ� = 2

[(
∂v�

∂y�

)2

+
(
∂w�

∂z�

)2
]

+

(
∂u�

∂y�

)2

+

(
∂w�

∂y�
+
∂v�

∂z�

)2

+

(
∂u�

∂z�

)2

, (5.2)

where Cp is the specific heat at constant pressure, and μ is the viscosity, α is the thermal
diffusivity of the fluid. We assume the temperature at the lower and upper plates are T0

and T1(T1 > T0), respectively.
The temperature boundary conditions are

T� = T0 at y� = 0,

T� = T1 at y� = d.
(5.3)

Introducing the nondimensional variables

θ = T�−T0

T1−T0
, Pr= μ

α
, Ec = U2

Cp
(
T1−T0

) (5.4)

and on using (2.4), (5.1), and (5.2) become

Prω
∂θ

∂t
+ RePr

(
v
∂θ

∂y
+w

∂θ

∂z

)
= ∂2θ

∂y2
+
∂2θ

∂z2
+ PrEcΦ, (5.5)

where

Φ= 2

[(
∂v

∂y

)2

+
(
∂w

∂z

)2
]

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2

+

(
∂w

∂y
+
∂v

∂z

)2

. (5.6)

The corresponding boundary condition is reduced to

θ(0)= 0 θ(1)= 1. (5.7)

We assume the solution of the temperature equation in the form

θ = θ0(y) + εθ1(y,z, t) + ε2θ2(y,z, t) + ··· . (5.8)

Substitute (5.8), (3.1) in (5.13) and equate the term independent of ε and the coefficients
of ε and neglect the higher order of ε as ε� 1. Equating the terms independent of ε,
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we get

θ′′0 + SRePrθ′0 =−PrEcu
′2
0 . (5.9)

The corresponding temperature boundary conditions are

θ0(0)= 0, θ0(1)= 1. (5.10)

Solving (5.9) under the boundary conditions (5.10), we get

θ0(y)= h1
(
1− e−SRePry)+h2

(
e−2SRe y − 1

)
for Pr �= 2.0,

θ0(y)=D1
(
1− e−2SRe y)+D3ye

−2SRe y for Pr= 2.0,
(5.11)

where

h1 = 1 +h2
(
1− e−2SRe

)
1− e−SRePr

, h2 = −PrEc

2
(
1− e−SRe

)2
(2−Pr)

for Pr �= 2.0,

D1 = 1−D3e−2SRe

1− e−2SRe
, D3 = EcSRe(

1− e−SRe
)2 for Pr= 2.0.

(5.12)

Equating the coefficient of ε from both sides, we have

Prω
∂θ1

∂t
+ RePr

[
v1
∂θ0

∂y
+ v0

∂θ1

∂y

]
= ∂2θ1

∂y2
+
∂2θ1

∂z2
+ 2PrEcu′0u

′
1. (5.13)

The corresponding conditions for θ1 are

θ1(0)= 0, θ1(1)= 0. (5.14)

We assume the solution of the above differential equation (5.13) of the form

θ1(y,z, t)= θ11(y)ei(πz−t). (5.15)

Substituting (5.15) in (5.13) and on using (3.10), we get

θ′′11 + SRePrθ′11−
(
π2− iPrω

)
θ11 = RePrθ′0v11− 2PrEcu′0u

′
11. (5.16)

The corresponding boundary conditions are reduced to

θ11(0)= 0, θ11(1)= 0. (5.17)
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The solution of (5.16) subject to the boundary conditions (5.17) and on using (3.4),
(3.13), (3.14), and (5.11) are

θ11 = L
{
e−m1 y − e−m2 y

}

+ S2 Re2 Pr2h1

[
A

λ1

{
e−(r1+SRePr)y − e−m2 y

}
+

B

λ2

{
e−(r2+SRePr)y − e−m2 y

}

+
C

λ3

{
e(π−SRePr)y − e−m2 y

}
+
D

λ4

{
e−(π+SRePr)y − e−m2 y

}]

− 2SRePr

[{
Ah2 Re−EcC1

(
r1 + SRe

)
(
1− e−SRe

)
}

1
λ5

{
e−(r1+2SRe)y − e−m2 y

}

+

{
Bh2 Re−EcC2

(
r2 + SRe

)
(
1− e−SRe

)
}

1
λ6

{
e−(r2+2SRe)y − e−m2 y

}

+

{
Ch2 Re+

EcC3(π− SRe)(
1− e−SRe

)
}

1
λ7

{
e(π−2SRe)y − e−m2 y

}

+

{
Dh2 Re−EcC4(π + SRe)(

1− e−SRe
)
}

1
λ8

{
e−(π+2SRe)y − e−m2 y

}]

+
2PrEcSRe(
1− e−SRe

)
[
A3r1

λ9

{
e−(r1+SRe)y − e−m2 y

}

+
A4r2

λ10

{
e−(r2+SRe)y − e−m2 y

}]
for Pr �= 2.0,

(5.18)

and for Pr= 2.0,

θ11(y)= L1e
−m3 y +M1e

−m4 y +

[
2ReAD4 +

C1
(
r1 + SRe

)
β

]
1
μ1

e−(r1+2SRe)y

+

[
2ReBD4 +

C2
(
r2 + SRe

)
β

]
1
μ2

e−(r2+2SRe)y +

[
2ReCD4− C3(π− SRe)

β

]
1
μ3

× e(π−2SRe)y +

[
2ReDD4 +

C4(π + SRe)
β

]
1
μ4

e−(π+2SRe)y

+
1
β

[
A3r1

μ5
e−(r1+SRe)y +

A4r2

μ6
e−(r2+SRe)y

]

− 4SRe2D3

[
A

μ1

{
y +

2
(
r1 + SRe

)
μ1

}

× e−(r1+2SRe)y +
B

μ2

{
y +

2
(
r2 + SRe

)
μ2

}
e−(r2+2SRe)y +

C

μ3

×
{
y− 2(π− SRe)

μ3

}
e(π−2SRe)y +

D

μ4

{
y +

2(π + SRe)
μ4

}
e−(π+2SRe)y

]
,

(5.19)
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where

m1,2= SRePr
2

± 1
2

{
S2 Re2 Pr2 + 4

(
π2− iPrω

)}1/2
,

λ1,2 = SRer1,2(Pr + 1.0) + iω(Pr− 1.0),

λ3,4 = Pr(iω∓ SπRe),

λ5,6 = SRer1,2(5−Pr) + 2S2 Re2(2−Pr) + iω(Pr− 1.0),

λ7,8 =±πSRe(Pr− 4.0) + 2S2 Re2(2−Pr) + iPrω,

λ9,10 = SRer1,2(2−Pr) + (1−Pr)
(
S2Pr2− iω

)
,

L= 1(
e−m2 − e−m1

)

×
{
S2 Re2 Pr2h1

[
A

λ1

{
e−(r1+SRePr)− e−m2

}

+
B

λ2

{
e−(r2+SRePr)− e−m2

}
+
C

λ3

{
e(π−SRePr)− e−m2

}

+
D

λ4

{
e−(π+SRePr)− e−m2

}]

− 2SRePr

[{
Ah2 Re−EcC1

(
r1 + SRe

)
(
1− e−SRe

)
}

1
λ5

{
e−(r1+2SRe)− e−m2

}

+

{
Bh2 Re−EcC2

(
r2 + SRe

)
(
1− e−SRe

)
}

1
λ6

{
e−(r2+2SRe)− e−m2

}

+

{
Ch2 Re+

EcC3(π− SRe)(
1− e−SRe

)
}

1
λ7

{
e(π−2SRe)− e−m2

}

+

{
Dh2 Re−EcC4(π + SRe)(

1− e−SRe
)
}

1
λ8

{
e−(π+2SRe)− e−m2

}]

+
2PrEcSRe(
1− e−SRe

)
[
A3r1

λ9

{
e−(r1+SRe)− e−m2

}
+
A4r2

λ10

{
e−(r2+SRe)− e−m2

}]}
for Pr �=2.0,

(5.20)

and for Pr= 2.0,

m3,4 = SRe±{S2 Re2 +
(
π2− 2iω

)}1/2
, μ1,2 = 3SRer1,2 + iω,

μ3,4 = 2iω∓ 2πSRe, μ5,6 = SRe
(
r1,2− SRe

)
+ iω, β =

(
1− e−SRe

)
4EcSRe

,
(5.21)

L1 and M1 are not given here to save space.
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Figure 5.1. Temperature profile for Re= 5.0, Pr= 0.72, S= 1.0, Ec= 10.0, z = 0.5, t = 0.2, ε = 0.2.

The temperature profile has been plotted against y for different values of frequency
parameter ω and Reynolds number Re for Pr = 0.72, Ec = 10.0, S = 1.0, z = 0.5, t = 0.2
in Figures 5.1 and 5.2. It is observed that the temperature increases with the increase
in frequency parameter ω. On the other hand, it increases near the stationary plate and
decreases away from the stationary plate with the increase in Reynolds number Re.

One of the most important characteristics of the problem is the rate of heat transfer
at the plate. The rate of heat transfer from the plate y = 0 to the fluid may be calculated
using the formula qw =−(∂T/∂y)y=0 and can be put in nondimensional form in terms of
Nusselt number as

Nu=− qwd

k
(
T1−T0

) =−
(
dθ

dy

)

y=0

=−
(
dθ0

dy

)
y=0
− ε
(
dθ1

dy

)

y=0

=−
(
dθ0

dy

)

y=0

− ε
(
dθ11

dy

)
y=0

ei(πz−t)

=−θ′0− εRe3 cos
(
πz− t+φ3

)
for Pr �= 2.0,

(5.22)

where

Re3 =
{
X2

3 +Y 2
3

}1/2
, tanφ3 = Y3

X3
, (5.23)
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Figure 5.2. Temperature profile for Pr= 0.72, ω = 6.0, Ec= 10.0, z = 0.5, t = 0.2, ε = 0.2.

and for Pr= 2.0,

Nu=− qwd

k
(
T1−T0

) =−
(
dθ

dy

)
y=0
=−

(
dθ0

dy

)

y=0

− ε
(
dθ1

dy

)

y=0

=−
(
dθ0

dy

)

y=0

− ε
(
dθ11

dy

)

y=0

ei(πz−t)

=−θ′0− εRe4 cos
(
πz− t+φ4

)
,

(5.24)

where

Re4 =
{
X2

4 +Y 2
4

}1/2
, tanφ4 = Y4

X4
. (5.25)

The rate of heat transfer due to the unsteady part of the temperature is shown in terms
of Nusselt number. The amplitude Re3 and the phase shift tanφ3 in Nusselt number are
shown in Figures 5.3 and 5.4 against Re for Pr= 0.72, S= 1.0, and Ec= 10.0 for different
values of ω. It is found that Re3 decreases with the increase in ω. This means that for
higher frequencies, rate of heat transfer decreases. Figure 5.1 shows the variation of the
phase shift of Nusselt number, tanφ3 with Re for different values of ω. It is found that for
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Figure 5.3. The amplitude Re3 of Nusselt number for Pr= 0.72, S= 1.0, Ec= 10.
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Figure 5.4. Tangent of phase shift of Nusselt number tanφ3 for S= 1.0, Pr= 0.72, Ec= 10.

small frequencies there is a phase lead but for large frequencies there is a phase lag. The
tangent of the phase shift tanφ3 increases with the increase in Re.
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