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To increase quality, reduce heavy-duty gear noise, and avoid edge contact in manufacturing helical gears, a closed-loop feedback
correction method in topographic modification tooth flank is proposed based on the gear form grinding. Equations of grinding
wheel profile and grinding wheel additional radial motion are derived according to tooth segmented profile modification and
longitudinal modification. Combined with gear form grinding kinematics principles, the equations of motion for each axis of five-
axis computer numerical control forming grinding machine are established. Such topographical modification is achieved in gear
form grinding with on-machine measurement. Based on a sensitivity analysis of polynomial coefficients of axis motion and the
topographic flank errors by on-machine measuring, the corrections are determined through an optimization process that targets
minimization of the tooth flank errors. A numerical example of gear grinding, including on-machinemeasurement and closed-loop
feedback correction completing process, is presented. The validity of this flank correction method is demonstrated for tooth flank
errors that are reduced. The approach is useful to precision manufacturing of spiral bevel and hypoid gears, too.

1. Introduction

Helical gears play an important role in the aerospace, automo-
bile, wind power, and othermechanical transmission devices.
The precision and shape of the tooth surface directly affect the
performance of the device. Machine errors, heat treatment
distortions, variation of cutting forces, and other unpre-
dictable factors reduce gear quality and cause unfavorable
displacement of tooth contact and increased transmission
errors, resulting in edge contact and highly concentrated
stresses. In practice, gear form grinding can be a very effective
means for eliminating tooth flank errors of heavy-duty or
large-size gear. To meet the demand of these kinds of gears, a
combination of profile and longitudinal crowning is applied
on the tooth flank to increase the gear load capacity and
reduce vibrations and noise of the gear drive. Nonetheless, no
correctionmethod based on-machinemeasurement has been
proposed for flank topography, even though many authors

cite related research based on bevel and cylindrical gears [1–
5].

Within related research, Shih and Chen [6] proposed a
free-form flank correction in helical gear grinding using a
five-axis computer numerical control gear profile grinding
machine, but the errors of the actual tooth surface are
assessed using the gear measurement center not on-machine
measurement. Fan et al. [7, 8] presented a method of higher-
order tooth flank form error correction for face-milled spiral
bevel and hypoid gears based on coordinate measurement
machine. Yoshino and Ikeno [9] established a flank correction
method for profile grinding bypass compensation of the
wheel appearance and the position between the wheel and
the gear to reduce transmission error. Litvin et al. [10, 11]
changed the fixed gear ratio into modification ratio of the
grindingwheel and the work gear, so as to achieve topological
modification for reducing transmission error and noise.
Kobayashi et al. [12, 13] calculated the angle of the grinding
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wheel installation and optimized contact line between the
grinding wheel and lengthwise modification, in order to
achieve the accuracy of the gear flank profile. Krenzer [14]
proposed corrective machine setting method for face-milled
hypoid gears. Zhang et al. [15] proposed a method of gear
tooth surface modification through compensation of the
grinding wheel profile and the relative position of the wheel
and work gear, to improve the accuracy of the tooth surface.
Lee et al. [16, 17] fabricated a modified cylindrical gear drive
that can reproduce precisely the predesigned fourth-order
polynomial function of transmission error. Gorla and Rosa
[18] established a mathematical model for the ground surface
in the process of a form grinding method with a plunging
operation and researched the effect of the wheel setting angle
on the ground surface. Artoni et al. [19] proposed a novel
ease-off based compensation of tooth surface deviations for
spiral bevel and hypoid gears to achieve a high level of accu-
racy of transmission properties. Simon [20] used a method
for the determination of optimal toothmodifications in spiral
bevel gears based on improved load distribution and reduced
maximum tooth contact pressure and transmission errors.
Kolivand and Kahraman [21] developed a load distribution
model for hypoid gears using ease-off topography and shell
theory to optimize the tooth profiles for desired contact
patterns. However, although their methods for bevel gears or
cycloidal gears provided a development of a flank correction,
they did not propose closed-loop correction for topological
modification flank on gear form grinding.

This work aims to establish a closed-loop feedback flank
errors correction methodology based on the five-axis com-
puter numerical control gear form grinding machine. First,
we established amathematical model of topological modified
tooth flank. Subsequently, using on-machinemeasured topo-
graphic errors of tooth surfaces, we established a sensitivity
analysis model. Next, we derive the corrections to the five-
axis movement for reducing grinding errors.Then, we clearly
explain the feasibility of the closed-loop feedback flank errors
correction using a numerical example of a helical gear made
by the gear grinding machine. Finally, experimental results
will show that thismethod has application value in improving
accuracy of the gear.

The outline of the remainder of the paper is as follows.
In Section 2, a topological modified model of a helical gear
based on the gear form grinding is developed. On-machine
measurement method is the main subject of Section 3. In
Section 4 flank errors correction model is established. A
closed-loop correction process and numerical example are
illustrated in Sections 5 and 6. Finally, some conclusions are
drawn in Section 7.

2. Topological Modified Tooth Flank on
Form Grinding

2.1. Axis Motion of Form Grinding Machine. At present,
attempts to avoid edge contact of tooth surfaces caused by
misalignment are achieved through profile and longitudi-
nal crowning. We call this crowning “segmented topology
modification” where tooth surfaces have been divided into

Axis 1
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Axis 2
Work gear

Axis 3

Grinding
wheel

Figure 1: Schematic illustration of gear form grinding by a grinding
wheel.

involute and crowned zones. A nonmodified zone is provided
in the central area of gear tooth surfaces that will allow line
contact if there are no installation errors. The other zones
including the top, bottom, front, and back sides of tooth
surfaces are crowned and improve bearing contact when
installation errors occur. The authors propose application
for the finishing process of a grinding wheel (Figure 1) that
permits a topological modified tooth surface, avoids areas of
severe contact stresses, reduces level of transmission errors,
and lessens sensitivity to errors of alignment. The basic idea
of the topological modification of tooth flank by the form
grinding is application of modified wheel and the grinding
path. The axis applied for form grinding is as follows.

(1) Axis one corresponds to the feed motion of the
grinding wheel along the face width of the gear.

(2) Axis two is the rotation of the grinding wheel.
(3) Axis three is the rotation of the work gear.
(4) Axis four corresponds to the longitudinal crowning

motion of the grinding wheel along radial direction
of the gear.

2.2. Tooth Surface Topological Modification Zones. Seg-
mented topological modification crowns the tooth surface in
profile and longitudinal direction at the same time. Profile
segment modification is achieved by modifying the grinding
wheel, and longitudinal segment modification is completed
by changing the grinding path of the wheel relatively to the
gear. Figure 2 shows a 3D schematic view of the topological
modified tooth flank, where Σ

1
is a theoretical involute tooth

surface and Σ
2
is a topological modified tooth surface. Σ

2

includes nine desired zones of crowned gear tooth surface,
where zone 1 is a nonmodified surface corresponding to the
standard geometry of a grinding wheel and no modifications



Mathematical Problems in Engineering 3

h

a

b

j
f

c

d

e

X

Y

−Z

𝜃0

𝜃a

𝜃b

𝜃max

ua

uc

ud

ue

1
2

9

8

7

6

5

4

3

Σ1

Σ2

Figure 2: Topology of gear tooth flank surface.

are provided in this zone; zones 2, 4, 6, and 8 are the areas
of crowning in profile and longitudinal directions; zones 5
and 9 are the areas of crowning in longitudinal direction;
zones 3 and 7 are the areas of crowning in profile direction.
In Figure 2, 𝑢

𝑒
, 𝑢
𝑑
, 𝑢
𝑐
, and 𝑢

𝑎
are involute parameters of

boundary line 𝑒, 𝑑, 𝑐, and𝑓 in profile crowning direction, and
𝜃
0
, 𝜃
𝑎
, 𝜃
𝑏
, and 𝜃max are the gear rotation angles of boundary

line ℎ, 𝑎, 𝑏, and 𝑗 in longitudinal direction. So we can change
the surface parameters 𝑢

1
and 𝜃

1
to control crowning zone

size.
Axial profile of the wheel spirals along the axis direction

and does parabolic movement in the radial direction of the
work gear at the same time. The formed track is thought of
as the topological modification tooth surface, so the cross-
line equation of wheel axial profile and middle section of the
work gear can be used to obtain the tooth flank equation as
described by (1) in [22]. Consider
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, (1)

where (𝑢
1
, 𝜃
1
) are surface parameters, 𝑟

𝑏
is base radius, 𝜎

1

is tooth space half angle, Δ𝐿 is profile crowning value, 𝑎
𝑥

is longitudinal motion value, and 𝑝
1
is helix parameters,

respectively.
Topological crowning includes profile modification and

longitudinal modification. The former uses wheel crowning
to accomplish process; the latter changes the relative moving
trajectory of the wheel and the gear. The applied profile
crowning equation and wheel feeding motion are shown
in Table 1. The modified topology of the gear tooth surface
shown in Figure 2 can be obtained by application of (1).
Crowning coefficients in profile and longitudinal modifica-
tion are applied as follows.

(1) On the top side, zones 2, 3, and 4 will be provided by
profile crowning with a coefficient 𝑎

𝑚𝑝(𝑐𝑓)
starting at

𝑢
𝑐
.

(2) On the bottom side, zones 6, 7, and 8 will be provided
by profile crowning with a coefficient 𝑎

𝑚𝑝(𝑑𝑒)
ending

at 𝑢
𝑑
.

(3) On the front side, zones 4, 5, and 6 will be provided
by longitudinal crowning with a coefficient 𝑎

𝑚𝑙(𝑏𝑗)

starting at 𝜃
𝑏
.

(4) On the back side, zones 2, 9, and 8 will be provided
by longitudinal crowning with a coefficient 𝑎

𝑚𝑙(ℎ𝑎)

ending at 𝜃
𝑎
.

2.3. Mathematical Model for Form Grinding. Compared with
the traditional method for generating grinding, form grind-
ing method requires not only wheel modification of high

precision, but also accuracy position relative to thework piece
and the grinding wheel in radial and tangential direction.
Gear form grinding is arranged based on the universal
CNC gear form grinding machine, which has five digital
servo closed-loop controlled axes: three rectilinear motions
(𝑋,𝑌, 𝑍) and two rotational motions (𝐴,𝐶) (see Figure 3).
SP
1
and SP

2
are spindles of the wheel and diamond wheel,

respectively.
Coordinate systems 𝑆

𝑡
(𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) and 𝑆

1
(𝑥
1
, 𝑦
1
, 𝑧
1
), whose

relative positions are described by the auxiliary coordinate
systems from 𝑆

𝑎
(𝑥
𝑎
, 𝑦
𝑎
, 𝑧
𝑎
) to 𝑆

𝑐
(𝑥
𝑐
, 𝑦
𝑐
, 𝑧
𝑐
), are rigidly con-

nected to the grinding wheel and work gear, respectively.
Here, 𝜑

𝑐
is the rotation angle of the work gear, and 𝜑

𝑎
is the

swivel angle of the grinding wheel. 𝐶
𝑥
is the radial motion

for feeding the wheel down to tooth depth along the vertical
strokemotion𝐶

𝑧
.Thismachine is equippedwithNCdressing

devices which include motions of 𝐶
𝑦
and 𝐶

𝑧
. Parameter

𝑘
1
is a machine installation coefficient that depends on

the grinding machine and is measured immediately after
machine installation.

Evidently, the motions of the five axes are also functions
of the work gear rotation angle 𝜑

𝑎
(𝜑
𝑎
= 𝜑
1
). So they can be

approximated in terms of the work gear rotation angle 𝜑
𝑎
by

𝑛-degree Maclaurin polynomials:
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Figure 3: Model of gear form grinding machine with on-machine measurement.

Table 1: Applied relations of motion at zones during gear form
grinding.

Zone Profile crowning equation Wheel feed equation
1 Δ𝐿 = 0 𝑎

𝑥
= 0

2 Δ𝐿 = 𝑎
𝑚𝑝(𝑐𝑓)

𝑟
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where 𝑖 indicates each axis of gear form grinding machine
and 𝑅(𝑛)

𝑖
(𝜑
1
) is the remainder of the Maclaurin series. So we

define the machine axis motion in a dynamic manner by
polynomials as
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,

(3)

where 𝜑
1
is the gear rotation angle value. Each machine axis

motion is represented by a moving element whose motion is
represented as a polynomial equation in terms of gear rota-
tion angle. The first terms in (3) represent traditional basic
machine axis motions; the other terms represent kinematic
flank correction axis motions. There are a total of 35 (5 ×
7) coefficients in (3). Since the gear rotation angle is the
parameter of the traditionalmachinemotions, the tooth flank
form geometry can be represented by a position vector as
follows:

r
1
= r
1
(𝑢
1
, 𝜃
1
, 𝜑
1
) , (4)

where (𝑢
1
, 𝜃
1
) are tooth surface parameters and 𝜑

1
is the

parameter of form grinding motion.
According to differential geometry, the unit normal vec-

tor to the surface locusmay then be represented in coordinate
system 𝑆

1
by

n
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1
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, 𝜑
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(5)
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1
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)
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1
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(6)

where V(𝑡1)
1

is the relative velocity between the grinding wheel
and the work gear in coordinate system 𝑆

1
as the work gear is

machining.

3. On-Machine Measurement of Tooth Surface

Using (4) to (6), the theoretical tooth surface geometry can
be numerically represented by the coordinates of a group of
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surface points defined in Figure 4. A grid of 5 lines and 9
columns is defined in the𝑋-𝑍 axial plane of the work gear.

The plane coordinate system 𝑋𝑂𝑍 is an axis of rotation
projection section of the tooth surface, where 𝑂 is center
point of base circle and𝑀∗ is a point in the projection surface
at any measured point in the tooth surface. Given a point by
(𝑥∗, 𝑧∗) the following system of nonlinear equations can be
used to solve for the surface parameters:

√𝑥
2

𝑖
+ 𝑦
2

𝑖
= 𝑥
∗

𝑧
𝑖
= 𝑧
∗

𝑓
1
(𝑢
1
, 𝜃
1
, 𝜑
1
) = 0,

(7)

where the coordinates (𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) are three coordinate com-

ponents of tooth surface position vector r(𝑖)
1
, 𝑖 = 1, 2, . . . , 45.

Solving nonlinear equations to get the tooth surface param-
eters (𝑢

1
, 𝜃
1
) for each measured point, which substitute into

(3), can get the theoretical coordinates (𝑥(𝑖)
1
, 𝑦
(𝑖)

1
, 𝑧
(𝑖)

1
) and the

unit normal vector of tooth surface measured point as

r(𝑖)
1
= [𝑥
(𝑖)

1
𝑦
(𝑖)

1
𝑧
(𝑖)

1
]
𝑇

n(𝑖)
1
= [𝑛
(𝑖)

1𝑥
𝑛
(𝑖)

1𝑦
𝑛
(𝑖)

1𝑧
]
𝑇

(𝑖 = 1, 2, . . . , 2 ∗ 45) .

(8)

Taking into account the difficulty in heavy-duty or large-
size gear handing, an on-machinemeasuring device is usually
integrated into the wheel head and provides gear precision
evaluation immediately. The gear form grinding machines
involve three processes, gear grinding, wheel dressing, and
gear measuring, so they must be equipped with enough axes
to satisfy the demands of these three processes, respectively.
Figure 5 shows the configuration of measuring the gear
using on-machine measurement. Using the probe, the tooth

surfaces are measured according to the given grid. The
measured tooth flank form on-machine measuring device is
obtained and numerically represented as

r(𝑖)
𝑚
= [𝑥
(𝑖)

𝑚
𝑦
(𝑖)

𝑚
𝑧
(𝑖)

𝑚
]
𝑇

(𝑖 = 1, 2, . . . , 2 ∗ 45) . (9)

The deviation between the nominal data of theoretical
tooth surfaces and themeasured tooth surfaces for each point
of grid can be obtained by equation as follows:

𝛿
(𝑖)
= (r(𝑖)
𝑚
− r(𝑖)
1
) ⋅ n(𝑖)
1

(𝑖 = 1, 2, . . . , 2 ∗ 45) . (10)

Equation (10) can be visually represented by error sur-
faces. Using a linear regression technique like the least
squares method, the error surfaces of right tooth and left
tooth can be represented by polynomials of two variables as

𝛿
1
= 𝑎
1
𝑋 + 𝑎

2
𝑍 + 𝑎
3
𝑋
2
+ 𝑎
4
𝑋𝑍 + 𝑎

5
𝑍
2
+ ⋅ ⋅ ⋅ + 𝑎

27
𝑍
6

𝛿
2
= 𝑎
1
𝑋 + 𝑎

2
𝑍 + 𝑎
3
𝑋
2
+ 𝑎
4
𝑋𝑍 + 𝑎

5
𝑍
2
+ ⋅ ⋅ ⋅ + 𝑎

27
𝑍
6
,

(11)

where 𝛿
1
and 𝛿
2
are errors of right and left side tooth surfaces,

respectively. Coordinates 𝑋 and 𝑍 correspond to the tooth
profile and longitudinal directions, respectively.

4. Flank Errors Correction Method for Gear
Form Grinding Machine

In gear design, especially for heavy-duty or large-size gears,
loaded tooth contact analysis is used to modify the tooth
flank topographically in order to improve bearing contact
and reduce level of loaded transmission errors. In gear
manufacturing, the tooth flank deviations are composed of
the profile and helix deviations which also cause topographic
errors. To increase flank modification flexibility in a way
that satisfies the design demands of heavy-duty or large-size
gears on form grinding machine, we propose a closed-loop
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measurement
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X
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Figure 5: Tooth flank form on-machine measurement.

feedback flank errors correction method similar to that used
in the manufacturing of cycloidal gears, which has become
well developed over the last decade. In order to understand
the response of tooth flank form geometry to the change
of each motion coefficient in (2), we use the polynomial
coefficients of the machine motion as variables. So the tooth
surface of (4), (5), and (6) may be represented as

r
1
= r
1
(𝑢
1
, 𝜃
1
, 𝜑
1
, 𝜉
𝑗
)

n
1
= n
1
(𝑢
1
, 𝜃
1
, 𝜑
1
, 𝜉
𝑗
)

𝑓
1
(𝑢
1
, 𝜃
1
, 𝜑
1
, 𝜉
𝑗
) = 0

𝑗 = 1, 2, . . . , 35,

(12)

where 𝜉
𝑗
generally designates the 35 universal motion coeffi-

cients in (3). According to differential geometry, the surface
variation vector is represented by

𝛿r
1
=

𝜕r
1
(𝑢
1
, 𝜃
1
, 𝜑
1
, 𝜉
𝑗
)

𝜕𝑢
1

𝛿𝑢
1
+

𝜕r
1
(𝑢
1
, 𝜃
1
, 𝜑
1
, 𝜉
𝑗
)

𝜕𝜃
1

𝛿𝜃
1

+

𝑞

∑

𝑗=1

𝜕r
1
(𝑢
1
, 𝜃
1
, 𝜑
1
, 𝜉
𝑗
)

𝜕𝜉
𝑗

𝛿𝜉
𝑗
.

(13)

Because vectors 𝜕r
1
/𝜕𝑢
1
and 𝜕r

1
/𝜕𝜃
1
are both perpen-

dicular to the surface normal n
1
and inner product is zero,

respectively, taking the inner product of both sides of the
above equation with the surface normal gives the following
simplified normal surface variation:

𝛿r
1
⋅ n
1
= (

𝜕r
1

𝜕𝑢
1

𝛿𝑢
1
+
𝜕r
1

𝜕𝜃
1

𝛿𝜃
1
+

𝑞

∑

𝑗=1

𝜕r
1

𝜕𝜉
𝑗

𝛿𝜉
𝑗
) ⋅ n
1

=

𝑞

∑

𝑗=1

(
𝜕r
1
⋅ n
1

𝜕𝜉
𝑗

)𝛿𝜉
𝑗
.

(14)

According to (14), the change of the tooth surface geom-
etry represented by the grid points to the change of 𝜉

𝑗
can be

determined by

𝛿
(𝑖)
= 𝛿r(𝑖)
1
⋅ n
1
=

𝑞

∑

𝑗=1

(
𝜕r
1
⋅ n
1

𝜕𝜉
𝑗

)𝛿𝜉
𝑗
. (15)

In order to investigate the response of tooth flank form
geometry to the small change of the 𝜉

𝑗
in terms of 𝛿𝜉

𝑗
,

each coefficient in (3) is independently changed and the
corresponding normal deviations 𝛿(𝑖) of the surface points
are obtained.The normal deviations at the topographical grid
points of both tooth flanksmay then be represented inmatrix
form:
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.
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.
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{𝛿
(𝑖)
} = [𝑆

𝑖𝑗
] {𝛿𝜉
𝑗
} (𝑖 = 1, 2, . . . , 𝑝; 𝑗 = 1, 2, . . . , 𝑞) ,

(16)

where {𝛿(𝑖)} represents the normal surface errors of the 𝑝-
grid points, [𝑆

𝑖𝑗
] is the sensitivity matrix with respect to the

polynomial coefficients of the motion function, and {𝛿𝜉
𝑗
}

represents the small amount of corrections to the polynomial
coefficients.The corrections can be approximated using linear
regression technique:

{𝛿𝜉
𝑗
} = ([𝑆

𝑖𝑗
]
𝑇

[𝑆
𝑖𝑗
])

−1

[𝑆
𝑖𝑗
]
𝑇

{𝛿
(𝑖)
} . (17)

Since the sensitivity matrix is ill-conditioned and in most
cases nearly singular, in order to obtain a converged solution
we use singular value decomposition method to calculate the
corrections to the polynomial coefficients of motion function
that will avoid divergence.
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5. Closed-Loop Feedback Correction Process

A closed-loop correction process has been developed based
on hardware and software system of gear form grinding
machine, which automatically calculates machine settings
and profile of the wheel and generates the grinding process
data. To improve tooth precision, increase flankmodification
flexibility, and satisfy the design demand of large-size gears,
we propose a closed-loop correctionmethod like that used in
the manufacture of spiral bevel and hypoid gears or cycloidal
gears, which has become well developed over the last decade.
Figure 6 shows the algorithm of this method.

This method requires the following steps: (1) calculate
flank coordinates machine parameters and the wheel profile
using gear parameters and machine constants; (2) the work
gear is ground and then measured using on-machine mea-
surement, and then the measured data is sent back to the
numerical control system of gear form grinding machine;
(3) construct the sensitivity matrix through calculating cor-
rective motion coefficients of the machine settings based on
the measured flank form errors; (4) a corrective machining
is conducted on the form grinding machine, and then the
corrected work gear is measured using on-machine mea-
surement again.The closed-loop feedback correction process
could be conducted for several iterations between steps (2)
and (4) until a work gear with satisfactory tooth flank form
accuracy is obtained.

6. Numerical Example

A helical gear drive whose design parameters are given in
Table 2 is used as a work gear to illustrate the developed
method. Some parameters for the wheel data, the machine
settings determined, and the crowning coefficient of topolog-
ical modified tooth flank are listed in Table 2.

In the numerical example after grinding and measuring
using on-machinemeasurement, the sensitivitymatrix [𝑆

𝑖𝑗
] is

obtained using the normal flank deviations of 90 grid points
(5 × 9 topographic points, both flank sides) which are caused
by modifying 35 coefficients (5 axes × 7 coefficients) one
by one through adding a small amount (0.1). As Figure 7
illustrates, in the zero-degree coefficients, all axes influence
the flank sensitivity except axis 𝑍 and axis 𝐶.

Figure 8 shows the flank sensitivity topographies of the
first-degree coefficients. 𝑌 and 𝐶 axes have greater influence
on sensitivity. From Figures 7 and 8, we notice that the
higher-order coefficient changes modify both sides of tooth
surfaces at the same time. Sensitivities of other higher-order
coefficients behave in a similar manner and are not listed in
this paper.

The actual flank topographic errors of tooth flank made
by the form grinding process can be measured using an
on-machine measurement device as shown in Figure 5. In
this numerical example, the original flank topographic errors
{𝛿
(𝑖)
} are shown in Figure 9. The sum of squared errors of

the p-grid points (90 points) is 4683 𝜇m2. Then we assume
the sum of squared errors of topographic points is 2200𝜇m2
as a target value and use the least squares method to

Begin

Calculate theoretical data

Machine parameters setting

Calculate profile of the wheel

Build sensitive matrix

Gear form grinding

Yes

No

End

On-machine measured
flank topographic errors

Generate the grinding
process data

Give gear and wheel parameters
and machine constants

Construct theoretical
tooth surface

Calculate correction
coefficient

Machine motion
settings correction

Max. sum of squared
errors < 2200 𝜇m2

Figure 6: Flow chart for the closed-loop flank correction method
for helical gears.

construct the sensitivity matrix [𝑆
𝑖𝑗
]. Substituting the given

flank topographic errors {𝛿(𝑖)} and the sensitivity matrix [𝑆
𝑖𝑗
]

into (17), the corrections {𝛿𝜉
𝑗
} to the polynomial coefficients

of machine motions can be calculated.
Figure 10 shows the error surfaces after closed-loop feed-

back correction are selected for the correction. The sum of
squared errors is reduced to 1348 𝜇m2. The original surface
errors have been significantly reduced after closed-loop
correction, so the proposed correction method is effective in
gear form grinding.

7. Conclusions

This paper proposes a new method of tooth flank error
correction utilizing closed-loop feedback correction on the
gear grinding machine for topographic modification of heli-
cal gears. Crowned areas are smoothly connected to the
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Figure 7: Flank sensitivity topographies corresponding to the zero-degree polynomial coefficients for axes motion (unit: 𝜇m).
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Figure 8: Flank sensitivity topographies corresponding to the first-degree polynomial coefficients for axes motion (unit: 𝜇m).

involute area and this is achieved by changing the profile
and controlling motions of a grinding wheel applied for gear
form grinding. The sensitivity of the changes of tooth flank
form geometry to the changes of CNC gear form grinding
machine motion coefficients is established. The corrective
motion coefficients are obtained through an optimization

process with the target of minimization of squared errors
of topographic points. As the numerical examples show,
closed-loop correctionmethod can improve tooth quality. An
additional advantage of the approach is to provide the user
with valuable information about the grinding machine and
machining capacity.
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Table 2: Design parameters for a modified gear drive.

Items Pinion Gear
(A) Gear data

Teeth number 𝑧 — 23 26
Normal module 𝑚

𝑛
mm 5 5

Pressure angle 𝛼
𝑛

deg 20 20
Helix angle 𝛽 deg 11.478 11.478
Face width 𝑏 mm 53 53
Coefficient of profile shift 𝑥

𝑛
— 0.032 −0.032

(B) Wheel data
Outer diameter 𝑑

𝑤
mm 300.000

Width 𝑤
𝑤

mm 60.000
(C) Machine settings

Setting angle of the wheel 𝛾
𝑚

deg 11.478
Center distance 𝐸

𝑡
mm 210.077

Axial movement 𝐿
𝑡

mm 326.647𝜑
1

(D) Crowning coefficient
Top profile crowning 𝑎

𝑚𝑝(𝑐𝑓)
1/mm 0 0.001

Bottom profile crowning 𝑎
𝑚𝑝(𝑑𝑒)

1/mm 0 0.0005
Top limit angle 𝑢

𝑐
rad 0 0.511

Bottom limit angle 𝑢
𝑑

rad 0 0.145
Front longitudinal crowning 𝑎

𝑚𝑙(ℎ𝑎)
1/mm 0 0.0008

Back longitudinal crowning 𝑎
𝑚𝑙(𝑏𝑗)

1/mm 0 0.0008
Front limit 𝜃

𝑎
rad 0 0.024

Back limit 𝜃
𝑏

rad 0 0.138
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Figure 9: Original flank topographic error surfaces before correc-
tion (unit: 𝜇m).
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