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We present two simple approaches to calibrate a stereo camera setup with heterogeneous lenses: a wide-angle fish-eye lens and a
narrow-angle lens in left and right sides, respectively. Instead of using a conventional black-white checkerboard pattern, we design
an embedded checkerboard pattern by combining two differently colored patterns. In both approaches, we split the captured stereo
images into RGB channels and extract R and inverted G channels from left and right camera images, respectively. In our first
approach, we consider the checkerboard pattern as the world coordinate system and calculate left and right transformationmatrices
corresponding to it. We use these two transformation matrices to estimate the relative pose of the right camera by multiplying the
inversed left transformation with the right. In the second approach, we calculate a planar homography transformation to identify
common object points in left-right image pairs and treat themwith the well-known Zhangs camera calibrationmethod.We analyze
the robustness of these two approaches by comparing reprojection errors and image rectification results. Experimental results show
that the second method is more accurate than the first one.

1. Introduction

The process of estimating internal-external (also known as
intrinsic and extrinsic) camera parameters and knowing the
correct relative pose between cameras in a stereo setup has
been of the interest in the computer vision field for many
years. It is considered as the first and foremost important
step in many 2D/3D stereo vision experiments. Much related
work have been introduced throughout the past few decades,
initially starting in the photogrammetry community [1, 2]. As
mentioned in [3], these calibration methods can be divided
into two broad categories: photogrammetric calibration and
self-calibration. Photogrammetric calibration is performed
by observing a calibration object (normally a checkerboard
pattern) whose geometry in the 3D space is known for the
best precision. In contrary, self-calibration is performed by
extracting feature points and processing correspondences
between captured images of a static scene. However, one of
the constraints in most of these photogrammetric calibration
methods is using common or similar field-of-view (FOV)
cameras. Correspondingly, many self-calibration methods

also follow the same constraint, where a few utilize advan-
tages of using heterogeneous setups. However, extracting rich
key points is challenging and sometimes could lead into
erroneous approximations. In this paper, we propose two
new, yet simplified, calibration approaches for a heteroge-
neous camera setup. Instead of using the general black-white
checkerboard pattern, we design a new color checkerboard
pattern, by combining two different patterns. In our first
approach, we consider the checkerboard pattern as the world
coordinate system and calculate the two transformation
relationships between left and right cameras correspondingly.
Multiplying the inverted left transformation with the right
transformation gives the relative pose of the right camera
with respect to the left camera. In our second approach,
we use a planar homography transformation method to
identify common object points in stereo images. Once these
common points are estimated, we apply Zhang’s method
[3] to calibrate the stereo camera setup. The remainder of
this paper is constructed as follows: Section 2 describes
some existing stereo calibration methods for heterogeneous
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setups. Section 3 describes the preliminaries, including the
configuration of our camera setup, the method of designing
the color checkerboard pattern, and themethod of separating
two patterns from each other. Section 4 consists of the core
of this paper, brief introductions to two stereo calibration
approaches. Section 4.1 describes mono calibration method
used to undistort input image sequences. In Section 4.2 we
describe the matrix multiplicationmethod and in Section 4.3
the planar homography transformation-based calibration
method. Experiments performed to evaluate the accuracy
of these two methods are summarized in Section 5. Besides
comparing reprojection errors, we perform image rectifica-
tions to see how robust our proposedmethods are. Finally, the
conclusions and further discussions are drawn in Section 6.

2. Related Work

Thepopularity of wide-angle lenses, such as fish-eye cameras,
has started to increase in the field of stereo vision. The wider
FOV of such cameras allows users to cover a broad scene area
compared to conventional cameras.These cameras have been
intensively used in many recent stereo-based experiments,
where quite a number of calibration methods have also
been tested. Barreto andDaniilidis introduced a factorization
approach without performing nonlinear minimization to
estimate the relative pose between a conjugated wide-angle
camera setup [4, 5] using a minimum of 15 corresponding
pointmatches. Fischler andBolles proposed aRANdomSam-
ple Consensus (RANSAC) [6] based polynomial eigenvalue
method [7] to estimate the relative pose of a noncentral
catadioptric camera system [8]. Lhuillier introduced a similar
approach [9] in 2008. In this method, he discussed applying
a central model to estimate the geometry of the camera and
a decoupling orientation translation to identify the trans-
formation relationship. Lim et al. introduced a new stereo
calibration method using an antipodal epipolar constraint
[10]. In addition, many optical flow estimation approaches
have been adopted for pose estimations, as cited in [11]. On
the other hand, planar projection (or homography) based
approaches have also been studied to estimate relative pose in
a stereo camera rig. Chen et al. proposed a calibrationmethod
for a high definition stereo camera rig by utilizing the idea of
homography transformation [12] using a marker chessboard.
In year 2013, they discussed another slightly improved image
undistortion and pose estimation method in their technical
paper [13].

Even though these existing methods can be used to
calibrate heterogeneous stereo camera setups, most of them
have certain limitations and drawbacks. Most of these meth-
ods depend on geometric invariants of image features, such
as projections of straight lines, or the approximations of
the fundamental matrix [13]. They require proper extrac-
tion/matching of point correspondences between stereo
image pairs, which sometimes could bemore challenging due
to irregular resolutions, different FOVs, and lens distortions
of cameras. In addition, the implementation of thesemethods
is limited only for small displacement since the reliability of
feature points extraction decreases when there are large FOV
differences between images.Themethod proposed by Barreto

and Daniilidis is mostly algebraic, and the linear model
requires a minimum of 15 point correspondences. Precise
estimation of these correspondences is more ambiguous and
less accurate in difficult environments. Similarly, the method
proposed by Micusik and Pajdla generalizes Fitzgibbon’s
technique [14] and requires 9 point correspondences, whereas
the method proposed by Lhuillier requires a minimum of 7
point correspondences to calculate the fundamental matrix.
The method introduced by Lim et al. imposes the constraints
on the distribution of feature points.The planar homography
method introduced by Chen et al. in their first research
article [12] sometimes failed to detect chessboard corners
properly. They proposed a solution for this problem in their
second research article [13] by introducing the concept of
a robust type homography transformation in which they
primarily focused on processingmono video cameras instead
of focusing on stereo systems.

In our article, we realized that the above limitations and
drawbacks occur mainly because of using point correspon-
dences in-between stereo image pairs. However, the two
stereo calibration methods we state in this article do not
depend on these sensitive point correspondences and do not
show such difficulties. Instead, we use pure mathematical
approaches for pose estimations. The embedded checker-
board pattern we introduce is a proper alternative for the
traditional black-white checkerboard pattern and can be used
in cases where common areas are not visible in images (due
to FOV differences).

3. Preliminaries

3.1. Focal Lengths, Field-of-Views, and Wide-Angle Cameras.
Focal length is the distance from the center of the lens to
the image plane where light converges to a similar point
named the focal point. Figure 1 shows how two light rays
are converging into this point. The focal length of a camera
and its FOV are proportionally interconnected with each
other. A longer focal length results in a lower FOV, where a
lower focal length results in a higher FOV. This proportional
relationship allows for converging or diverging the amount
of light entering the camera. This is graphically shown in
Figure 2. Using a short focal length is the base idea of wide-
angle lenses [15, 16].

The popularity of wide-angle lenses, such as fish-eye
lenses, have started to increase because of their ability to cover
wider viewing areas.The basement of these wide-angle lenses
can be considered as the Double-Gauss lens [17], which is
a compound-type lens of a positive and negative meniscus
lenses on the object side and the image side, respectively.
In general, all these wide-angle lenses can be categorized
into two main groups: short focus lenses and retrofocus
lenses. Short focus lenses are generally made of multiple
glass elements whose shapes are nearly symmetrical in the
front and back of the diaphragm. Retrofocus lenses use an
inverted telephoto configuration, in which the front element
is negative.

3.2. Designing the Special Checkerboard Pattern. The con-
ventional way of capturing stereo images of a black-white
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Figure 1: The concept of focal length. The rays are converged into
the focal point.

Focal length 1
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Figure 2: The proportional relationship between the focal length
and FOV.When the focal length is longer, the FOV is lower, resulting
in only a part of the object light rays to be converged.When the focal
length is shorter, the FOV becomes higher, resulting in a wider area
of the object to be converged.

checkerboard pattern using narrow-angle cameras has con-
stantly been used inmany existingmethods. To obtain higher
accurate calibration results, the pattern needs to be kept
near to cameras. This orientation could sometimes result in
limiting the number of poses (even though the minimum
number of poses required is six as mentioned in [3]). In some
situations, capturing the full area of the checkerboard pattern
fails. One possible solution to resolve this occlusion problem
would be using wide-angle lenses. In this paper, we have

Narrow-angle

Narrow-angle

camera

camera view

camera view

Wide-angle

Wide-angle

camera

General black-white
checkerboard pattern

Figure 3: An example showing how the viewing angles are different
in wide-angle and narrow-angle cameras. Left side consists of the
wide-angle camera, and it covers a larger area of the scene. Right
side consists of the narrow-angle camera, and it only covers a smaller
part of the scene. The general checkerboard pattern is partially seen
by the narrow-angle camera.

Figure 4: The special colored checkerboard pattern used instead of
the conventional black-white checkerboard pattern.The pattern is a
combination of two differently colored checkerboard patterns. The
outer pattern consists of red-blue checker patterns and the small
inner pattern with red-yellow-blue-cyan color patterns. Aspect ratio
between two patterns is 2 : 1.

decided to use a single wide-angle lens along with a narrow-
angle lens.

However, using a wide-angle lens does not guarantee
the stereo setup manages to capture full images of the
checkerboard pattern. Since we use a narrow-angle camera
in our stereo setup, there is a difficulty to cover the full area
of the checkerboard pattern at close distance as it is illustrated
in Figure 3. In order to overcome these problems and as a final
solution, we have designed a new checkerboard pattern and
used it instead of using the conventional black-white pattern.
This new checkerboard pattern we used in our proposed
methods is graphically shown in Figure 4.
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Figure 5:Themethod of generating the special color checker pattern. (a)The 7×10 red-blue outer pattern is mixed with the 6×8 black-green
smaller pattern. (b) The basic colors blend and result in red, yellow, blue, and cyan colors. This mixing results in the inner pattern as shown
in Figure 4.

This special checkerboard pattern is made by combining
two different color checkerboard patterns: 7 × 10 larger
pattern and a 6 × 8 smaller pattern. The larger pattern (from
now on mentioned as the outer pattern) is designed by red-
blue checker patterns, and the smaller pattern is designed
by black-green checker patterns. This smaller pattern is
embedded into the outer pattern (as in Figure 5(a)), making
the basic color blend. Color mixing results in a secondary
inner patternwith red-yellow, blue, and cyan colors inside the
outer pattern.Therefore, we can think of using two individual
checkerboard patterns, instead of using a single pattern. The
process of designing this special checkerboard pattern is
depicted in Figure 5.

3.3. Capturing Calibration Images of Special Checkerboard
Pattern. The heterogeneous stereo camera setup we have
used in our experiments is depicted in Figure 6. Two Point
Grey Grasshopper cameras are mounted on either side of a
horizontal panning bar: left side wide-angle camera (focal
length ≅ 3.5mm) and right side narrow-angle camera (focal
length ≅ 8mm). We kept the special checkerboard pattern in
front of the cameras in such a way the narrow-angle camera
always sees the full area of the inner checkerboard pattern.
Since the wide-angle camera has a wider FOV, it fully sees
both inner and outer patterns (Figure 7).

In our experiments, we wanted to retain only the outer
pattern fromwide-angle camera images and the inner pattern
fromnarrow-angle camera images.WeperformedRGBchan-
nel splitting to distinguish twopatterns fromeach other.Once
R channel is extracted, we managed to separately identify the
outer pattern in wide-angle camera images. Similarly, we first
extracted the G channel from narrow-angle camera images
and inverted it to identify the inner pattern. Figure 8 shows
an instance of how we managed to separately identify two
patterns from each other. Figures 8(a) and 8(b) show left
wide-angle and right narrow-angle camera images. We can
easily identify the outer pattern from thewide-angle image by

extracting R channel and the inner pattern from the narrow-
angle image by extracting the inverted G channel.

4. Stereo Calibration

4.1. Mono Camera Calibration. One of the problems of using
wide-angle cameras is that they suffer from massive barrel
distortions. Performing stereo calibrations without correct-
ing distortions could lead into erroneous matrix calculations.
Consequently, we start our two stereo calibrationmethods by
first undistorting input wide and narrow-angle images.

We use the same experiment setup mentioned in Sec-
tion 3.3. We kept the special checkerboard pattern at a
short distance and captured left-right wide and narrow-
angle camera images separately. After capturing images, we
followed the method mentioned in Section 3.3 to retain
the outer pattern in wide-angle camera images and the
inner pattern in narrow-angle camera images. We then used
the well-known Zhang’s method [3] to calibrate cameras
independently. Figure 9 shows an instance ofwherewide- and
narrow-angle cameras are calibrated separately.

4.2. Stereo Calibration Using Transformation Matrices. The
first stereo calibration approach is based on multiplying the
two transformation matrices between wide- and narrow-
angle cameras. Once two cameras are properly calibrated
as mentioned in Section 4.1, we then capture stereo image
sequences of the checkerboard pattern from two cameras
at the same time. While capturing images, we kept the
checkerboard pattern at a short distance to the cameras
in such a way the wide-angle camera sees the full area of
the pattern and the narrow-angle camera sees the full area
of the inner pattern. In this method, we considered the
checkerboard pattern as the world coordinate system where
the origin lies at the intersection point of first red and blue
checker patterns of the outer pattern. Since we consider inner
and outer patterns are two different checkerboards, the inner
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Narrow-angle
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Wide-angle
camera

Figure 6: The stereo camera setup we used in our experiments. Left side consists of the wide-angle camera and the right side consists of
the narrow-angle camera. Both cameras are mounted on a horizontal panning bar. The special checkerboard pattern is kept very near to the
camera setup.

pattern has its origin at the intersection point of first red
and yellow checkers, and we shifted this toward the origin of
the outer pattern by simply adding the distance between two
origins. This is graphically described in Figure 10.

Taking 𝑇𝑊𝐿 and 𝑇𝑊𝑅 representing two transformation
matrices betweenwide-angle and narrow-angle cameras with
respect to world coordinate system, we wanted to find the

relative pose of the narrow-angle camera with respect to
wide-angle camera, 𝑇𝐿𝑅. We used the captured stereo image
sequences to calibrate two cameras separately (Section 4.1)
and estimated two 3 × 4 camera matrices (or perspective
projection matrices).

The general relationship between a 3D point 𝑃world in the
world coordinate system and its respective 2D point 𝑃image in
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Figure 7: A representation of how the special checkerboard pattern is seen in left wide-angle and right narrow-angle cameras. Checkerboard
pattern is kept at a very close distance to the cameras. Wide-angle camera has a higher FOV; thus it sees the whole area of the checker pattern.
The FOV of narrow-angle camera is lower; thus it always sees the inner pattern.

(a) (b)

(c) (d)

Figure 8: The method of separately identifying outer and inner patterns from wide-angle and narrow-angle cameras, respectively. Original
wide-angle and narrow-angle camera images are shown in (a) and (b). (c) states the extracted R channel of wide-angle camera image, where
(d) states the inverted G channel of narrow-angle camera image.
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(a) (b)

Figure 9: An instance of mono calibrations. First, second and third columns represent original, split channel, and undistorted images. (a) R
channel is extracted from wide-angle camera images for calibration. (b) Inverted G channel is extracted from narrow-angle camera images
for calibration.
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Figure 10: Shifting the origin of the inner pattern toward the outer pattern origin.

the image coordinate system can be written as

𝑃image = 𝑀𝑃world, (1)

where 𝑀 depicts the camera matrix. This 𝑀 matrix can be
further decomposed as intrinsic camera matrix 𝐾 and rigid
transformation matrix (or the extrinsic matrix) [𝑅, 𝑡] [18].
Thus, (1) can be rewritten as

𝑃image = 𝐾 [𝑅 | 𝑡] 𝑃world, (2)

where 𝑅 denotes 3×3 rotation and t denotes 3×1 translation
(𝑟𝑖𝑗 and 𝑡𝑖 in (3), resp.).

[𝑅 | 𝑡] = [[
[

𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3

]]
]
. (3)

These intrinsic and extrinsic entries of𝑀matrix can be easily
identified using 𝑅𝑄 factorization [19].

We can estimate both 𝑇𝑊𝐿 and 𝑇𝑊𝑅 transformation
matrices by applying this generalization into wide-angle and
narrow-angle cameras separately as follows:

𝑇𝑊𝐿 = [𝑅 | 𝑡]𝑊𝐿 ,
𝑇𝐿𝑅 = [𝑅 | 𝑡]𝑊𝑅 .

(4)

The following equation depicts the relationship between
transformation matrices shown in Figure 11, which we are
interested in estimating 𝑇𝐿𝑅.

𝑇𝑊𝐿 ⋅ 𝑇𝐿𝑅 = 𝑇𝑊𝑅. (5)

We multiplied the inverse of left transformation matrix with
the right transformation matrix to find the relative pose of
the narrow-angle camera with respect to wide-angle camera
as follows:

𝑇𝐿𝑅 = 𝑇𝑊𝐿−1 × 𝑇𝑊𝑅. (6)

Figure 12 graphically summarizes the whole matrix
multiplication-based calibration procedure as a flow chart.
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Figure 11: Calculating the relative pose between wide and narrow-
angle cameras using two transformation matrices obtained with
respect to the world coordinate system.

4.3. Stereo CalibrationUsing PlanarHomography Transforma-
tion. Figure 13 summarizes the whole process we followed to
find the relative pose of the narrow-angle camera by keeping
wide-angle camera as the reference. Similar to the method
mentioned in Section 4.2, we first undistorted the images and
used them as input data.

This second approach uses Zhang’s method to perform
stereo calibration, but, to apply Zhang’s method, we need
to know the correct relationship between point locations
in two camera images. Due to the reason that the narrow-
angle camera only sees a partial area of the full checkerboard
pattern, we could not directly identify this relationship.
Therefore, we applied a planar homography transforma-
tion on the wide-angle camera images to properly project
point locations into the view point of the narrow-angle
camera.

To calculate the planar homography matrix 𝐻, we need
at least four corresponding image points between wide- and
narrow-angle images. This means that we need to know
at least four sets of 2D image coordinates of the checker-
board pattern. Due to the FOVs of two cameras, wide-
angle camera captures both inner and outer patterns, where
narrow-angle camera only manages to capture the full area
of the inner pattern (with some partial areas of the outer
pattern).

Therefore, we decided to retain only the inner pattern in
both wide- and narrow-angle images. We followed the same
channel splitting method, but this time we only considered
extracting the inverted G channel. This results in separately
identifying the inner pattern in both camera images.Weman-
ually selected four exact commonpoint locations in images to
calculate matrix𝐻 as shown in Figure 14. According to [18],

Table 1: Intrinsic camera parameters.

Left camera Right camera
𝑓𝑋 483.5165 1127.8372
𝑓𝑌 483.1779 1125.0019
𝑐𝑥 343.4943 343.6781
𝑐𝑌 257.4602 256.7247
Reprojection Err. 0.3252 0.3500

the homography transformation relationship between two 2D
corresponding point locations can be summarized as

𝑥󸀠 = 𝐻𝑥. (7)

𝐻 is the 3 × 3 homography transformation matrix that we
are interested in calculating, where 𝑥󸀠 and 𝑥 represent known
2D point locations we selected in wide-angle and narrow-
angle camera images, respectively. Using the above four point
correspondences, we find this 𝐻 matrix based on singular
value decomposition.

After calculating 𝐻 matrix, we next find chessboard
corners of the outer pattern in wide-angle images. We
followed the steps mentioned in [20] to find the chess
corner locations accurately. We first extract R channel to
retain the outer pattern and find 2D point information of
all 54 corners. Next we apply 𝐻 matrix to identify where
these corner points projected onto narrow-angle images
(Figure 15). Green circles in narrow-angle images represent
these projected point locations. We adjusted these points
with subpixel accuracy to maximize their cornerness criteria.
Once we find 2D coordinates of common object points in
both wide- and narrow-angle images, we can treat them with
Zhang’s method to perform stereo calibration between two
cameras.

5. Experiments and Results

We have performed 4 experiments (2 for method 1 and 2
for method 2) to evaluate the robustness of the proposed
two methods. We have performed experiments in both
indoor and outdoor environments. We have used the same
experiment setup mentioned in Figure 6 to perform indoor
experiments, where we mounted it on top of the front
mirror of a vehicle to do outdoor experiments. We used a
similar number of image sequences (30 images) in every
experiment. Table 1 summarizes intrinsic camera parameters
for both cameras. Parameters 𝑓𝑥 and 𝑓𝑦 represent the focal
lengths expressed in pixel units in 𝑋 and 𝑌 directions. 𝑐𝑥
and 𝑐𝑦 represent the 𝑋 and 𝑌 components of the principal
point. Table 2 summarizes experiment results calculated for
both indoor and outdoor environments from method 1 in
Section 4.2 and method 2 in Section 4.3. Parameters 𝑅𝑥, 𝑅𝑦,
and 𝑅𝑧 represent the components of rotation in 𝑋, 𝑌, and
𝑍 directions, where parameters 𝑇𝑥, 𝑇𝑦, and 𝑇𝑧 represent the
components of translation in𝑋, 𝑌, and 𝑍 directions.

We calculated and compared reprojection error values in
both methods, that is, the root mean squared value (RMS)
of Euclidean distances between the observed chess corner
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Table 2: Stereo calibration results for both methods in indoor and outdoor environments.

Method 1 Method 2
Indoor Outdoor Indoor Outdoor

𝑅𝑥 −0.008254 −0.007284 −0.007255 −0.007284
𝑅𝑦 0.015047 0.017057 0.009064 0.01705
𝑅𝑧 −0.02171 −0.02341 −0.02015 −0.02341
𝑇𝑥 −106.170024 −106.170057 −106.170006 −106.170057
𝑇𝑦 4.125034 3.785034 3.525034 3.55035
𝑇𝑧 −3.964857 −3.961871 −2.962087 −2.961808
Reprojection Err. 1.0701 0.8587 0.6781 0.5702
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Figure 12: Stereo calibrationmethodbymultiplying left-right transformationmatrices. Given input images are undistorted using undistortion
coefficients calculated in mono camera calibration step.
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Figure 13: Stereo calibration method by finding a planar homography relationship between wide and narrow-angle camera images. Four
points from the inner pattern in both camera images are used to calculate the homography transformation.

Figure 14: Finding planar homography transformation between
wide- and narrow-angle camera images using the inner pattern.

points in the image coordinate system (in 2D calibration
images) and the corresponding projected object points. We
referred to [18, 21] to calculate these errors.

Also, we performed image rectifications [22] to see
how accurate our calibration methods are. Experiment

Figure 15: Applying homography to project 54 corner points of
wide-angle image to narrow-angle image. Green points depict
respective projected corner point.

results affirm homography transformation method is slightly
accurate compared to the matrix multiplication method.
Some indoor environment rectification results generated
from both methods are shown in Figures 16 and 17, where
outdoor results are shown in Figures 18 and 19, respec-
tively. There, we drew epilines (green horizontal lines)
to represent the rectification error graphically and addi-
tionally calculated the absolute 𝑌 value differences of the
inner pattern’s chessboard corner locations to represent it
mathematically.
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Figure 16: Rectified canvas result for indoor environment frommethod 1. Green horizontal lines represent rectified 𝑌 lines.The bottom edge
has some rectification errors.

Figure 17: Rectified canvas result for indoor environment from method 2.

Figure 18: Rectified canvas result for outdoor environment from method 1. Some small rectification errors exist.

Figure 19: Rectified canvas result for outdoor environment from method 2.
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(a)

(b)

Figure 20: Rectification results comparisons when using general pattern and the embedded pattern. (a) depicts the result for general pattern
rectification and (b) depicts the result for colored checker pattern.

Table 3: Comparisons of rectification errors for 4 rectified stereo
image pairs.

Method 1 (pixels) Method 2 (pixels)
Set 1 1.61847 1.49214
Set 2 1.74390 0.98472
Set 3 1.90601 1.32478
Set 4 2.03619 1.57652
Average Err. 1.82614 1.59189

To represent rectification error mathematically, we
selected four stereo image pairs from the outdoor environ-
ment that are rectified using calibration parameters of the
two methods. From each image set, we extracted inner
pattern areas, estimated 35 chess corner locations (as
mentioned in [20]), and calculated 𝑌 value differences (in
pixels) between corresponding point locations in wide- and
narrow-angle images. We summarized the average difference
of each individual image set along with their overall average
(term Average Err.). Table 3 depicts these results in pixels.

We performed another experiment to evaluate the accu-
racy of calibration using the embedded checkerboard pattern
and a general black-white checkerboard pattern. We kept
both patterns at the same position, where both cameras man-
age to see the full area. We calibrated the images of the black-
white pattern according to the general version of Zhang’s
method. We used our proposed homography transformation

method to calibrate the images of the embedded pattern.
Similarly, we performed image rectifications and calculated
2D pixel positions to confirm that the combination of our
embedded pattern and homography-based method gives
better results compared to the general method when using
the black-white pattern (Figure 20).

6. Conclusions

In this paper, we proposed two new methods to calibrate a
heterogeneous stereo camera setup using a special colored
checkerboard pattern. The heterogeneous camera setup con-
sisted of a left wide-angle fish-eye lens camera and a right
narrow-angle conventional camera. Because of the viewing
angle irregularities, we could not use the conventional black-
white checkerboard pattern at a short distance to the cameras.
Therefore, we designed a new color checkerboard pattern
by combining two different size checkerboard patterns. We
embedded the small checkerboard pattern with the larger
checkerboard pattern, letting their colors blend. This color
blending results in a special checkerboard pattern, which
consists of an outer pattern and an inner pattern.This checker
pattern is kept at a very close distance to cameras and
captured calibration images sequences to improve estimated
results. We used RGB channel splitting method to separately
identify two patterns from each other.

In our first method, we perform stereo calibration be-
tween the cameras by calculating left and right transfor-
mation matrices. In our second method, we calculated a
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planar homography relationship between two cameras to
identify common object point locations of stereo images. We
projected chessboard corner locations of the outer pattern
into the view point of the narrow-angle camera by treating
them with the calculated homography relationship. Zhang’s
calibrationmethod was applied to calibrate the stereo camera
rig afterwards. We created rectification results to evaluate the
robustness of our two proposed methods. There, we realized
the second method was slightly accurate than the first.

As in future improvements, we are planning to parallelize
both calibration approaches inGPU-basedNvidia Jetson TK1
board to speed up calibration by reducing the computation
time and to use it in an embedded smart vehicle system
for lane detection. In addition, we are planning to enhance
the accuracy by updating calibration results using the well-
known 5-point algorithm and a parallelized SIFT-GPU based
corresponding point extraction.
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