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Not just nonlinear systems but infinite-dimensional linear systems can exhibit complex behavior. It has long been known that twice
the backward shift on the space of square-summable sequences 𝑙2 displays chaotic dynamics. Here we construct the corresponding
operator C on the space of 2𝜋-periodic odd functions and provide its representation involving a Principal Value Integral. We
explicitly calculate the eigenfunction of this operator, as well as its periodic points. We also provide examples of chaotic and
unbounded trajectories ofC.

1. Introduction

Linear systems have commonly been thought to exhibit rela-
tively simple behavior. Surprisingly, infinite-dimensional lin-
ear systems can have complex dynamics. In particular, Role-
wicz in 1969 [1] showed that the backward shift 𝐵 multiplied
by 2 (i.e., 2𝐵) on the space of square-summable sequences 𝑙2
exhibits transitivity (and thus gives rise to chaotic dynam-
ics). A nice exposition of dynamics of infinite-dimensional
operators is given in [2, 3] and the recent books [4, 5].
While chaoticity of linear operators is at first puzzling and
the backward shift example seems contrived, these operators
are not rare. In fact, Herrero [6] and Chan [7] showed that
chaotic linear operators are dense (with respect to pointwise
convergence) in the set of bounded linear operators. In addi-
tion to 2𝐵 there aremany examples of chaotic linear operators
including weighted shifts [8], composition operators [9],
and differentiation and translations [10–12]. It has also been
argued in [13, 14] that nonlinearity is not necessarily required
for complex behavior; an infinite-dimensional state space can
also provide the ingredients of chaotic dynamics.

Several recent papers explore chaotic behavior of linear
systems (see, e.g., [15, 16]). Bernardes et al. [17], for example,

obtain new characterizations of Li-Yorke chaos for linear
operators on Banach and Fréchet spaces.

Here we construct a chaotic linear operator by “lifting” 2𝐵
to the space 𝐿2 of square-integrable functions (more precisely
to the Hilbert space 𝐿2(0, 𝜋) of 2𝜋-periodic odd functions).
Our main tool in finding the expression for the backward
shift is utilizing a smidgen of distribution theory andCauchy’s
principal value, amethod for obtaining a finite result for a sin-
gular integral.Theprincipal value (PV) integral (see, e.g., [18],
p. 457) of a function 𝑓 about a point 𝑐 ∈ [𝑎, 𝑏] is given by

PV∫𝑏
𝑎

𝑓 (𝑥) 𝑑𝑥
= lim
𝜀→0+

(∫𝑐−𝜀
𝑎

𝑓 (𝑥) 𝑑𝑥 + ∫𝑏
𝑐+𝜀

𝑓 (𝑥) 𝑑𝑥) .
(1)

The PV integral is commonly used in many fields of
physics. A review of developments in the mathematics and
methods for Principal Value Integrals is presented in [19].
Cohen et al. [20] examine first-order PV integrals and analyze
several of their important properties. The structure of the
paper is the following. In Section 2 we relate the backward
shift on 𝑙2 to a shift on 𝐿2(0, 𝜋). We state and prove a theorem
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about expressing this shift on 𝐿2(0, 𝜋) in terms of a PV
integral. In Section 3 we define and analyze the correspond-
ing chaotic operator C on 𝐿2(0, 𝜋), including finding its
eigenvectors and periodic points. We provide examples of
unbounded and chaotic trajectories of C. In Section 4 we
draw conclusions.We also show that utilizing the representa-
tion of operatorC one can obtain principal values of certain
integrals.

2. A Chaotic Linear Operator on the Space of2𝜋-Periodic Odd Functions

The backward shift 𝐵 on the infinite-dimensional Hilbert
space 𝑙2 of square-summable sequence is defined as

𝐵𝑎 = (𝑎2, 𝑎3, . . .) , (2)

where 𝑎 = (𝑎1, 𝑎2, . . .), such that ∑∞𝑛=0 |𝑎𝑛|2 < ∞. The
Hilbert space 𝐿2(0, 𝜋) of square-integrable functions is iso-
morphic with 𝑙2 (by the Riesz-Fischer theorem) and is a
natural functional representation of the sequence space 𝑙2.
By odd extension, elements of 𝐿2(0, 𝜋) can be viewed as odd2𝜋-periodic square-integrable functions so that 𝐿2(0, 𝜋) is
also isomorphic with the space of odd 2𝜋-periodic square-
integrable functions. Now we “lift” 𝑎 ∈ 𝑙2 to 𝐿2(0, 𝜋) by the
summation

𝑓 (𝑡) = ∞∑
𝑛=1

𝑎𝑛 sin 𝑛𝑡. (3)

Clearly, the 𝑛th Fourier coefficient of 𝑓(𝑡) is expressed as

𝑎𝑛 = 2𝜋 ∫𝜋
0

𝑓 (𝜉) sin 𝑛𝜉 𝑑𝜉. (4)

We define the backward shiftB acting on 𝐿2(0, 𝜋) as
B𝑓 (𝑡) = ∞∑

𝑛=1

𝑎𝑛+1 sin 𝑛𝑡 = ∞∑
𝑛=1

𝑎𝑛 sin (𝑛 − 1) 𝑡. (5)

Therefore

B𝑓 (𝑡) = 2𝜋
∞∑
𝑛=1

(∫𝜋
0

𝑓 (𝜉) sin (𝑛 + 1) 𝜉 𝑑𝜉) sin 𝑛𝑡

= 2𝜋
∞∑
𝑛=1

(∫𝜋
0

𝑓 (𝜉) sin 𝑛𝜉 𝑑𝜉) sin (𝑛 − 1) 𝑡.
(6)

Our main result is the following.

Theorem 1. B𝑓(𝑡) can be expressed as

B𝑓 (𝑡) = 𝑓 (𝑡) cos 𝑡 − 1𝜋PV∫𝜋
0

sin 𝑡 sin 𝜉
cos 𝑡 − cos 𝜉 𝑓 (𝜉) 𝑑𝜉. (7)

The strategy of the proof is the following: let us denote
byA𝑓(𝑡) the right-hand side of (7) and by 𝑃𝑛 the projection
from 𝐿2(0, 𝜋) onto the linear span of {sin 𝑡, sin 2𝑡, . . . , sin 𝑛𝑡}.
The sequenceB𝑃𝑛 converges strongly to 𝐵. In particular, for
every 𝜑 ∈ D(0, 𝜋) (this is the space of test functions, see

Definition 2 in the Appendix), B𝑃𝑛𝜑 → B𝜑 in 𝐿2(0, 𝜋).
Then a subsequence tends toB𝜑 almost everywhere. Hence
if we prove that B𝑃𝑛𝜑(𝑡) tends to A𝜑(𝑡) for all fixed 𝑡, then
A𝜑 = B𝜑 almost everywhere as functions in 𝐿2(0, 𝜋); that is,
A = B onD(0, 𝜋). Finally,D(0, 𝜋) is a dense set in 𝐿2(0, 𝜋);
thusA = B on the whole space 𝐿2(0, 𝜋).
Proof. We start from

B𝑃𝑛𝑓 (𝑡) = 2𝜋
𝑛∑
𝑘=1

(∫𝜋
0

𝑓 (𝜉) sin 𝑘𝜉 𝑑𝜉) sin (𝑘 − 1) 𝑡

= 2𝜋 ∫𝜋
0

𝑓 (𝜉) ( 𝑛∑
𝑘=1

sin 𝑘𝜉 sin (𝑘 − 1) 𝑡) 𝑑𝜉.
(8)

We first rewrite the “kernel” of (8) as

sin 𝑘𝜉 sin (𝑘 − 1) 𝑡
= sin 𝑘𝜉 sin 𝑘𝑡 cos 𝑡 − sin 𝑘𝜉 cos 𝑘𝑡 sin 𝑡
= cos 𝑘 (𝜉 − 𝑡) − cos 𝑘 (𝜉 + 𝑡)2 cos 𝑡

− sin 𝑘 (𝜉 − 𝑡) + sin 𝑘 (𝜉 + 𝑡)2 sin 𝑡.

(9)

For test functions 𝜑 ∈ D(0, 𝜋) and 𝑡 ∈ (0, 𝜋) we get
B𝑃𝑛𝜑 (𝑡) = 1𝜋 cos 𝑡

⋅ ∫𝜋
0

𝜑 (𝜉) 𝑛∑
𝑘=1

(cos 𝑘 (𝜉 − 𝑡) − cos 𝑘 (𝜉 + 𝑡)) 𝑑𝜉 − 1𝜋
⋅ sin 𝑡 ∫𝜋

0

𝜑 (𝜉) 𝑛∑
𝑘=1

(sin 𝑘 (𝜉 − 𝑡) + sin 𝑘 (𝜉 + 𝑡)) 𝑑𝜉.
(10)

Taking 𝑛 → ∞ limit and utilizing (A.1) and (A.2) yield

lim
𝑛→∞

B𝑃𝑛𝜑 (𝑡) = cos 𝑡 ⟨(𝛿 (𝜉 − 𝑡) − 𝛿 (𝜉 + 𝑡)) , 𝜑 (𝜉)⟩
− 12𝜋 sin 𝑡 ⟨(P cot 𝜉 − 𝑡2 + P cot 𝜉 + 𝑡2 ) , 𝜑 (𝜉)⟩ . (11)

Since

cot 𝜉 − 𝑡2 + cot 𝜉 + 𝑡2
= 2 sin ((𝜉 − 𝑡) /2 + (𝜉 + 𝑡) /2)2 sin ((𝜉 − 𝑡) /2) sin ((𝜉 + 𝑡) /2)
= 2 sin 𝜉
cos 𝑡 − cos 𝜉 ,

(12)

the limit calculated in (11) is the same asA𝑓(𝑡).
Our “chaotic” operator (twice the backward shift) is now

defined as
C𝑓 (𝑡) = 2B𝑓 (𝑡)

= 2𝑓 (𝑡) cos 𝑡 − 2𝜋PV∫𝜋
0

sin 𝑡 sin 𝜉
cos 𝑡 − cos 𝜉 𝑓 (𝜉) 𝑑𝜉. (13)
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Figure 1: Eigenfunctions ofC for 𝜆 = 0, 0.5, 1, and 1.25.

3. Analysis of C

The eigenfunctions of C can be found from the eigenvalue
relation

C𝑓∗ (𝑡) = 𝜆𝑓∗ (𝑡) . (14)

Instead of using (13), we revert to (5) to write

∞∑
𝑛=1

2𝑎𝑛+1 sin 𝑛𝑡 = ∞∑
𝑛=1

𝜆𝑎𝑛 sin 𝑛𝑡. (15)

From this we have

𝑎𝑛+1 = ( 𝜆2 ) 𝑎𝑛, (16)

and thus

𝑓∗ (𝑡) = 𝑎1 ∞∑
𝑛=1

( 𝜆2 )𝑛−1 sin 𝑛𝑡 = 𝑎1 4 sin 𝑡4 + 𝜆2 − 4𝜆 cos 𝑡 . (17)

The functions corresponding to eigenvalue 𝜆 = 1 are

𝑓∗ (𝑡) = 𝑎1 4 sin (𝑡)5 − 4 cos (𝑡) ; (18)

that is, the functions 𝑎1(4 sin(𝑡)/(5 − 4 cos(𝑡))) are left
invariant under the action of C. In other words 𝑓∗(𝑡)’s are
fixed points of operator C. A family of eigenfunctions is
displayed in Figure 1 (we set 𝑎1 = 1).

To better characterize the action of C we want to under-
stand how a given function is “shaped” under the repeated
application ofC. For 𝑓 ∈ 𝐿2(0, 𝜋) the orbit of 𝑓 is defined as
Orb(C, 𝑓) = {𝑓,C𝑓,C2𝑓, . . .}, where C𝑘 = C ∘ ⋅ ⋅ ⋅ ∘ C⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

is the

𝑘th composition ofCwith itself.The 𝑘-fold composition acts
on 𝑓(𝑡) as

C
𝑘𝑓 (𝑡) = 2𝑘 ∞∑

𝑛=1

𝑎𝑛+𝑘 sin 𝑛𝑡. (19)

A given 𝑓 ∈ 𝐿2(0, 𝜋) is a 𝑇-periodic point of C if C𝑇𝑓 = 𝑓
for some 𝑇 ≥ 1 (a fixed point is a 1-periodic point; i.e., 𝑇 = 1).

We are now in the position to construct 𝑇-periodic points of
C.

Introducing 𝑦 = {𝑦1, . . . , 𝑦𝑇}, a 𝑇-periodic point of 2𝐵
(acting on 𝑙2) can be written as [3]

𝑎 = (𝑦1, . . . , 𝑦𝑇, 𝑦12𝑇 , . . . , 𝑦𝑇2𝑇 , 𝑦122𝑇 , . . . , 𝑦𝑇22𝑇 , . . .) , (20)

whose 𝑛th component is given by

𝑎𝑛 = 𝑦(𝑛−1 mod 𝑇)+12[(𝑛−1)/𝑇]𝑇 . (21)

Using the linearity ofCwe can easily find a period-2 point of
C, that is, a function 𝑔(𝑡) such thatC2𝑔(𝑡) = 𝑔(𝑡):

𝑔 (𝑡) = 𝑦1 ∞∑
𝑛=1

sin (2𝑛 − 1) 𝑡22𝑛−2 + 𝑦2 ∞∑
𝑛=1

sin (2𝑛) 𝑡22𝑛−2
= 𝑦1 20 sin 𝑡17 − 8 cos 2𝑡 + 𝑦2 16 sin 2𝑡17 − 8 cos 2𝑡 .

(22)

In general, we find a period-𝑇 point ofC as

𝑓 (𝑡) = 𝑦1 (sin 𝑡 + sin (𝑇 + 1) 𝑡2𝑇 + ⋅ ⋅ ⋅ + sin (𝑛𝑇 + 1) 𝑡2𝑛𝑇
+ ⋅ ⋅ ⋅)

+ 𝑦2 (sin 2𝑡 + sin (𝑇 + 2) 𝑡2𝑇 + ⋅ ⋅ ⋅ + sin (𝑛𝑇 + 2) 𝑡2𝑛𝑇
+ ⋅ ⋅ ⋅) + ⋅ ⋅ ⋅ +

+ 𝑦𝑇 (sin𝑇𝑡 + sin (2𝑇) 𝑡2𝑇 + ⋅ ⋅ ⋅ + sin ((𝑛 + 1) 𝑇) 𝑡2𝑛𝑇
+ ⋅ ⋅ ⋅) .

(23)

By defining the “basis functions”

𝜙 (𝑙, 𝑇) = ∞∑
𝑛=1

sin ((𝑛 − 1) 𝑇 + 1 + 𝑙) 𝑡2(𝑛−1)𝑇
= 2𝑇 (2𝑇 sin (𝑙 + 1) 𝑡 + sin ((𝑇 − 1 − 𝑙) 𝑡))

1 + 4𝑇 − 2𝑇+1 cos𝑇𝑡 ,
(24)

a period-𝑇 point of C can be expressed as the linear
combination

𝑓 (𝑡) = 𝑇∑
𝑙=1

𝑦𝑙𝜙 (𝑙 − 1, 𝑇) . (25)
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Figure 2: Basis functions 𝜙(𝑙, 𝑇) for 𝑇 = 1, . . . , 4 and 𝑙 = 0, . . . , 𝑇 − 1.

The first few basis functions are (shown in Figure 2)

𝜙 (0, 1) = 4 sin (𝑡)5 − 4 cos (𝑡)
𝑇 = 1,

𝜙 (0, 2) = 20 sin (𝑡)17 − 8 cos (2𝑡) ,
𝜙 (1, 2) = 16 sin (2𝑡)17 − 8 cos (2𝑡)

𝑇 = 2,
𝜙 (0, 3) = 64 sin (𝑡) + 8 sin (2𝑡)65 − 16 cos (3𝑡) ,
𝜙 (1, 3) = 8 sin (𝑡) + 64 sin (2𝑡)65 − 16 cos (3𝑡) ,
𝜙 (2, 3) = 64 sin (3𝑡)65 − 16 cos (3𝑡)

𝑇 = 3,
𝜙 (0, 4) = 256 sin (𝑡) + 16 sin (3𝑡)257 − 32 cos (4𝑡) ,
𝜙 (1, 4) = 272 sin (2𝑡)257 − 32 cos (4𝑡) ,

𝜙 (2, 4) = 16 sin (𝑡) + 256 sin (3𝑡)257 − 32 cos (4𝑡) ,
𝜙 (3, 4) = 256 sin (4𝑡)257 − 32 cos (4𝑡)

𝑇 = 4.
(26)

Now we turn to creating a function that gives rise to a
chaotic orbit under the action ofC. First, we note that for 2𝐵
(on 𝑙2) the point

𝑦 = ( 𝑦11 , 𝑦22 , 𝑦34 , . . .) , (27)

where 𝑦𝑖 is the 𝑖th digit of a normal irrational number (whose
digits are uniformly distributed) and generates a chaotic orbit.𝜋 is believed to be normal, so we take 𝑦𝑖 to be the 𝑖th digit of𝜋. We now lift this point to 𝐿2(0, 𝜋) using (3):

Ψ (𝑡) = ∞∑
𝑖=1

𝑦𝑖2𝑖−1 sin 𝑛𝑡. (28)

Figure 3 shows the first 10 elements of the orbit of Ψ under
the action of C, that is, Orb(C, Ψ). The first element of the
orbit is Ψ itself.

Figure 4 shows the orbit Orb(C, Ψ) evaluated at three
different 𝑡’s (𝜋/20, 𝜋/2, 19𝜋/20) for 200 iterations.

Engineering applications of chaotic orbits include design
of fuel efficient space missions [21] and efficient mixing
protocols for microfluids [22].
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Nowwe examine the effect ofC on some commonly used
periodic functions, namely, the ramp, the square-wave, and
the triangle. The Fourier series of these functions are the
following:

Ramp (𝑡) = 𝑡 = ∞∑
𝑘=1

2 (−1)𝑘+1𝑘 sin 𝑘𝑡 (−𝜋 < 𝑡 < 𝜋) ,

Sqw (𝑡) = {{{
−𝜋 −𝜋 < 𝑡 < 0
𝜋 0 < 𝑡 < 𝜋

= ∞∑
𝑘=1

2𝑘 sin2 ( 𝑘𝜋2 ) sin 𝑘𝑡

= ∞∑
𝑘=1

22𝑘 + 1 sin (2𝑘 + 1) 𝑡,

Triangle (𝑡) = {{{{{
𝑡 0 < 𝑡 < 𝜋2𝜋2 − 𝑡 𝜋2 < 𝑡 < 𝜋

= ∞∑
𝑘=1

4𝑘2𝜋 sin( 𝑘𝜋2 ) sin 𝑘𝑡

= ∞∑
𝑘=1

4 (−1)𝑘+1
(2𝑘 + 1)2 𝜋 sin (2𝑘 + 1) 𝑡.

(29)

Figure 5 shows the first 4 elements of the orbits of
these functions. First, we note that the norm of the iterates
grows (moreover, each Fourier coefficient tends to infinity);
that is, these functions have unbounded orbits under the
action of C. Second, the graphs of the even iterates (C2𝑛) of
Ramp(𝑡), Sqw(𝑡), and Triangle(𝑡) are similar to the graph of
tan(𝑡/2), − tan(𝑡 + 𝜋/2), and ±(−1)[𝑡/𝜋−1/2] tan 𝑡, respectively.
This is not too surprising, since the Fourier expansion of
tan(𝑡/2) is 2 ∑∞𝑘=1(−1)𝑘+1 sin 𝑘𝑡 which is close in some sense
to

2𝑛22𝑛C2𝑛Ramp (𝑡) = 2∞∑
𝑘=1

(−1)𝑘+1 (1 − 𝑘2𝑛 + 𝑘 ) sin 𝑘𝑡 (30)
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Figure 4: The orbit Orb(C, Ψ) for 200 iterations evaluated at 𝑡 =𝜋/20, 𝜋/2, 19𝜋/20.

for large enough 𝑛. Unbounded orbits of differential equa-
tions (the so-called escape orbits) play an important role in
Newtonian gravitation [23].

4. Conclusions

Contrary to common belief, linear systems can display
complicated dynamics. Starting from twice the backward
shift on 𝑙2 we constructed the corresponding shift operator𝐶 on 𝐿2(0, 𝜋) (the space of odd, 2𝜋-periodic functions) and
provided its representation using a modicum of distribution
theory and Cauchy’s Principal Value Integral. We explicitly
calculated the periodic points of the operator (including its
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Figure 5: Iterates of the ramp, square-wave, and triangle functions.

nontrivial fixed point) and provided examples of chaotic and
unbounded trajectories ofC.

We note here that utilizing representation (7) of operator
C one can actually calculate principal values. To wit, rear-
ranging (7) yields

PV∫𝜋
0

sin 𝑡 sin 𝜉
cos 𝑡 − cos 𝜉 𝑓 (𝜉) 𝑑𝜉

= 𝜋𝑓 (𝑡) cos 𝑡 − 𝜋2C𝑓 (𝑡) .
(31)

For the simplest case, when 𝑓(𝑡) is the eigenfunction of
operatorC, that is,C𝑓(𝑡) = 𝜆𝑓(𝑡), we have (cf. (17))

PV∫𝜋
0

sin 𝑡 sin 𝜉
cos 𝑡 − cos 𝜉 4 sin 𝜉4 + 𝜆2 − 4𝜆 cos 𝜉 𝑑𝜉

= 2𝜋 sin 𝑡 (2 cos 𝑡 − 𝜆)4 + 𝜆2 − 4𝜆 cos 𝑡 .
(32)

The basis functions 𝜙(𝑙, 𝑇) can similarly be used to obtain
PV integrals.The Principal Value Integral is a tool commonly
used in physics, but not in engineering-related fields.Wehope
that this connection between chaotic operators and Principal
Value Integrals will stimulate further research.

Appendix

In this section we give a short introduction on distributional
derivatives. The following definitions together with Proposi-
tion 5 can be found in standard textbooks on partial differen-
tial equations; see, for example, [24, 25].

Notation 1 (multi-index). Let Ω be an open subset of R𝑛
and let 𝜑 : Ω → R be a smooth function. Then, for a
vector 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛), 𝜕𝛼𝜑 denotes the partial derivative𝜕𝛼11 𝜕𝛼22 ⋅ ⋅ ⋅ 𝜕𝛼𝑛𝑛 𝜑 of order |𝛼| = 𝛼1 + 𝛼2 + ⋅ ⋅ ⋅ + 𝛼𝑛.
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Definition 2 (test functions). Let D(Ω) denote the space of
test functions on the open set Ω ⊂ R𝑛, that is, D(Ω) =𝐶∞𝑐 (Ω), endowed with the following convergence: 𝜑𝑛 → 𝜑 if
there is a compact subset 𝐾 of Ω containing the support of 𝜑𝑛
for all 𝑛 and for every multi-index 𝛼 𝜕𝛼𝜑𝑛 → 𝜕𝛼𝜑 uniformly.

Definition 3 (distributions). Let D󸀠(Ω) denote the space of
continuous linear functionals onD(Ω). The convergence on
D(Ω) induces a weak or pointwise convergence on D󸀠(Ω);
namely, 𝑢𝑛 → 𝑢 if ⟨𝑢𝑛, 𝜑⟩ → ⟨𝑢, 𝜑⟩ for all 𝜑 ∈ D(Ω).

Note that every function ℎ locally integrable on Ω acts as
a distribution via ⟨ℎ, 𝜑⟩ = ∫

Ω
ℎ𝜑. Then ℎ is called a regular

distribution.

Definition 4 (derivatives of distributions). Let 𝑢 ∈ D󸀠(Ω).
Then ⟨𝜕𝛼𝑢, 𝜑⟩ = (−1)|𝛼|⟨𝑢, 𝜕𝛼𝜑⟩.

Note the similarity with the integration by parts formula
for regular distributions.

Proposition 5. Differentiation is a continuous operation with
respect to the pointwise convergence of distributions. As a
consequence, derivatives of infinite series of distributions can
be calculated by term-by-term differentiation.

To aid the proof of Theorem 1 we state and prove the
following.

Proposition 6. Consider the following:

∞∑
𝑘=1

cos 𝑘𝑥 = 𝜋 ∞∑
𝑘=−∞

𝛿 (𝑥 − 2𝑘𝜋) − 12 , (A.1)

−∞∑
𝑘=1

sin 𝑘𝑥 = − 12P cot 𝑥2 , (A.2)

where the distributionPcot(𝑥/2) acts on a function 𝜑 as

⟨Pcot𝑥2 , 𝜑 (𝑥)⟩ = ∞∑
𝑘=−∞

PV∫(2𝑘+1)𝜋
(2𝑘−1)𝜋

cot 𝑥2 𝜑 (𝑥) 𝑑𝑥, (A.3)

where the principal values are given in the sense of (1) with 𝑎 =(2𝑘 − 1)𝜋, 𝑏 = (2𝑘 + 1)𝜋, and 𝑐 = 2𝑘𝜋.
Proof. We start with the identities [26]

∞∑
𝑘=1

sin 𝑘𝑥𝑘 = 𝜋 − 𝑥2 (0 < 𝑥 < 2𝜋) , (A.4)

∞∑
𝑘=1

cos 𝑘𝑥𝑘 = − 12 ln 2 (1 − cos𝑥) (0 < 𝑥 < 2𝜋) . (A.5)

By periodicity, both equalities extend to R. Term-by-term
differentiation of the left hand sides of (A.4) and (A.5) (using
Proposition 5) results immediately in the left hand sides of

(A.1) and (A.2). Concerning the right-hand side of (A.4), let
us denote the 2𝜋-periodic extension of (𝜋−𝑥)/2 by ℎ(𝑥).Then

⟨ℎ󸀠 (𝑥) , 𝜑 (𝑥)⟩ = − ⟨ℎ (𝑥) , 𝜑󸀠 (𝑥)⟩
= − ∫∞
−∞

ℎ (𝑥) 𝜑󸀠 (𝑥) 𝑑𝑥
= − ∞∑
𝑘=−∞

∫2(𝑘+1)𝜋
2𝑘𝜋

ℎ (𝑥) 𝜑󸀠 (𝑥) 𝑑𝑥.
(A.6)

Note that this is actually a finite sum as the test function 𝜑
is compactly supported. One partial integration in all terms
leads to

− ∞∑
𝑘=−∞

∫2(𝑘+1)𝜋
2𝑘𝜋

ℎ (𝑥) 𝜑󸀠 (𝑥) 𝑑𝑥

= − ∞∑
𝑘=−∞

{[ℎ (𝑥) 𝜑 (𝑥)]2(𝑘+1)𝜋
2𝑘𝜋

− ∫2(𝑘+1)𝜋
2𝑘𝜋

(− 12 𝜑 (𝑥)) 𝑑𝑥} = ∞∑
𝑘=−∞

𝜋𝜑 (2𝑘𝜋)
− ∫∞
−∞

12 𝜑 (𝑥) 𝑑𝑥,

(A.7)

which is the right-hand side of (A.1) applied to 𝜑(𝑥). Sim-
ilarly, let us define ℎ(𝑥) as the 2𝜋-periodic extension of−(1/2) ln 2(1 −cos𝑥) (the right-hand side of (A.5)).The ordi-
nary derivative of ℎ(𝑥) is cot(𝑥/2), but, in contrast with the
previous case, this is not locally integrable near the integer
multiples of 2𝜋. Cutting the singularities first and then
integrating by parts,

− ∞∑
𝑘=−∞

∫2(𝑘+1)𝜋
2𝑘𝜋

ℎ (𝑥) 𝜑󸀠 (𝑥) 𝑑𝑥

= − lim
𝜀→0+

∞∑
𝑘=−∞

∫2(𝑘+1)𝜋−𝜀
2𝑘𝜋+𝜀

ℎ (𝑥) 𝜑󸀠 (𝑥) 𝑑𝑥

= lim
𝜀→0+

∞∑
𝑘=−∞

∫2(𝑘+1)𝜋−𝜀
2𝑘𝜋+𝜀

cot𝑥2 𝜑 (𝑥) 𝑑𝑥.

(A.8)

This is the same as (A.3), that is, the distribution in (A.2)
applied to 𝜑(𝑥).
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[16] F. Mart́ınez-Giménez, P. Oprocha, and A. Peris, “Distributional
chaos for operators with full scrambled sets,” Mathematische
Zeitschrift, vol. 274, no. 1-2, pp. 603–612, 2013.

[17] J. Bernardes, A. Bonilla, V.Müller, and A. Peris, “Li-yorke chaos
in linear dynamics,” ErgodicTheory andDynamical Systems, vol.
35, no. 6, pp. 1723–1745, 2015.

[18] I. N. Bronshtein and K. A. Semendyayev, Handbook of Mathe-
matics, Springer-Verlag, Berlin, Germany, 2013.

[19] K. T. Davies, M. L. Glasser, V. Protopopescu, and F. Tabakin,
“The mathematics of principal value integrals and applications
to nuclear physics, transport theory, and condensed matter
physics,”Mathematical Models andMethods in Applied Sciences,
vol. 6, no. 6, pp. 833–885, 1996.

[20] S. M. Cohen, K. T. R. Davies, R. W. Davies, and M. H. Lee,
“Principal-value integrals—revisited,” Canadian Journal of
Physics, vol. 83, no. 5, pp. 565–575, 2005.

[21] E. Belbruno, Fly Me to the Moon: An Insider’s Guide to the New
Science of Space Travel, Princeton University Press, Princeton,
NJ, USA, 2007.

[22] C.-Y. Lee, C.-L. Chang, Y.-N.Wang, and L.-M. Fu, “Microfluidic
mixing: a review,” International Journal of Molecular Sciences,
vol. 12, no. 5, pp. 3263–3287, 2011.

[23] F. G. Gascon and D. Peralta-Salas, “Escape to infinity in a New-
tonian potential,” Journal of Physics A: Mathematical and Gen-
eral, vol. 33, no. 30, pp. 5361–5368, 2000.

[24] V. S. Vladimirov, Methods of the Theory of Generalized Func-
tions, vol. 6 of Analytical Methods and Special Functions, Taylor
& Francis, London, UK, 2002.

[25] R. P. Kanwal, Generalized Functions: Theory and Applications,
Springer, Boston, Mass, USA, 3rd edition, 2004.

[26] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, Academic Press, San Diego, Calif, USA, 2014.

http://users.math.msu.edu/users/mshapiro/
http://home.wlu.edu/~feldmann/Papers/LinearChaos.html
http://home.wlu.edu/~feldmann/Papers/LinearChaos.html


Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


