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Interior and exterior Neumann functions for the Laplace operator are derived in terms of prolate spheroidal harmonics with the
homogeneous, constant, and nonconstant inhomogeneous boundary conditions. For the interior Neumann functions, an image
system is developed to consist of a point image, a line image extending from the point image to infinity along the radial coordinate
curve, and a symmetric surface image on the confocal prolate spheroid that passes through the point image. On the other hand, for
the exterior Neumann functions, an image system is developed to consist of a point image, a focal line image of uniform density,
another line image extending from the point image to the focal line along the radial coordinate curve, and also a symmetric surface
image on the confocal prolate spheroid that passes through the point image.

1. Introduction

Let 𝑆 be a smooth closed surface in R3, with Ω being its
interior and Ωc its exterior, respectively. An interior Neu-
mann function for the Laplace operator is the solution of the
following boundary value problem for the potential𝑁i(r, rs):

Δ𝑁i (r, rs) = 𝛿 (r − rs) , r ∈ Ω, (1a)

𝜕𝜕𝑛𝑁i (r, rs) = 𝑔S (r) , r ∈ 𝑆, (1b)

where Δ is the Laplace operator, rs is a fixed point in the
open domain Ω, 𝛿(r) is the Dirac delta function, 𝜕/𝜕𝑛 is
the outward normal derivative on the surface 𝑆, and 𝑔S(r)
is a given function specified on the surface 𝑆 satisfying the
constraint

∮
𝑆
𝑔S (r) d𝑠 = 1. (2)

This constraint follows by applying the divergence theorem
to (1a). If we further demand the normal derivative to be
constant on 𝑆, then we arrive at probably the most common

boundary condition used in developing a Neumann-Green’s
function [1]:

𝜕𝜕𝑛𝑁i (r, rs) ≡ 1|𝑆| , r ∈ 𝑆, (3)

where |𝑆| stands for the total surface area of 𝑆.
The solutions of a Neumann problem

Δ𝑢 (r) = 𝑓 (r) , r ∈ Ω, (4a)

𝜕𝜕𝑛𝑢 (r) = 𝜓 (r) , r ∈ 𝑆, (4b)

when they exist, have the following integral representation
(see [2], p.286-287):

𝑢 (r) = ⟨𝑢⟩ + ∫
Ω
𝑁i (r, r) 𝑓 (r) dr

− ∮
𝑆
𝑁i (r, r) 𝜓 (r) d𝑠, (5)

where ⟨𝑢⟩ stands for the weightedmean value of the solution𝑢 on 𝑆; namely, ⟨𝑢⟩ = ∮
𝑆
𝑔S(r)𝑢(r)d𝑠, which can be chosen to
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be zero to simplify the equation. All other solutions to (4a)
and (4b) can be obtained by adding an arbitrary constant to
this solution.

Likely, an exterior Neumann function for the Laplace
operator is the solution of the following boundary value
problem for the potential𝑁e(r, rs):

Δ𝑁e (r, rs) = 𝛿 (r − rs) , r ∈ Ωc, (6a)

𝜕𝜕𝑛𝑁e (r, rs) = −𝑔S (r) , r ∈ 𝑆, (6b)

𝑁e (r, rs) = 𝑂 (1/ |r|2) , |r| → +∞, (6c)

where rs now is a given point in the open domainΩc.
Neumann functions are analogous to Green’s functions

for Dirichlet problems, so they are often also called Green’s
function for the Neumann problem or Green’s function
of the second kind. While Dirichlet-Green’s functions are
generally used for electrostatic problems where the potential
is specified on bounding surfaces, Neumann-Green’s func-
tions are often useful for finding temperature distributions
where the bounding surfaces have specified currents. Similar
to Dirichlet-Green’s functions, a Neumann-Green function
can also be decomposed into a singular and a regular part
as [2]

𝑁(r, rs) = − 14𝜋 r − rs
 + 𝑅 (r, rs) , (7)

where 𝑅(r, rs) is a harmonic function that secures the satis-
faction of the boundary conditions. In what follows, 𝑅(r, rs)
is also called the reflected part of the Neumann function.

An image system for a Neumann function is a system of
fictitious sources inside the complement of the fundamental
domain that produces a potential equal to the reflected
part of the Neumann function. These fictitious sources are
commonly called images because they are located not in the
real domain of interest for the problem but in its complement.
In general, such an image system is not unique. There are
all types of images, from isolated point images to continuous
distributions of images on lines, curves, and surfaces to com-
binations of these images.While image theories for Dirichlet-
Green’s functions have been studied quite extensively in the
literature [3–11], much less work has been done with image
theories for Neumann-Green’s functions.

In their interesting article [12], Dassios and Sten studied
the Neumann function with the constant boundary condi-
tion and the corresponding image system in spherical and
ellipsoidal geometry. For example, they have found that, in
the spherical case, an image system for the exterior spherical
Neumann function may consist of (i) a point image at the
origin with strength −1, (ii) a point image at the conventional
Kelvin image point rk = (𝑎/𝑟s)2rs with strength 𝑎/𝑟s, where 𝑎
is the radius of the sphere, and (iii) a uniform line image with
strength −1/𝑎 on the line segment between the origin and the
Kelvin image point rk. On the other hand, an image system for
the interior spherical Neumann function may consist of (i) a

O
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 = b

−c

rs = (s , s , 0)

Figure 1: A prolate spheroid is centered at the origin, its focal axis is
aligned with the 𝑧-axis, and its interfocal distance is 2𝑐. In terms of
the prolate spheroidal coordinates (𝜉, 𝜂, 𝜙) defined in the main text,
the prolate spheroid is determined by 𝜉 = 𝜉b. A unit source is located
at rs = (𝜉s, 𝜂s, 0) inside the spheroid.

point image at rk with strength 𝑎/𝑟s and (ii) a line image that
extends from rk radially to infinitywith field-point dependent
charge density.

In the present work, we shall study Neumann functions
and their image systems for the Laplace operator in the
prolate spheroidal geometry. Although in theory the case to
be considered here is a special case of that studied in [12], the
authors still believe it is much beneficial to study it separately
because the Neumann functions and their image systems in
the ellipsoidal geometry have to be constructed using ellip-
soidal harmonics, while those in the prolate spheroidal geom-
etry can be constructed using prolate spheroidal harmonics,
but the ellipsoidal harmonics are much more complicated to
handle than the spheroidal ones. In addition, it seems that [12]
contains several mistakes of omission and commission [13].
The present paper is organized as follows. Section 2 provides
a brief introduction to the prolate spheroidal coordinates
and to the prolate spheroidal harmonics. Then, interior and
exterior Neumann functions and their image systems for
the Laplace operator in the prolate spheroidal geometry are
developed in Sections 3 and 4, respectively. Finally, some
concluding remarks are given in Section 5.

2. Elements of Prolate Spheroidal Harmonics

Prolate spheroid 𝑆 is defined by

𝑥2 + 𝑦2𝑎2 + 𝑧2𝑏2 = 1, (8)

where 𝑏 > 𝑎 > 0. Here, the focal symmetry axis of the
spheroid is alignedwith the 𝑧-axis, and the interfocal distance
is 2𝑐 with 𝑐 = √𝑏2 − 𝑎2; see Figure 1.
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In this paper, the prolate spheroidal coordinates (𝜉, 𝜂, 𝜙)
are defined through

𝑥 = 𝑐√(𝜉2 − 1) (1 − 𝜂2) cos𝜙, (9a)

𝑦 = 𝑐√(𝜉2 − 1) (1 − 𝜂2) sin𝜙, (9b)

𝑧 = 𝑐𝜉𝜂, (9c)

where 𝜉 ∈ [1, +∞) is the radial variable, 𝜂 ∈ [−1, 1] is the
angular variable, and 𝜙 ∈ [0, 2𝜋] is the azimuthal variable,
respectively. The prolate spheroid (8) is called the reference
prolate spheroid of this coordinate system. The coordinate
surface of constant 𝜉 is a prolate spheroid confocal to the
prolate spheroid (8), and such a confocal prolate spheroid,
denoted by 𝑆𝜉, can be written in the Cartesian coordinates as

𝑥2 + 𝑦2𝑐2 (𝜉2 − 1) + 𝑧2𝑐2𝜉2 = 1. (10)

In particular, 𝜉 = 𝜉b with 𝜉b = 𝑏/𝑐 is the prolate spheroid
(8), and 𝜉 = 1 corresponds to the focal line connecting
the two focal points, respectively. The coordinate surfaces of
constant 𝜂 are the two sheets of a hyperboloid of revolution
with focal points 𝑧 = ±𝑐, and in particular 𝜂 = 1, 𝜂 =−1, and 𝜂 = 0 correspond to the positive 𝑧-axis beyond
the focal point (0, 0, 𝑐), the negative 𝑧-axis beyond the focal
point (0, 0, −𝑐), and the𝑥𝑦-plane, respectively.The coordinate
surface of constant 𝜙 is a plane through the 𝑧-axis at an
angle 𝜙 to the 𝑥𝑧-plane.Themetric coefficients for the prolate
spheroidal coordinates are given by

ℎ𝜉 (𝜉, 𝜂) = 𝑐√ (𝜉2 − 𝜂2)(𝜉2 − 1) , (11a)

ℎ𝜂 (𝜉, 𝜂) = 𝑐√ (𝜉2 − 𝜂2)(1 − 𝜂2) , (11b)

ℎ𝜙 (𝜉, 𝜂) = 𝑐√(𝜉2 − 1) (1 − 𝜂2). (11c)

The interior prolate spheroidal harmonics are𝑃𝑚𝑛 (𝜉)𝑃𝑚𝑛 (𝜂) cos𝑚𝜙 and 𝑃𝑚𝑛 (𝜉)𝑃𝑚𝑛 (𝜂) sin𝑚𝜙, and the exterior
prolate spheroidal harmonics are 𝑄𝑚𝑛 (𝜉)𝑃𝑚𝑛 (𝜂) cos𝑚𝜙 and𝑄𝑚𝑛 (𝜉)𝑃𝑚𝑛 (𝜂) sin𝑚𝜙, for 𝑛 = 0, 1, . . . and 𝑚 = 0, 1, . . . , 𝑛,
where 𝑃𝑚𝑛 (𝑥) and 𝑄𝑚𝑛 (𝑥) are the associated Legendre
functions of the first and second kinds, respectively.
In particular, 𝑃0𝑛 (𝑥) ≡ 𝑃𝑛(𝑥) and 𝑄0𝑛(𝑥) ≡ 𝑄𝑛(𝑥) are the
Legendre functions of the first and second kinds, respectively.
Accordingly, the surface prolate spheroidal harmonics are𝐶𝑚𝑛 (𝜂, 𝜙) = 𝑃𝑚𝑛 (𝜂) cos𝑚𝜙 and 𝑆𝑚𝑛 (𝜂, 𝜙) = 𝑃𝑚𝑛 (𝜂) sin𝑚𝜙, for𝑛 = 0, 1, . . . and 𝑚 = 0, 1, . . . , 𝑛, which are orthogonal over
a confocal prolate spheroid 𝑆𝜉 with respect to the following
geometrical weighting function:

𝑤𝜉 (𝜂) = 1
𝑐2√(𝜉2 − 𝜂2) (𝜉2 − 1) . (12)

In fact, we have the following orthogonality relation:

∮
𝑆𝜉

𝑆𝑚𝑛 (𝜂, 𝜙) 𝑆𝑀𝑁 (𝜂, 𝜙)𝑤𝜉 (𝜂) d𝑠𝜉 (𝜂, 𝜙)
= 𝛾𝑚𝑛𝛿𝑛𝑁𝛿𝑚𝑀, (𝑀 > 0, 𝑚 > 0) , (13a)

∮
𝑆𝜉

𝑆𝑚𝑛 (𝜂, 𝜙) 𝐶𝑀𝑁 (𝜂, 𝜙)𝑤𝜉 (𝜂) d𝑠𝜉 (𝜂, 𝜙) = 0, (13b)

∮
𝑆𝜉

𝐶𝑚𝑛 (𝜂, 𝜙) 𝐶𝑀𝑁 (𝜂, 𝜙)𝑤𝜉 (𝜂) d𝑠𝜉 (𝜂, 𝜙)
= 𝛾𝑚𝑛𝛿𝑛𝑁𝛿𝑚𝑀,

(13c)

where 𝛿𝑖𝑗 is the Kronecker delta, the differential surface
element on 𝑆𝜉 is

d𝑠𝜉 (𝜂, 𝜙) = ℎ𝜂ℎ𝜙d𝜂 d𝜙 = 1𝑤𝜉 (𝜂)d𝜂 d𝜙, (14)

and the normalization constants 𝛾𝑚𝑛 are
𝛾𝑚𝑛 = 2 (𝑛 + 𝑚)!(2𝑛 + 1) (𝑛 − 𝑚)! (1 + 𝛿𝑚0) 𝜋. (15)

The surface prolate spheroidal harmonics form a com-
plete set of eigenfunctions over a prolate spheroid 𝑆𝜉. There-
fore, any smooth function𝑓 defined over the prolate spheroid𝑆𝜉 can be expanded in terms of the surface prolate spheroidal
harmonics. Furthermore, if 𝑓 is even with respect to 𝜙, then
it can be expanded in terms of only the even surface prolate
spheroidal harmonics; namely,

𝑓 (𝜂, 𝜙) = ∞∑
𝑛=0

𝑛∑
𝑚=0

𝑐𝑚𝑛𝐶𝑚𝑛 (𝜂, 𝜙) , (16)

with the coefficients 𝑐𝑚𝑛 given by

𝑐𝑚𝑛 = 1𝛾𝑚𝑛 ∮𝑆𝜉 𝑤𝜉 (𝜂) 𝑓 (𝜂, 𝜙) 𝐶𝑚𝑛 (𝜂, 𝜙) d𝑠𝜉 (𝜂, 𝜙) . (17)

Finally, the expansion of 1/|r−rs| in the prolate spheroidal
coordinates is [1, 14, 15]

1r − rs
 = 1𝑐

∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛𝑃𝑚𝑛 (𝜉<) 𝑄𝑚𝑛 (𝜉>) 𝑃𝑚𝑛 (𝜂s) 𝑃𝑚𝑛 (𝜂)
⋅ cos𝑚(𝜙 − 𝜙s) ,

(18)

where 𝜉< = min(𝜉, 𝜉s), 𝜉> = max(𝜉, 𝜉s), and
𝐻𝑚𝑛 = (2𝑛 + 1) (2 − 𝛿𝑚0) (−1)𝑚 [(𝑛 − 𝑚)!(𝑛 + 𝑚)!]

2 . (19)

3. Interior Neumann Functions and
Their Image Systems

Given a unit source located at point rs = (𝑥s, 𝑦s, 𝑧s) =(𝜉s, 𝜂s, 𝜙s) inside the prolate spheroid 𝑆, that is, 1 ≤ 𝜉s < 𝜉b,
we assume, without loss of any generality, that the source
is in the 𝑥𝑧-plane; that is, 𝑦s = 𝜙s = 0. We consider
interior Neumann functions with several different Neumann
boundary conditions.
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3.1. Nonconstant BoundaryCondition. The interiorNeumann
function considered in this case, denoted by 𝑁i

a(r, rs), is the
solution of the following boundary value problem:

Δ𝑁i (r, rs) = 𝛿 (r − rs) , 1 ≤ 𝜉 < 𝜉b, (20a)

𝜕𝜕𝑛𝑁i (r, rs) = 14𝜋𝑤𝜉b (𝜂) , 𝜉 = 𝜉b, (20b)

where the normal derivative on 𝑆 is set to be a constant
multiple of the geometrical weighting function 𝑤𝜉(𝜂) on 𝑆.
Compared to the boundary condition (3) which assumes a
constant normal derivative on 𝑆, the boundary condition
(20b) not only sounds more physical but also leads to a sim-
pler mathematical formulation for the Neumann function.
In fact, 1/|𝑆| is the average of (1/4𝜋)𝑤𝜉b(𝜂) on the prolate
spheroid 𝑆 since

14𝜋 ∮
𝑆
𝑤𝜉b (𝜂) d𝑠 = 1. (21)

This identity also guarantees that such a Neumann function
exists. In this case, the weighted mean value of a function 𝑢
on the surface 𝑆 is ⟨𝑢⟩ = ∮

𝑆
𝑤𝜉b(𝜂)𝑢(r)d𝑠/(4𝜋).

Due to the azimuthal symmetry of the system, the interior
Neumann function𝑁i

a(r, rs) can be expressed in terms of the
even interior prolate spheroidal harmonics as

𝑁i
a (r, rs) = − 14𝜋 r − rs

 + 14𝜋𝑐
⋅ ∞∑
𝑛=0

𝑛∑
𝑚=0

𝐴𝑚𝑛𝐻𝑚𝑛𝑃𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s) 𝑃𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) ,
(22)

where𝐴𝑚𝑛 are constants that have to be determined in such a
way so as to satisfy the boundary condition (20b). Using (18),
we can rewrite𝑁i

a(r, rs) in the neighborhood of the boundary𝑆, where 𝜉s ≤ 𝜉 ≤ 𝜉b, as
𝑁i

a (r, rs) = − 14𝜋𝑐
∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛𝑃𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s)
⋅ [𝑄𝑚𝑛 (𝜉) − 𝐴𝑚𝑛𝑃𝑚𝑛 (𝜉)] 𝐶𝑚𝑛 (𝜂, 𝜙) .

(23)

Since the surface normal derivative at any point (𝜉b, 𝜂, 𝜙)
on 𝑆 is

𝜕𝜕𝑛 = 1ℎ𝜉 (𝜉b, 𝜂) 𝜕𝜕𝜉 = 𝑎2𝑐 𝑤𝜉b (𝜂) 𝜕𝜕𝜉 , (24)

the boundary condition (20b) demands that the following
equation holds at every point on 𝑆:

− 𝑎2𝑐2 𝑤𝜉b (𝜂)
∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛𝑃𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s)
⋅ [𝑄𝑚𝑛  (𝜉b) − 𝐴𝑚𝑛𝑃𝑚𝑛  (𝜉b)] 𝐶𝑚𝑛 (𝜂, 𝜙) = 𝑤𝜉b (𝜂) .

(25)

Obviously, 𝐴00 is the arbitrary constant of the solution𝑁i
a(r, rs) since 𝑃0(𝑥) ≡ 0. Indeed, integrating (25) over 𝑆 and

using the orthogonality relation (13a), (13b), and (13c), we
obtain

𝑄0 (𝜉b) = − 𝑐2𝑎2 , (26)

which is an identity that can be verified using𝑄0(𝑥) = ln((𝑥+1)/(𝑥 − 1))/2.
Next, for each 𝑖 ≥ 1 and 𝑗 = 0, . . . , 𝑖, multiplying both

sides of (25) by 𝐶𝑗𝑖 (𝜂, 𝜙), integrating it over 𝑆, and using the
orthogonality relation (13a), (13b), and (13c), we obtain

− 𝑎2𝑐2 𝛾𝑗𝑖𝐻𝑗𝑖𝑃𝑗𝑖 (𝜉s) 𝑃𝑗𝑖 (𝜂s) [𝑄𝑗𝑖  (𝜉b) − 𝐴𝑗𝑖𝑃𝑗𝑖  (𝜉b)]
= ∮
𝑆
𝑤𝜉b (𝜂) 𝐶𝑗𝑖 (𝜂, 𝜙) d𝑠𝜉b (𝜂, 𝜙) = 0, (27)

from which we get

𝐴𝑚𝑛 = 𝑄𝑚𝑛  (𝜉b)𝑃𝑚𝑛  (𝜉b) , 𝑛 ≥ 1. (28)

Hence, the interior Neumann function𝑁i
a(r, rs) is

𝑁i
a (r, rs) = − 14𝜋 r − rs

 +
𝐴004𝜋𝑐 + 14𝜋𝑐

∞∑
𝑛=1

𝑛∑
𝑚=0

𝐻𝑚𝑛
⋅ 𝑄𝑚𝑛  (𝜉b)𝑃𝑚𝑛  (𝜉b) 𝑃𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s) 𝑃𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) .

(29)

The arbitrary constant 𝐴00 may be fixed by demanding
one additional condition, say 𝑁i

a(0, rs) = 0. In this case,
noting that the origin in the prolate spheroidal coordinates
corresponds to the point (1, 0, 0) and that

𝑃𝑚𝑛 (±1) = {{{
(±1)𝑛 , if 𝑚 = 0,
0, if 𝑚 > 0,

𝑃𝑛 (0) = {{{
(−1)𝑛/2 (𝑛 − 1)!!𝑛!! , if 𝑛 is even,
0, if 𝑛 is odd,

(30)

we get

𝐴00 = 𝑐rs −
∞∑
𝑘=1

(4𝑘 + 1) 𝑄2𝑘 (𝜉b)𝑃2𝑘 (𝜉b) 𝑃2𝑘 (𝜉s) 𝑃2𝑘 (𝜂s) (−1)𝑘
⋅ (2𝑘 − 1)!!(2𝑘)!! .

(31)

3.2. Constant Nonzero Boundary Condition. The interior
Neumann function with a constant nonzero normal deriva-
tive on 𝑆, denoted by 𝑁i

b(r, rs), is defined as the solution of
the differential equation (20a) with the boundary condition

𝜕𝜕𝑛𝑁i (r, rs) = 1|𝑆| , 𝜉 = 𝜉b, (32)
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where |𝑆| stands for the total surface area of 𝑆. In this case,
the term ⟨𝑢⟩ in (5) is the average value of the solution 𝑢 on 𝑆;
namely, ⟨𝑢⟩ = ∮

𝑆
𝑢(r)d𝑠/|𝑆|.

The interior Neumann function𝑁i
b(r, rs) is also given by

(22), but now the boundary condition (32) demands that the
following equation holds at every point on 𝑆:

− 𝑎24𝜋𝑐2𝑤𝜉b (𝜂)
∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛𝑃𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s)
⋅ [𝑄𝑚𝑛  (𝜉b) − 𝐴𝑚𝑛𝑃𝑚𝑛  (𝜉b)] 𝐶𝑚𝑛 (𝜂, 𝜙) = 1|𝑆| .

(33)

Clearly, 𝐴00 still serves as the arbitrary constant of the
interior Neumann function. Indeed, integrating (33) over 𝑆
and using (13a), (13b), and (13c), we still have identity (26).
Next, for each 𝑖 ≥ 1 and 𝑗 = 0, . . . , 𝑖, multiplying both
sides of (33) by 𝐶𝑗𝑖 (𝜂, 𝜙), integrating it over 𝑆, and using the
orthogonality relation (13a), (13b), and (13c), we obtain

− 𝑎24𝜋𝑐2 𝛾𝑗𝑖𝐻𝑗𝑖𝑃𝑗𝑖 (𝜉s) 𝑃𝑗𝑖 (𝜂s) [𝑄𝑗𝑖  (𝜉b) − 𝐴𝑗𝑖𝑃𝑗𝑖  (𝜉b)]
= 1|𝑆| ∮𝑆 𝐶𝑗𝑖 (𝜂, 𝜙) d𝑠𝜉b (𝜂, 𝜙) .

(34)

The right-hand side of (34), however, is no longer zero for all𝑖 ≥ 1 and 𝑗 = 0, . . . , 𝑖. Instead, noting that
∮
𝑆
𝐶𝑗𝑖 (𝜂, 𝜙) d𝑠𝜉b (𝜂, 𝜙)
= 𝑎𝑐∫1

−1
𝑃𝑗𝑖 (𝜂)√𝜉2b − 𝜂2d𝜂∫2𝜋

0
cos (𝑗𝜙) d𝜙, (35)

we have

∮
𝑆
𝐶𝑗𝑖 (𝜂, 𝜙) d𝑠𝜉b (𝜂, 𝜙)

= {{{
2𝜋𝑎𝑐∫1

−1
𝑃𝑖 (𝜂)√𝜉2b − 𝜂2d𝜂, if 𝑗 = 0, 𝑖 is even,

0, otherwise.
(36)

Therefore, when 𝑚 > 0 or when 𝑚 = 0 and 𝑛 ≥ 1 is odd, we
still have (28), but when 𝑚 = 0 and 𝑛 ≥ 1 is even, we instead
have

𝐴0𝑛 = 𝑄𝑛 (𝜉b)𝑃𝑛 (𝜉b) + 2𝜋𝑐3 ∫1
−1
𝑃𝑛 (𝜂)√𝜉2b − 𝜂2d𝜂

𝑎 |𝑆| 𝑃𝑛 (𝜉s) 𝑃𝑛 (𝜂s) 𝑃𝑛 (𝜉b) . (37)

3.3. Homogeneous Boundary Condition. If we demand the
homogeneous boundary condition on 𝑆, then the interior
Neumann function, denoted by 𝑁i

c(r, rs), is defined as the
solution of the following boundary value problem [16]:

Δ𝑁i (r, rs) = 𝛿 (r − rs) − 1/ |Ω| , 1 ≤ 𝜉 < 𝜉b, (38a)

𝜕𝜕𝑛𝑁i (r, rs) = 0, 𝜉 = 𝜉b, (38b)

where |Ω| = (4𝜋/3)𝑎2𝑏 stands for the volume of Ω. The
extra term 1/|Ω| in the differential equation (38a) is needed
to guarantee the existence of such a Neumann function, and
in this case the solution to the Neumann problem (4a) and
(4b) is still given by (5) but with the term ⟨𝑢⟩ representing
the average value of the solution 𝑢 in the volume Ω; namely,⟨𝑢⟩ = ∫

Ω
𝑢(r)dr/|Ω|.

Let 𝑢0(r) be a function inΩ defined as

𝑢0 (r) = 𝑟26 |Ω| = 𝑥2 + 𝑦2 + 𝑧26 |Ω| = 𝑐2 (𝜉2 + 𝜂2 − 1)8𝜋𝑎2𝑏 . (39)

Then, it is easy to see that Δ𝑢0(r) = 1/|Ω| and that

𝜕𝜕𝑛𝑢0 (r)
𝜉=𝜉b

= 18𝜋𝑎2𝑏 𝑎
2

𝑐 𝑤𝜉b (𝜂) 𝜕𝜕𝜉 [𝑐2 (𝜉2 + 𝜂2 − 1)]𝜉=𝜉b
= 14𝜋𝑤𝜉b (𝜂) .

(40)

Therefore, the Neumann function 𝑁i
c(r, rs) can be obtained

by subtracting 𝑢0(r) from the Neumann function 𝑁i
a(r, rs);

namely, we have

𝑁i
c (r, rs) = 𝑁i

a (r, rs) − 𝑟26 |Ω| . (41)

3.4. Image Systems for Interior Neumann Functions. Let us
now turn to the construction of image systems for the interior
Neumann functions. We will focus ourselves on the interior
Neumann function𝑁i

a(r, rs) given by (29), but the basic idea
and the key conclusions apply to other interior Neumann
functions as well.

More specifically, we wish to build an image system
that represents the following part of the interior Neumann
function𝑁i

a(r, rs):
𝑁i,ref

a (r, rs) = 14𝜋𝑐
∞∑
𝑛=1

𝑛∑
𝑚=0

𝐻𝑚𝑛𝑄𝑚𝑛  (𝜉b)𝑃𝑚𝑛  (𝜉b) 𝑃𝑚𝑛 (𝜉s)
⋅ 𝑃𝑚𝑛 (𝜂s) 𝑃𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) .

(42)

As pointed out earlier, such an image system is not unique. By
reasoning asDassios and Sten did in the case of the ellipsoidal
geometry [12], here we consider an image system consisting
of a point image with strength 𝑄 at some exterior point rk =(𝑥k, 0, 𝑧k) = (𝜉k, 𝜂k, 0) (since the source is in the 𝑥𝑧-plane,
naturally the only point image should be in the 𝑥𝑧-plane as
well) as a continuous one-dimensional line image extending
from the point rk to infinity along the radial coordinate curve𝐶 : (𝜂, 𝜙) = (𝜂k, 0) with density

𝜌 (t) = 𝜌 (𝜉, 𝜂k, 0) = 𝛼𝑞 (𝜉)ℎ𝜉 (𝜉, 𝜂k) , (43)

where 𝛼 is some constant and 𝑞(𝜉) is some continuous
function in [𝜉k, +∞), and as a continuous two-dimensional
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Figure 2: Illustration of the image system for the interior Neumann
function𝑁i

a(r, rs).

surface image on the confocal prolate spheroid 𝑆𝜉k : 𝜉 = 𝜉k
with density

𝑑 (s) = 𝑑 (𝜉k, 𝜂, 𝜙) = 𝑤𝜉k (𝜂) ∞∑
𝑛=2

𝑛∑
𝑚=0

𝑑𝑚𝑛𝐶𝑚𝑛 (𝜂, 𝜙) , (44)

where 𝑑𝑚𝑛 are constants to be determined later. By reasoning
as we did in the case of Dirichlet-Green’s function [11], the
vanishing of the 𝑛 = 0 term in 𝑑(s) implies that the total
strength (or in electrostatics, the total surface “charge”) on 𝑆𝜉k
is zero, and the vanishing of the 𝑛 = 1 terms in 𝑑(s) implies
that the distribution on 𝑆𝜉k is symmetric with its centroid at
the origin. Such an image system is graphically illustrated in
Figure 2.

As pointed out by Dassios [10], the existence of the
continuous one-dimensional distribution of images in the
proposed image system is characteristic of the Neumann
boundary condition, which in fact was shown 70 years ago
by Weiss who studied image systems through applications
of Kelvin’s transformation in electricity, magnetism, and
hydrodynamics [17, 18]. Dassios further provided an intuitive
explanation of the one-dimensional distribution of images
reflecting the physics of the underlying problem, that is, the
Neumann boundary condition. Since the derivative is the
limit of the difference of the solution between two points
and the image interpretation of such difference demands a
sequence of point images with gaps that are proportional
to the distance between the two points, it then becomes
clear that the set of point images evolves into a continuous
curve as the two points approach each other in order to
define the derivative. On the other hand, the existence of the
continuous two-dimensional distribution of images over a
closed surface in the image system is a direct consequence
of the three-dimensional character of the spheroidal or
ellipsoidal geometry as it compares with the essentially one-
dimensional character of the spherical geometry in which, as
mentioned in Section 1, point and line images are enough to
represent interior Neumann functions.

The potential in the interior of the spheroid 𝑆 generated
by this image system is

𝑁i,im
a (r) = − 𝑄4𝜋 r − rk

 − 14𝜋 ∫
𝐶

𝜌 (t)r − td𝑙 (t)
− 14𝜋 ∮

𝑆𝜉k

𝑑 (s)r − sd𝑠𝜉k (𝜂, 𝜙) ,
(45)

where t = (𝜉, 𝜂k, 0), s = (𝜉k, 𝜂, 𝜙), and d𝑙(t) is the dif-
ferential length element on 𝐶; that is, d𝑙(t) = ℎ𝜉(𝜉, 𝜂k)d𝜉.
Therefore, we have

𝑁i,im
a (r) = − 𝑄4𝜋 r − rk

 − 𝛼4𝜋 ∫+∞
𝜉k

𝑞 (𝜉)r − td𝜉
− 14𝜋 ∮

𝑆𝜉k

𝑑 (𝜉k, 𝜂, 𝜙)r − s d𝑠𝜉k (𝜂, 𝜙) .
(46)

Using (18), we have

𝑄4𝜋 r − rk
 = 𝑄4𝜋𝑐

∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛𝑄𝑚𝑛 (𝜉k) 𝑃𝑚𝑛 (𝜂k) 𝑃𝑚𝑛 (𝜉)
⋅ 𝐶𝑚𝑛 (𝜂, 𝜙) ,

𝛼4𝜋 ∫+∞
𝜉k

𝑞 (𝜉)r − td𝜉 = 14𝜋𝑐
⋅ ∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛 (𝛼∫+∞
𝜉k

𝑞 (𝜉)𝑄𝑚𝑛 (𝜉) d𝜉)𝑃𝑚𝑛 (𝜂k)
⋅ 𝑃𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) .

(47)

Furthermore, using (18), (44), and the orthogonality relation
(13a), (13b), and (13c), we obtain

14𝜋 ∮
𝑆𝜉k

𝑑 (𝜉k, 𝜂, 𝜙)r − s d𝑠𝜉k (𝜂, 𝜙)
= 14𝜋𝑐

∞∑
𝑛=2

𝑛∑
𝑚=0

𝐻𝑚𝑛𝛾𝑚𝑛𝑑𝑚𝑛𝑄𝑚𝑛 (𝜉k) 𝑃𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) .
(48)

So, demanding𝑁i,ref
a (r, rs) = 𝑁i, im

a (r), we have
14𝜋𝑐
∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛 [𝑄𝑄𝑚𝑛 (𝜉k)
+ 𝛼∫+∞
𝜉k

𝑞 (𝜉)𝑄𝑚𝑛 (𝜉) d𝜉]𝑃𝑚𝑛 (𝜂k) 𝑃𝑚𝑛 (𝜉)
⋅ 𝐶𝑚𝑛 (𝜂, 𝜙) + 14𝜋𝑐

∞∑
𝑛=2

𝑛∑
𝑚=0

𝐻𝑚𝑛𝛾𝑚𝑛𝑑𝑚𝑛𝑄𝑚𝑛 (𝜉k)
⋅ 𝑃𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) = − 14𝜋𝑐

∞∑
𝑛=1

𝑛∑
𝑚=0

𝐻𝑚𝑛
⋅ 𝑄𝑚𝑛  (𝜉b)𝑃𝑚𝑛  (𝜉b) 𝑃𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s) 𝑃𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) .

(49)
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First, comparing themonopole (𝑛 = 0) term in both sides
of (49), we have

𝑄𝑄0 (𝜉k) + 𝛼∫+∞
𝜉k

𝑞 (𝜉)𝑄0 (𝜉) d𝜉 = 0, (50)

from which we get

𝑄 = − 𝛼𝑄0 (𝜉k) ∫
+∞

𝜉k

𝑞 (𝜉)𝑄0 (𝜉) d𝜉. (51)

The function 𝑞(𝜉) in [𝜉k, +∞) is something one can
choose as long as the corresponding improper integrals in
(49) all exist. For instance, we can choose

𝑞 (𝜉) = 1 − 1𝜉𝑄0 (𝜉) . (52)

In this case, the fact that the improper integral in (51)
exists can be verified straightforwardly and the fact that the
improper integrals in (49) for 𝑛 ≥ 1 all exist is due to𝑄𝑚𝑛 (𝜉) =𝑂(1/𝜉𝑛+1) as 𝜉 → +∞. In fact, we have

∫+∞
𝜉k

𝑞 (𝜉)𝑄0 (𝜉) d𝜉
= 𝜉k2 ln (𝜉k + 1𝜉k − 1) + 12 ln (𝜉2k − 1𝜉2k ) − 1. (53)

Next, comparing the dipole (𝑛 = 1) terms in both sides of
(49), we obtain for𝑚 = 0, 1

𝛼∫+∞
𝜉k

𝑞 (𝜉) [𝑄𝑚1 (𝜉) − 𝑄𝑚1 (𝜉k)𝑄0 (𝜉k)
⋅ 𝑄0 (𝜉)] d𝜉𝑃𝑚1 (𝜂k)
= −𝑄𝑚1  (𝜉b)𝑃𝑚1  (𝜉b) 𝑃𝑚1 (𝜉s) 𝑃𝑚1 (𝜂s) .

(54)

Using (9a), (9b), and (9c) and noting that 𝜙k = 𝜙s = 0, we
obtain

𝑥k = − 𝑃11 (𝜉k)𝛼𝑔11 (𝜉k)
𝑄11 (𝜉b)𝑃11  (𝜉b) 𝑥s, (55a)

𝑧k = − 𝑃1 (𝜉k)𝛼𝑔1 (𝜉k) 𝑄

1 (𝜉b)𝑃1 (𝜉b) 𝑧s, (55b)

where 𝑔1(𝜉k) ≡ 𝑔01(𝜉k) and
𝑔𝑚1 (𝜉k)

= ∫+∞
𝜉k

𝑞 (𝜉) [𝑄𝑚1 (𝜉) − 𝑄𝑚1 (𝜉k)𝑄0 (𝜉k) 𝑄0 (𝜉)] d𝜉,
𝑚 = 0, 1.

(56)

Since the point image 𝑄 lies on the confocal prolate
spheroid 𝑆𝜉k , we obtain

𝑥2s𝑐2 (𝜉2k − 1) 𝑃11 (𝜉k)2𝛼2𝑔11 (𝜉k)2
𝑄11 (𝜉b)2𝑃11 (𝜉b)2

+ 𝑧2s𝑐2𝜉2k
𝑃1 (𝜉k)2𝛼2𝑔1 (𝜉k)2

𝑄1 (𝜉b)2𝑃1 (𝜉b)2 = 1,
(57)

which can be rewritten as

𝑥2s𝑎2 𝑃11 (𝜉b)2𝛼2𝑔11 (𝜉k)2
𝑄11 (𝜉b)2𝑃11 (𝜉b)2 +

𝑧2s𝑏2 𝑃1 (𝜉b)2𝛼2𝑔1 (𝜉k)2
𝑄1 (𝜉b)2𝑃1 (𝜉b)2= 1.

(58)

Equation (58) provides uswith a nonlinear algebraic equation
for the radial coordinate 𝜉k of the point image 𝑄. Unfor-
tunately, this equation does not necessarily have a solution
in (𝜉b, +∞). However, if we choose the constant 𝛼 as one
satisfying

𝛼2 = 𝛽2 [𝑥2s𝑎2 𝑃
1
1 (𝜉b)2𝑔11 (𝜉b)2

𝑄11 (𝜉b)2𝑃11 (𝜉b)2
+ 𝑧2s𝑏2 𝑃1 (𝜉b)

2

𝑔1 (𝜉b)2
𝑄1 (𝜉b)2𝑃1 (𝜉b)2 ] ,

(59)

where 𝛽 is a constant such that 𝛽2 > 1, then (58) has a
solution in (𝜉b, +∞). Indeed, define an auxiliary function𝑓(𝜉) : (𝜉b, +∞) → R as

𝑓 (𝜉) = 𝑥2s𝑎2 𝑃
1
1 (𝜉b)2𝛼2𝑔11 (𝜉)2

𝑄11 (𝜉b)2𝑃11 (𝜉b)2
+ 𝑧2s𝑏2 𝑃1 (𝜉b)

2

𝛼2𝑔1 (𝜉)2
𝑄1 (𝜉b)2𝑃1 (𝜉b)2 − 1.

(60)

First, it can be demonstrated that 𝑓(𝜉) is continuous on(𝜉b, +∞). Then, note that, for 𝑚 = 0, 1, as 𝜉 → +∞, we have𝑔𝑚1 (𝜉) → 0 and thus 𝑓(𝜉) → +∞. Next, it is easy to see that𝑓(𝜉b) = 1/𝛽2 − 1 < 0. Therefore, (58) must have a solution
in (𝜉b, +∞). In addition, we note that the constant 𝛽 should
be chosen in such a way so as to guarantee that the point
image is close to the boundary if the source is close to the
boundary. For example, we can choose 𝛽 = (𝜉b/𝜉s)𝑛 or 𝛽 =(𝑄0(𝜉s)/𝑄0(𝜉b))𝑛 for some constant 𝑛 > 0.

We were unable to prove the uniqueness of such a
solution, but numerical investigations have suggested that
the solution of (58) in (𝜉b, +∞) should be unique. Figure 3
shows the graph of 𝑓(𝜉) for the case of 𝑎 = 1, 𝑏 = 2 (so𝜉b = 2/√3), and rs = (0.5, 0, 1) with 𝛽 = 𝑄0(𝜉s)/𝑄0(𝜉b). In
this case, the unique solution is about 1.197158. In general,
Newton’s method can be used to solve (58) for 𝜉k. Once 𝜉k is
found, we can use (55a) and (55b) to calculate 𝑥k and 𝑧k and
consequently 𝜂k, and we can use (51) to calculate the strength𝑄 of the point image, respectively.
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Figure 3: The graph of 𝑓(𝜉) for the case of 𝑎 = 1, 𝑏 = 2, and rs =(0.5, 0, 1).

Finally, comparing the 𝑛 ≥ 2 terms in both sides of (49),
we obtain

𝛾𝑚𝑛𝑑𝑚𝑛𝑄𝑚𝑛 (𝜉k) = −𝑄𝑚𝑛  (𝜉b)𝑃𝑚𝑛  (𝜉b) 𝑃𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s)
− [𝑄𝑄𝑚𝑛 (𝜉k) + 𝛼∫+∞

𝜉k

𝑞 (𝜉)𝑄𝑚𝑛 (𝜉) d𝜉]
⋅ 𝑃𝑚𝑛 (𝜂k) .

(61)

Therefore, the coefficients of the surface image density (44)
are given by

𝑑𝑚𝑛 = −1𝛾𝑚𝑛𝑄𝑚𝑛 (𝜉k) {
𝑄𝑚𝑛  (𝜉b)𝑃𝑚𝑛  (𝜉b) 𝑃𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s)

+ [𝑄𝑄𝑚𝑛 (𝜉k) + 𝛼∫+∞
𝜉k

𝑞 (𝜉)𝑄𝑚𝑛 (𝜉) d𝜉]
⋅ 𝑃𝑚𝑛 (𝜂k)} .

(62)

4. Exterior Neumann Functions and
Their Image Systems

Given a unit source located at point rs = (𝑥s, 𝑦s, 𝑧s) =(𝜉s, 𝜂s, 𝜙s) outside the prolate spheroid 𝑆, so 𝜉s > 𝜉b > 1.
Again, we assume the source is in the 𝑥𝑧-plane so𝑦s = 𝜙s = 0.
We shall consider exterior Neumann functions with several
different boundary conditions as well.

4.1. Nonconstant Boundary Condition. The exterior Neu-
mann function considered in this case, denoted by𝑁e

a (r, rs),

is the solution of the following boundary value prob-
lem:

Δ𝑁e (r, rs) = 𝛿 (r − rs) , 𝜉 > 𝜉b, (63a)

𝜕𝜕𝑛𝑁e (r, rs) = − 14𝜋𝑤𝜉b (𝜂) , 𝜉 = 𝜉b, (63b)

𝑁e (r, rs) = 𝑂 (1/ |r|2) , |r| → +∞. (63c)

Due to the azimuthal symmetry of the system, the exterior
Neumann function𝑁e

a (r, rs) can be expressed in terms of the
even exterior prolate spheroidal harmonics as

𝑁e
a (r, rs) = − 14𝜋 r − rs

 + 14𝜋𝑐
⋅ ∞∑
𝑛=0

𝑛∑
𝑚=0

𝐵𝑚𝑛𝐻𝑚𝑛𝑄𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s) 𝑄𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) ,
(64)

where 𝐵𝑚𝑛 are constants that have to be determined by
the boundary condition (63b). Using (18), we can rewrite𝑁e

a (r, rs) in the neighborhood of the boundary 𝑆, where 𝜉b ≤𝜉 ≤ 𝜉s, as
𝑁e

a (r, rs) = − 14𝜋𝑐
∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛𝑄𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s)
⋅ [𝑃𝑚𝑛 (𝜉) − 𝐵𝑚𝑛𝑄𝑚𝑛 (𝜉)] 𝐶𝑚𝑛 (𝜂, 𝜙) .

(65)

The boundary condition (63b) demands that the following
equation holds at every point on 𝑆:

𝑎2𝑐2 𝑤𝜉b (𝜂)
∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛𝑄𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s)
⋅ [𝑃𝑚𝑛  (𝜉b) − 𝐵𝑚𝑛𝑄𝑚𝑛  (𝜉b)] 𝐶𝑚𝑛 (𝜂, 𝜙) = 𝑤𝜉b (𝜂) .

(66)

Integrating (66) over 𝑆 and using the orthogonality
relation (13a), (13b), and (13c), we obtain

− 𝑎2𝑐2 𝛾00𝐻00𝑄0 (𝜉s) 𝑃0 (𝜂s) 𝑄0 (𝜉b) 𝐵00
= ∮
𝑆
𝑤𝜉b (𝜂) d𝑠𝜉b (𝜂, 𝜙) = 𝛾00.

(67)

Therefore, we have

𝐵00 = − 𝑐2𝑎2𝑄0 (𝜉s) 𝑃0 (𝜂s) 𝑄0 (𝜉b) = 1𝑄0 (𝜉s) . (68)

Next, for each 𝑖 ≥ 1 and 𝑗 = 0, . . . , 𝑖, multiplying both
sides of (66) by𝐶𝑗𝑖 (𝜂, 𝜙), integrating it over 𝑆, and using (13a),
(13b), and (13c), we obtain

𝑎2𝑐2 𝛾𝑗𝑖𝐻𝑗𝑖𝑄𝑗𝑖 (𝜉s) 𝑃𝑗𝑖 (𝜂s) [𝑃𝑗𝑖  (𝜉b) − 𝐵𝑗𝑖𝑄𝑗𝑖  (𝜉b)]
= ∮
𝑆
𝑤𝜉b (𝜂) 𝐶𝑗𝑖 (𝜂, 𝜙) d𝑠𝜉b (𝜂, 𝜙) = 0, (69)
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from which we get

𝐵𝑚𝑛 = 𝑃𝑚𝑛  (𝜉b)𝑄𝑚𝑛  (𝜉b) , 𝑛 ≥ 1. (70)

Hence, the exterior Neumann function𝑁e
a (r, rs) is given by

𝑁e
a (r, rs) = − 14𝜋 r − rs

 +
𝑄0 (𝜉)4𝜋𝑐 + 14𝜋𝑐

∞∑
𝑛=1

𝑛∑
𝑚=0

𝐻𝑚𝑛
⋅ 𝑃𝑚𝑛  (𝜉b)𝑄𝑚𝑛  (𝜉b)𝑄𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s) 𝑄𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) .

(71)

4.2. Constant Nonzero Boundary Condition. The exterior
Neumann function with a constant nonzero normal deriva-
tive on 𝑆, denoted by 𝑁e

b(r, rs), is defined as the solution of
the differential equation (63a) with the boundary conditions
(63c) and

𝜕𝜕𝑛𝑁e (r, rs) = − 1|𝑆| , 𝜉 = 𝜉b. (72)

In this case, the exterior Neumann function 𝑁e
b(r, rs) is still

given by (64), but now the boundary condition (72) demands
that the following equation holds at every point on 𝑆:

𝑎24𝜋𝑐2𝑤𝜉b (𝜂)
∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛𝑄𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s)
⋅ [𝑃𝑚𝑛  (𝜉b) − 𝐵𝑚𝑛𝑄𝑚𝑛  (𝜉b)] 𝐶𝑚𝑛 (𝜂, 𝜙) = 1|𝑆| .

(73)

Integrating (73) over 𝑆 and using the orthogonality
relation (13a), (13b), and (13c), we obtain

− 𝑎24𝜋𝑐2 𝛾00𝐻00𝑄0 (𝜉s) 𝑃0 (𝜂s) 𝑄0 (𝜉b) 𝐵00
= 1|𝑆| ∮𝑆 d𝑠𝜉b (𝜂, 𝜙) = 1. (74)

Therefore, we still have 𝐵00 = 1/𝑄0(𝜉s). Next, for each 𝑖 ≥ 1
and 𝑗 = 0, . . . , 𝑖, multiplying both sides of (73) by 𝐶𝑗𝑖 (𝜂, 𝜙),
integrating it over 𝑆, and using (13a), (13b), and (13c), we
obtain

𝑎24𝜋𝑐2 𝛾𝑗𝑖𝐻𝑗𝑖𝑄𝑗𝑖 (𝜉s) 𝑃𝑗𝑖 (𝜂s) [𝑃𝑗𝑖  (𝜉b) − 𝐵𝑗𝑖𝑄𝑗𝑖  (𝜉b)]
= 1|𝑆| ∮𝑆 𝐶𝑗𝑖 (𝜂, 𝜙) d𝑠𝜉b (𝜂, 𝜙) .

(75)

As shown by (36), the right-hand side of (75) is no longer
zero for all 𝑖 ≥ 1 and 𝑗 = 0, . . . , 𝑖. When𝑚 > 0 or when𝑚 = 0
and 𝑛 ≥ 1 is odd, we still have (70); however, when𝑚 = 0 and𝑛 ≥ 1 is even, we instead have

𝐵0𝑛 = 𝑃𝑛 (𝜉b)𝑄𝑛 (𝜉b) −
2𝜋c3 ∫1

−1
𝑃𝑛 (𝜂)√𝜉2b − 𝜂2d𝜂

𝑎 |𝑆| 𝑄𝑛 (𝜉s) 𝑃𝑛 (𝜂s) 𝑄𝑛 (𝜉b) . (76)

Note that (76) applies to the case of 𝑛 = 𝑚 = 0, yielding𝐵00 = 1/𝑄0(𝜉s).
4.3. Homogeneous Boundary Condition. The exterior Neu-
mann function with the homogeneous boundary condition
on 𝑆, denoted by 𝑁e

c (r, rs), is defined as the solution of
the differential equation (63a) with the boundary conditions
(63c) and

𝜕𝜕𝑛𝑁e (r, rs) = 0, 𝜉 = 𝜉b. (77)

In this case, the exterior Neumann function 𝑁e
c (r, rs) is still

given by (64), but now the boundary condition (77) demands
that the following equation holds at every point on 𝑆:

𝑎24𝜋𝑐2𝑤𝜉b (𝜂)
∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛𝑄𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s)
⋅ [𝑃𝑚𝑛  (𝜉b) − 𝐵𝑚𝑛𝑄𝑚𝑛  (𝜉b)] 𝐶𝑚𝑛 (𝜂, 𝜙) = 0,

(78)

from which we get 𝐵00 = 0 and (70). Therefore, the exterior
Neumann function𝑁e

c (r, rs) is given by

𝑁e
c (r, rs) = − 14𝜋 r − rs

 + 14𝜋𝑐
∞∑
𝑛=1

𝑛∑
𝑚=0

𝐻𝑚𝑛
⋅ 𝑃𝑚𝑛  (𝜉b)𝑄𝑚𝑛  (𝜉b)𝑄𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s) 𝑄𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) .

(79)

4.4. Image Systems for Exterior Neumann Functions. Again,
we will focus ourselves on an image system for the exterior
Neumann function 𝑁e

a (r, rs) given by (71). In particular, let
us build an image system that can represent the reflected part
of the Neumann function𝑁e

a (r, rs); namely,

𝑁e,ref
a (r, rs) = 𝑄0 (𝜉)4𝜋𝑐 + 14𝜋𝑐

∞∑
𝑛=1

𝑛∑
𝑚=0

𝐻𝑚𝑛
⋅ 𝑃𝑚𝑛  (𝜉b)𝑄𝑚𝑛  (𝜉b)𝑄𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s) 𝑄𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) .

(80)

First of all, the potential 𝑄0(𝜉)/(4𝜋𝑐) is generated by a focal
line image of uniform density:

𝜇 (𝑧) = − 12𝑐 , − 𝑐 ≤ 𝑧 ≤ 𝑐. (81)

Indeed, the potential generated by this focal line image is

− 14𝜋 ∫𝑐
−𝑐

𝜇 (𝑧)|r − (0, 𝑧, 0)|d𝑧 = 18𝜋 ∫1
−1

1r − (1, 𝜂, 0)d𝜂
= 18𝜋𝑐
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C

S

Q
d(s) rk = (k , k , 0)

rs = (s , s , 0)

r = (, , )

(t)

Sk

 = 1

Figure 4: Illustration of the image system for the exterior Neumann
function𝑁e

a (r, rs).

⋅ ∞∑
𝑛=0

(2𝑛 + 1) [∫1
−1
𝑃𝑛 (𝜂) d𝜂]𝑃𝑛 (1) 𝑄𝑛 (𝜉) 𝑃𝑛 (𝜂)

= 𝑄0 (𝜉)4𝜋𝑐 .
(82)

The strength (or in electrostatics, the total “charge”) of this
focal line image is

∫𝑐
−𝑐
𝜇 (𝑧) d𝑧 = −∫𝑐

−𝑐

12𝑐d𝑧 = −1, (83)

indicating that this focal line image corresponds to the point
image of strength −1 that has to be put at the origin in the
case of the sphere, as mentioned in Section 1.

Next, working as in the interior case, we conjecture that
an image system for the remaining expansion in𝑁e, ref

a (r, rs)
may consist of a point image with strength𝑄 at some interior
point rk = (𝑥k, 0, 𝑧k) = (𝜉k, 𝜂k, 0), a line image extending
from the point rk to the focal line along the radial coordinate
curve 𝐶 : (𝜂, 𝜙) = (𝜂k, 0) with density

𝜌 (t) = 𝜌 (𝜉, 𝜂k, 0) = 𝛼𝑞 (𝜉)ℎ𝜉 (𝜉, 𝜂k) , (84)

where 𝛼 is some constant and 𝑞(𝜉) is some continuous
function specified in [1, 𝜉k], and a surface image on the
confocal prolate spheroid 𝑆𝜉k : 𝜉 = 𝜉k with density

𝑑 (s) = 𝑑 (𝜉k, 𝜂, 𝜙) = 𝑤𝜉k (𝜂) ∞∑
𝑛=2

𝑛∑
𝑚=0

𝑑𝑚𝑛𝐶𝑚𝑛 (𝜂, 𝜙) , (85)

where 𝑑𝑚𝑛 are constants to be determined later. Again, the
surface image has a total strength of zero and is symmetric
with its centroid at the origin. The proposed image system
for the exterior Neumann function 𝑁e

a (r, rs) is graphically
illustrated in Figure 4.

The potential in the exterior of the spheroid generated by
this image system (including the focal line image of uniform
density 𝜇(𝑧)) is

𝑁e,im
a (r) = 𝑄0 (𝜉)4𝜋𝑐 − 𝑄4𝜋 r − rk


− 14𝜋 ∫

𝐶

𝜌 (t)r − td𝑙 (t)
− 14𝜋 ∮

𝑆𝜉k

𝑑 (s)r − sd𝑠𝜉k (𝜂, 𝜙) ,
(86)

where t = (𝜉, 𝜂k, 0) and s = (𝜉k, 𝜂, 𝜙); that is,
𝑁e,im

a (r) = 𝑄0 (𝜉)4𝜋𝑐 − 𝑄4𝜋 r − rk
 − 𝛼4𝜋 ∫𝜉k

1

𝑞 (𝜉)r − td𝜉
− 14𝜋 ∮

𝑆𝜉k

𝑑 (𝜉k, 𝜂, 𝜙)r − s d𝑠𝜉k (𝜂, 𝜙) .
(87)

Using (18), we have

𝑄4𝜋 r − rk


= 𝑄4𝜋𝑐
∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛𝑃𝑚𝑛 (𝜉k) 𝑃𝑚𝑛 (𝜂k) 𝑄𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) ,
(88)

and

𝛼4𝜋 ∫𝜉k
1

𝑞 (𝜉)r − td𝜉 = 14𝜋𝑐
⋅ ∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛 (𝛼∫𝜉k
1

𝑞 (𝜉) 𝑃𝑚𝑛 (𝜉) d𝜉)𝑃𝑚𝑛 (𝜂k)
⋅ 𝑄𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) .

(89)

Furthermore, using (18), (85), and the orthogonality relation
(13a), (13b), and (13c), we can obtain

14𝜋 ∮
𝑆𝜉k

𝑑 (𝜉k, 𝜂, 𝜙)r − s d𝑠𝜉k (𝜂, 𝜙)
= 14𝜋𝑐

∞∑
𝑛=2

𝑛∑
𝑚=0

𝐻𝑚𝑛𝛾𝑚𝑛𝑑𝑚𝑛𝑃𝑚𝑛 (𝜉k) 𝑄𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) .
(90)

Demanding𝑁e,im
a (r) = 𝑁e,ref

a (r, rs), we have
14𝜋𝑐
∞∑
𝑛=0

𝑛∑
𝑚=0

𝐻𝑚𝑛 [𝑄𝑃𝑚𝑛 (𝜉k)
+ 𝛼∫𝜉k
1

𝑞 (𝜉) 𝑃𝑚𝑛 (𝜉) d𝜉]𝑃𝑚𝑛 (𝜂k) 𝑄𝑚𝑛 (𝜉)
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⋅ 𝐶𝑚𝑛 (𝜂, 𝜙) + 14𝜋𝑐
∞∑
𝑛=2

𝑛∑
𝑚=0

𝐻𝑚𝑛𝛾𝑚𝑛𝑑𝑚𝑛𝑃𝑚𝑛 (𝜉k)
⋅ 𝑄𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) = − 14𝜋𝑐

∞∑
𝑛=1

𝑛∑
𝑚=0

𝐻𝑚𝑛
⋅ 𝑃𝑚𝑛  (𝜉b)𝑄𝑚𝑛  (𝜉b)𝑄𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s) 𝑄𝑚𝑛 (𝜉) 𝐶𝑚𝑛 (𝜂, 𝜙) .

(91)

First, comparing themonopole (𝑛 = 0) term in both sides
of (91), we obtain

𝑄 = −𝛼∫𝜉k
1

𝑞 (𝜉) d𝜉. (92)

Next, comparing the dipole (𝑛 = 1) terms in both sides of
(91), we get for𝑚 = 0, 1

𝛼𝑔𝑚1 (𝜉k) 𝑃𝑚1 (𝜂k) = −𝑃𝑚1  (𝜉b)𝑄𝑚1  (𝜉b)𝑄𝑚1 (𝜉s) 𝑃𝑚1 (𝜂s) , (93)

where

𝑔𝑚1 (𝜉k) = ∫𝜉k
1

𝑞 (𝜉) [𝑃𝑚1 (𝜉) − 𝑃𝑚1 (𝜉k)] d𝜉,
𝑚 = 0, 1. (94)

Finally, comparing the 𝑛 ≥ 2 terms in both sides of (91), we
obtain

𝛾𝑚𝑛𝑑𝑚𝑛𝑃𝑚𝑛 (𝜉k)
= −𝑃𝑚𝑛  (𝜉b)𝑄𝑚𝑛  (𝜉b)𝑄𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s)

− [𝑄𝑃𝑚𝑛 (𝜉k) + 𝛼∫𝜉k
1

𝑞 (𝜉) 𝑃𝑚𝑛 (𝜉) d𝜉]𝑃𝑚𝑛 (𝜂k) .
(95)

Therefore, the coefficients of the surface image density (85)
are given by

𝑑𝑚𝑛 = −1𝛾𝑚𝑛𝑃𝑚𝑛 (𝜉k) {
𝑃𝑚𝑛  (𝜉b)𝑄𝑚𝑛  (𝜉b)𝑄𝑚𝑛 (𝜉s) 𝑃𝑚𝑛 (𝜂s)

+ [𝑄𝑃𝑚𝑛 (𝜉k) + 𝛼∫𝜉k
1

𝑞 (𝜉) 𝑃𝑚𝑛 (𝜉) d𝜉]
⋅ 𝑃𝑚𝑛 (𝜂k)} .

(96)

To finalize the image system, we have essentially now
three unknown values plus one unknown function to decide:𝑄, 𝜉k, 𝜂k, and 𝑞(𝜉) as a continuous function in [1, 𝜉k].They are
intercorrelated through the underdetermined system of (92)
and (93), so there could be infinitelymany different solutions,
each giving us a different image system. Belowwe consider an
approach that is again similar to that proposed byDassios and

Sten in [12]; namely, we choose the unknown function 𝑞(𝜉)
and then determine the other three unknown values. Since,
in this case, only proper integrals on [1, 𝜉k] are involved,
any continuous function 𝑞(𝜉) on [1, 𝜉k] can guarantee the
existence of all integrals in (91). For instance, we can simply
choose

𝑞 (𝜉) ≡ 1, 𝜉 ∈ [1, 𝜉b] . (97)

In this case, by (92), we immediately have

𝑄 = 𝛼 (1 − 𝜉k) . (98)

On the other hand, (93) can be rewritten as

𝑥k = − 𝑃11 (𝜉k)𝛼𝑔11 (𝜉k)
𝑄11 (𝜉s)𝑃11 (𝜉s)

𝑃11  (𝜉b)𝑄11 (𝜉b)𝑥s, (99a)

𝑧k = − 𝑃1 (𝜉k)𝛼𝑔1 (𝜉k) 𝑄1 (𝜉s)𝑃1 (𝜉s) 𝑃1 (𝜉b)𝑄1 (𝜉b)𝑧s, (99b)

where

𝑔1 (𝜉k) = 𝜉k − 𝜉2k2 − 12 ,
𝑔11 (𝜉k) = √𝜉2k − 1 − 𝜉k√𝜉2k − 12

− ln (√𝜉2k − 1 + 𝜉k)2 .
(100)

Since the point image 𝑄 lies on the confocal prolate spheroid𝑆𝜉k , we obtain
𝑥2s𝑐2 (𝜉2k − 1) 𝑃11 (𝜉k)2𝛼2𝑔11 (𝜉k)2

𝑄11 (𝜉s)2𝑃11 (𝜉s)2
𝑃11  (𝜉b)2𝑄11 (𝜉b)2

+ 𝑧2s𝑐2𝜉2k
𝑃1 (𝜉k)2𝛼2𝑔1 (𝜉k)2

𝑄1 (𝜉s)2𝑃1 (𝜉s)2
𝑃1 (𝜉b)2𝑄1 (𝜉b)2 = 1,

(101)

which can be rewritten as

𝑥2s𝑎2 𝑃11 (𝜉b)2𝛼2𝑔11 (𝜉k)2
𝑄11 (𝜉s)2𝑃11 (𝜉s)2

𝑃11  (𝜉b)2𝑄11 (𝜉b)2
+ 𝑧2s𝑏2 𝑃1 (𝜉b)2𝛼2𝑔1 (𝜉k)2

𝑄1 (𝜉s)2𝑃1 (𝜉s)2
𝑃1 (𝜉b)2𝑄1 (𝜉b)2 = 1.

(102)

Equation (102) is a nonlinear algebraic equation for the
radial coordinate 𝜉k of the point image 𝑄. Unfortunately,
this equation does not necessarily have a solution in (1, 𝜉b).
However, if we choose the constant 𝛼 as one satisfying

𝛼2 = 𝛽2 [𝑥2s𝑎2 𝑃
1
1 (𝜉b)2𝑔11 (𝜉b)2

𝑄11 (𝜉s)2𝑃11 (𝜉s)2
𝑃11  (𝜉b)2𝑄11 (𝜉b)2

+ 𝑧2s𝑏2 𝑃1 (𝜉b)
2

𝑔1 (𝜉b)2
𝑄1 (𝜉s)2𝑃1 (𝜉s)2

𝑃1 (𝜉b)2𝑄1 (𝜉b)2] ,
(103)
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Figure 5: The graph of 𝑔(𝜉) for the case of 𝑎 = 1, 𝑏 = 2, and rs =(1, 0, 2).
where 𝛽 is a constant such that 𝛽2 > 1, then (102) has a
solution in (1, 𝜉b). Indeed, define an auxiliary function 𝑔(𝜉) :(1, 𝜉b) → R as

𝑔 (𝜉) = 𝑥2s𝑎2 𝑃
1
1 (𝜉b)2𝛼2𝑔11 (𝜉)2

𝑄11 (𝜉s)2𝑃11 (𝜉s)2
𝑃11  (𝜉b)2𝑄11 (𝜉b)2

+ 𝑧2s𝑏2 𝑃1 (𝜉b)
2

𝛼2𝑔1 (𝜉)2
𝑄1 (𝜉s)2𝑃1 (𝜉s)2

𝑃1 (𝜉b)2𝑄1 (𝜉b)2 − 1.
(104)

First of all, 𝑔(𝜉) is continuous on (1, 𝜉b). Indeed, when 𝑞(𝜉) ≡1, it is easy to see from (94) that both 𝑔1(𝜉) and 𝑔11(𝜉) are
continuous on 1 < 𝜉 < 𝜉b and that 𝑔1(𝜉) < 0 and 𝑔11(𝜉) < 0
for 1 < 𝜉 < 𝜉b since 𝑃𝑚𝑛 (𝑥) is strictly increasing on (1, +∞)
for all 𝑛 ≥ 1. Then, note that, for 𝑚 = 0, 1, as 𝜉 → 1+, we
have 𝑔𝑚1 (𝜉) → 0 and thus 𝑔(𝜉) → +∞. Next, it is easy to
see that 𝑔(𝜉b) = 1/𝛽2 − 1 < 0. Therefore, (102) must have a
solution in (1, 𝜉b). In addition, we note again that the constant𝛽 should be chosen in such a way so as to guarantee that the
point image is close to the boundary if the source is close to
the boundary. For example, we can choose 𝛽 = (𝜉s/𝜉b)𝑛 or𝛽 = (𝑄0(𝜉b)/𝑄0(𝜉s))𝑛 for some constant 𝑛 > 0.

We were unable to prove the uniqueness of such a solu-
tion, but numerical investigations have suggested that (102)
has a unique solution in (1, 𝜉b). Figure 5 shows the graph of𝑔(𝜉) for the case of 𝑎 = 1, 𝑏 = 2 (so 𝜉b = 2/√3), and
rs = (1, 0, 2) with 𝛽 = 𝑄0(𝜉b)/𝑄0(𝜉s). In this case, the unique
solution is about 1.12575182. Once 𝜉k is found, we can use
(99a) and (99b) to calculate 𝑥k and 𝑧k and consequently 𝜂k,
and we can use (92) to calculate the strength 𝑄 of the point
image, respectively.

5. Conclusions

In the present work, we present Neumann functions for the
Laplace operator in the casewhere the fundamental domain is
either the interior or the exterior of a prolate spheroid. Three

Neumann boundary conditions are considered, that is, the
homogeneous, constant, and nonconstant inhomogeneous
boundary conditions. Then, we give image systems for such
Neumann functions. For the interior Neumann functions,
an image system is developed to consist of a point image, a
line image extending from the point image to infinity along
the radial coordinate curve, and a symmetric surface image
on the confocal prolate spheroid that passes through the
point image. On the other hand, for the exterior Neumann
functions, an image system is developed to consist of a point
image, a focal line image of uniform density, another line
image extending from the point image to the focal line along
the radial coordinate curve, and also a symmetric surface
image on the confocal prolate spheroid that passes through
the point image.
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