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Fabrication and Characterization of ZnO Nanowire Arrays with
an Investigation into Electrochemical Sensing Capabilities
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ZnO nanowire arrays were grown on a Si (100) substrate using the vapor-liquid-solid (VLS) method. ZnO nanowires were
characterized by XRD, SEM, bright field TEM, and EDS. They were found to have a preferential orientation along the c-axis. The as-
prepared sample was functionalized with glucose oxidase by physical adsorption. FTIR was taken before and after functionalization
to verify the presence of the attached enzyme. Electrochemical measurements were performed on the nanowire array by differential
pulse voltammetry in the range of —0.6 to 0.4 V. The nanoarray sensor displayed high sensitivity to glucose in the range of 1.0 x10™*
t0 1.0 10> mol L.
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1. INTRODUCTION a main thrust for further research [15]. The incorporation

One-dimensional metal-oxide nanostructures have gained
prominence after the immense interest developed in the syn-
thesis of carbon nanotubes and its wide range of applications
[1]. Metal oxides such as SnO, [2], TiO, [3], In,O3 [4],
ITO [5], GayOs3 [6], and ZnO [7] have been synthesized
into nanowires, nanorods, nanobelts, and nanohelices. Due
to their excellent electronic and optical properties, they are
widely found in transparent electronic devices [8], flat panel
displays [9], field emitters [10], electrochemical sensors, and
toxic gas sensors [11]. As a biocompatible semiconducting
material, ZnO is being actively investigated for biosensor
applications [12—14].

Miniaturization is one ongoing important development
in biosensor technology. Miniaturization, however, may
result in low current because of the decreased amount of
immobilized enzyme onto the available active area. It has
already been reported that nanostructures can enhance the
sensitivity of a biosensor by one to two orders of magnitude,
due to the large surface area per unit volume ratio, which
allows the immobilization of a larger amount of the enzyme.
Since the development of the first glucose sensor enzyme
electrode performance, stability and selectivity have been

of biomolecules into carbon nanotubes (CNTs) and metal
oxide nanowires is achieved through various methods of
immobilization such as covalent linkage [16], entrapment
[17], cross-linking with glutaraldehyde [18], microencapsu-
lation [19], and adsorption [20-22]. Adsorption is one of
the more common schemes of immobilization because it is
a method that requires minimal preparation. In this work,
prolonged exposure of glucose oxidase to ZnO nanowires
has resulted in enzyme immobilization through nonspecific
adsorption of the enzyme on the sidewalls of the nanowires.
This letter reports on the synthesis and characterization
of ZnO nanowires by vapor-liquid-solid (VLS) mechanism
and its application as an electrode for glucose measurement
without any additional protective coating.

2. METHODS AND MATERIALS

For the growth of ZnO nanowires, ZnO nanopowder
(99.999%, Sigma ~50-70nm grain size) and graphite
nanopowder (99.99%, Sigma ~70nm) in 1 : 1 ratio were
mixed to form a homogenous source weighing 300 mg.
For the amperometric glucose detection, glucose oxidase
(GOX, EC 1.1.3.4, type II from Aspergillus niger, 47 200 U/g),
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D-(+)-glucose (purity 99.5%), and potassium phosphate
were purchased from Sigma-Aldrich, St. Louis, Mo, USA.
Phosphate buffer electrolyte solutions (PBSs) with various
pHs were prepared from standard stock solutions of KH,PO4
and K;HPOy. All solutions were prepared with deionized
water.

A high temperature furnace (Lindberg/Blue) was used
for the growth of ZnO nanowires. As synthesized products
were characterized by X-ray diffraction with Cu-Ka radiation
(Philips X’pert Pro diffractometer), field emission scanning
electron microscopy (FE-SEM, Hitachi S-800), and high-
resolution transmission electron microscopy (FEI Tecnai
F30, HR-TEM). TEM specimens were prepared by ultrason-
icating the ZnO nanowires in methanol and dispersing a
drop of solution on a carbon-coated copper grid. Chemical
compositional analysis was carried out by EDX coupled with
the HR-TEM system.

Electrochemical experiments were performed using a
Princeton Applied Research PARSTAT 2263 advanced elec-
trochemical analyzer. All electrochemical measurements
were executed in a standard three-electrode system at room
temperature. The modified zinc oxide sample acted as the
working electrode, with an Ag/AgCl (3 M KCI) reference
electrode, and a platinum wire (CH Instruments, Tex, USA)
counter electrode. All potentials given in this paper are
relative to the Ag/AgCl electrode. The pH of the glucose
solutions was measured with a Fisher Scientific AB15 pH
meter. FTIR studies were performed on a Perkin-Elmer
Spectrum One FT-IR Spectrometer.

For the fabrication of a glucose sensor, we have initially
grown an array of ZnO nanowires on Si (100) via thermal
evaporation, with the use of a gold catalyst. Freshly prepared
ZnO source powder and substrates were loaded in two
different alumina boats in the high-temperature and low-
temperature zones of the vacuum furnace, respectively. The
furnace was initially evacuated to a pressure of 10~ Torr and
argon was then passed at a constant flow rate of 500 sccm.
The temperature of the furnace was approximately raised
to 900°C-950°C. The substrates were unloaded after the
furnace was cooled to room temperature. The zinc oxide
nanowire array was then functionalized with the enzyme
glucose oxidase. Approximately 15 IU of GOX was applied
onto the nanowire surface via physical adsorption. The newly
constructed electrode was allowed to dry over 24 hours at
room temperature prior to use.

3. RESULTS AND DISCUSSION

The X-ray diffraction pattern of the as-grown ZnO products
is shown in Figure 1. All the visible peaks are indexed to a
wurtzite (hexagonal) structure of ZnO with lattice constants
of a = 0.3250 nm and ¢ = 0.5205 nm, respectively [23]. A
small shift was observed in the peaks of ZnO nanowires when
compared to ZnO bulk. This might be due to the thermal
stresses developed at the time of growth. In addition, Au
(111) and Au (200) peaks were also detected from the XRD
pattern. The high intensity of (002) peak of ZnO nanowires
shows that the preferential growth direction is along the c-
axis.
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FIGURE 1: (upper curve) X-ray diffraction spectrum of an array
of ZnO nanotubular structures and (lower curve) bulk ZnO,
respectively.

The surface morphology of the patterned sample can
be observed in the SEM images (see Figure 2). The ZnO
nanowires have a typical length of 0.5-2 ym and a diameter
of 40120 nm. Figure 3 shows the TEM image of a pair of
nanowires and inset shows the electron diffraction pattern of
the wires. It is clearly shown from the electron diffraction
pattern that the one-dimensional nanowires were single
crystal and grown along [0001]. A representative energy
dispersive X-ray (EDX) spectrum was performed near the
tip of the ZnO nanowire as indicated by the arrow shown
in Figure 3(c). The peaks associated with Zn, O, Au, Cu,
and C are seen in the EDX spectrum, where the peak
corresponding to Au confirms that the tips of the nanowires
were encapsulated with a gold particle of diameter ~52nm
(see Figure 3(c)) and the copper and carbon signatures are
from the carbon-coated copper TEM grid.

The as-grown ZnO nanowires on silicon substrate were
analyzed by Fourier transform infrared (FTIR) spectroscopy
before and after functionalization with GOX (see Figure 4).
The absorption peak at about 1000 cm™! can be interpreted
as the Si-O-Zn vibrational mode [24]. GOX is seen through
the presence of the primary amine group. The N-H bending
is observed at 1600 cm™! while the N-H stretch due to
asymmetric and symmetric vibrations occurs at 3400 cm™!
and 3300cm™!, respectively. The activity of the enzyme
glucose oxidase is affected by the pH of the glucose solution.
The pH dependence of the sensor was evaluated at 5mM
glucose solutions in the range of pH 6 to 9 (see Figure 5).
An optimal peak current of the sensor was displayed at pH
6.5. Considering that the pH of human blood is about 7.4,
the amperometric experiments were performed at pH 7.0.
Figure 6 shows the cyclic voltammograms of the ZnO-GOX
electrode in PBS ata pH of 7.0 and at room temperature. The
inset shows the plot of peak current versus the square root of
the scan rate. The plot is nearly linear with less than 3% error
from 50 to 400 mVs~!'. The decrease in current response
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FIGURE 2: (a) Low magnification top-view SEM image of patterned ZnO nanotubes. (b—d) Side view of patterned- and aligned-ZnO

nanotubes from lower to higher magnification (clockwise direction).
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FiGure 3: (a) Bright field TEM image of a pair of ZnO nanotubes,
inset shows electron diffraction pattern on a pair of ZnO nanotubes
along the zone axis [2 11 0]. (b) TEM image of a ZnO nanotube
with an Au particle at the end. (c) Shows high-resolution image of
the end of the ZnO nanotube. (d) EDS spectrum recorded near the
catalyst particle indicated by arrow.
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FiGure 4: FTIR spectra of (lower curve) ZnO nanowires and
(upper curve) glucose oxidase entrapped-ZnO nanowires, onto Si
substrate.

with successive increase in scan rate indicates that the
electrode reaction is diffusion controlled. The direct pulse
voltammetry (DPV) response of the sensor to successive
increments of glucose is shown in Figure 7(a). These results
were obtained with a scan rate of 0.020 mV/s, step height
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FIGURE 5: Current response of ZnO-based glucose sensor in PBS
with increasing pH containing 5.0 X 107> mol L™" glucose.
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F1GUrE 6: Cyclic voltammograms of ZnO-GOX/Si in PBS (pH 7.0)
containing 5.0 x 107> mol L™! glucose at a scan rate of (a) 50 mV s,
(b) 100mV s, (c) 200mV s, (d) 300mVs~!, and (e) 400 mV s~ .
Inset plot: relationship between scan rate and response current of
Zn0O-GOX/Si in PBS (pH 7.0) containing 5.0x10~> mol L' glucose.

of 2mV, and a potential sweep between —0.6 and 0.4 V.
The well-defined peaks occur at approximately —0.05V,
showing that the enzyme is active at this potential. This data
displays a linear relationship of current to the corresponding
glucose concentration. The calibration response curve (see
Figure 7(b)) shows a linear trend in the range of 1.0 x 107*
to 1.0 x 1072 mol L™! glucose with an r-value of 0.9903 and
less than 5% error.

4. CONCLUSIONS

The successful fabrication of a highly selective ZnO
nanowire-based amperometric glucose biosensor has been
achieved. The ZnO electrodes were synthesized on Si (100)
substrates by VLS mechanism. High-density ZnO nanowires
with a large surface area are found to have a preferential
growth direction along [0001] axis. No additional protective
coating has been utilized during the electrode preparation.
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FIGURE 7: (a) DPV response of ZnO-GOX/Si in PBS (pH 7.0) at
(@) 1 x 107 molL™%, (b) 5x 107*molL™%, (¢) 1 x 10> mol L7},
(d) 5% 107 molL™", and (e) 1 x 10> mol L™" glucose. (b) Linear
calibration curve of ZnO-GOX biosensor.

The sensor functioned in the range of 1.0 x 10™* to
1.0 X 107 2molL™" glucose. The biosafe nature of ZnO
and successful immobilization of glucose oxidase onto the
electrode surface leads to a new novel approach to biosensor
construction and applications.
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