
Research Article
Dual-Polarized Planar Phased Array Analysis for
Meteorological Applications

Chen Pang,1 Peter Hoogeboom,2 François Le Chevalier,2 Herman W. J. Russchenberg,2

Jian Dong,1 Tao Wang,1 and Xuesong Wang1

1National University of Defense Technology, Deya Road 109, Changsha 410073, China
2Delft University of Technology, Stevinweg 1, 2628 CD Delft, Netherlands

Correspondence should be addressed to Chen Pang; pangchen1017@hotmail.com

Received 27 February 2015; Revised 19 July 2015; Accepted 22 July 2015

Academic Editor: Stefano Selleri

Copyright © 2015 Chen Pang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a theoretical analysis for the accuracy requirements of the planar polarimetric phased array radar (PPPAR)
in meteorological applications. Among many factors that contribute to the polarimetric biases, four factors are considered and
analyzed in this study, namely, the polarization distortion due to the intrinsic limitation of a dual-polarized antenna element,
the antenna pattern measurement error, the entire array patterns, and the imperfect horizontal and vertical channels. Two
operation modes, the alternately transmitting and simultaneously receiving (ATSR) mode and the simultaneously transmitting
and simultaneously receiving (STSR) mode, are discussed. For each mode, the polarimetric biases are formulated. As the STSR
mode with orthogonal waveforms is similar to the ATSR mode, the analysis is mainly focused on the ATSR mode and the impacts
of the bias sources on the measurement of polarimetric variables are investigated through Monte Carlo simulations. Some insights
of the accuracy requirements are obtained and summarized.

1. Introduction

Recently, the weather radar community has paid much atten-
tion to the polarimetric phased array radar (PPAR) due to its
agile electronic beam steering capability, which has the poten-
tial to significantly advance weather observations [1]. Various
system designs have been presented and studied. A low cost
mobile X-band phased array weather radar with phase-tilt
antenna array was developed in [2]. Fulton and Chappell
[3] designed an S-band, differentially probe-fed, stacked
patch antenna formultifunctional phased arrayweather radar
applications and studied the calibration method [4]. Zhang
et al. [5] proposed a cylindrical configuration for the polari-
metric phased array weather radar and illustrated the advan-
tages of the cylindrical configuration over the planar configu-
ration. In [6] an overview of the calibration techniques, tools,
and challenges surrounding the development of a cylindrical
polarimetric phased array radar (CPPAR) demonstrator was
provided. The design of interleaved sparse arrays [7] for the
agile polarization control was analyzed with the purpose

of meteorological applications. Dong et al. [8] analyzed the
polarization characteristics of two ideal orthogonal Huygens
sources and evaluated their polarimetry performance.

As shown in [1, 9], a high-accuracy measurement of
polarimetric variables is required to provide meaningful
information for reliable hydrometeor classifications and
improved quantitative precipitation estimations. For exam-
ple, it is desirable that the measurement error for the differ-
ential reflectivity 𝑍DR be on the order of 0.1 dB. In addition,
it is desirable that the copolar correlation coefficient 𝜌ℎV
error be less than 0.01. In previous research [9–13], the pola-
rimetric biases of weather radars with mechanically scanning
antennas have been widely discussed. A detailed literature
review of the bias analysis and calibration methods was
presented in [9]. Generally, in order to make accurate polari-
metric measurements by using a mechanically scanning
antenna, a narrowbeamwith low sidelobes, low coaxial cross-
polarization, and high polarization isolation are indispens-
able.
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Figure 1: The array configuration and spherical coordinate system
used for radiated electric fields.

Although the weather radar polarimetry has matured for
years, there are some challenges for the planar polarimetric
phased array radar (PPPAR) [14]. As shown in Figure 1, the
array is placed on the 𝑦𝑧 plane. When the beam is away from
the principle planes, the electric field 𝐸⃗1 from the horizontal
(𝐻) port and 𝐸⃗2 from the vertical (𝑉) port are not necessarily
orthogonal, which will introduce polarimetric biases that
are not negligible. The nonorthogonality of the 𝐻 and 𝑉

polarizations is called the polarization distortion in this
paper. Meanwhile, the polarization distortion also includes
mismatches in the power levels of 𝐻 and 𝑉 beams as a
function of the scan angle. The calibration matrix that relies
on the measured array patterns is needed to calibrate the
polarimetric bias due to the polarimetric distortion. As the
measured antenna pattern always contains measurement
errors, the calibration matrix cannot completely calibrate
the bias due to the polarization distortion, which is not
thoroughly analyzed in previous research [1, 15, 16] andwill be
discussed in this study. Moreover, in [1, 15, 16] it implies that
the beam is thin enough so that the calibration performed
at the boresight is sufficient to retrieve the polarimetric
variables. However, in practice the finite beamwidth also
contributes to the polarimetric bias, which will be evaluated
in this paper. Besides the antenna, the imperfect 𝐻/𝑉
channels can still bias the polarimetric variables, which will
be modeled and analyzed. Actually, other factors, such as
the mismatch between element patterns, spatial variations
of cross-polarization patterns, mutual coupling edge effects,
diffracted fields, and surfacewaves, can significantly affect the
overall accuracy of a PPPAR. To simplify the analysis, these
factors are ignored.

Usually, there are two operation modes chosen for
weather observations, the alternately transmitting and simul-
taneously receiving (ATSR) mode and the simultaneously
transmitting and simultaneously receiving (STSR) mode.
Each mode has its advantages and disadvantages. With a
“perfect” antenna, the STSR mode is vastly superior to the
ATSR mode in the worst-case polarimetric/spectral situa-
tions. Thus, the STSR mode is the preferred mode from
a meteorological standpoint. However, both the theoretical

analysis and measurement experiments have shown that the
STSRmode has higher accuracy requirements than the ATSR
mode. This paper is mainly focused on the ATSR mode as it
is simple for the analysis.

The remainder of this paper is organized as follows.
Section 2 presents the array model. Sections 3 and 4 give the
detailed analysis in the ATSR and STSR modes, respectively.
Summaries and conclusions are made in Section 5.

2. Array Model

The coordinate system and array configuration are shown
in Figure 1. It is common that in antenna measurements the
antenna is placed on the 𝑥𝑦 plane. In this situation the𝐻 and
𝑉 vectors correspond to the second definition in [17]. In this
paper, the array with𝑀 rows and𝑁 columns is placed on the
𝑦𝑧 plane, which is different from the typical situation. The
reason is that in meteorological applications when the array
is placed on the 𝑦𝑧 plane, the expressions of the horizontal
and vertical polarization basis are simple, which are written
as

aℎ = a𝜑,

aV = − a𝜃,
(1)

where {aℎ, aV} is the horizontal and so-called “vertical”
polarization basis and a𝑟, a𝜃, and a𝜑 are unit vectors in the
spherical coordinate system.

We consider the array has a 90∘ angular range in azimuth
and a 30∘ range in elevation, which is applicable for weather
observations. Thus, in Figure 1 𝜑 is from −45∘ to 45∘ and
𝜃 is from 60∘ to 90∘. For a well-designed array, it would
be symmetrical with respect to 𝜑. So in this paper we only
consider 𝜑 from 0∘ to 45∘ and 𝜃 from 60∘ to 90∘. Accordingly,
the beam direction (𝜃𝑆, 𝜑𝑆) = (90

∘
, 0∘) is the broadside of the

array.

2.1. Element Pattern. The element pattern in a dual-polarized
phased array can be written as

f (𝜃, 𝜑) = [
𝑓ℎℎ (𝜃, 𝜑) 𝑓ℎV (𝜃, 𝜑)

𝑓Vℎ (𝜃, 𝜑) 𝑓VV (𝜃, 𝜑)
] , (2)

where

(i) 𝑓ℎℎ(𝜃, 𝜑) is the horizontal electric field component
when only the𝐻 port is excited

(ii) 𝑓ℎV(𝜃, 𝜑) is the horizontal electric field component
when only the 𝑉 port is excited

(iii) 𝑓Vℎ(𝜃, 𝜑) is the vertical electric field component when
only the𝐻 port is excited

(iv) 𝑓VV(𝜃, 𝜑) is the vertical electric field component when
only the 𝑉 port is excited.

For a practical dual-polarized antenna element, the cross-
polarization components 𝑓ℎV(𝜃, 𝜑) and 𝑓Vℎ(𝜃, 𝜑) are not 0 in
the beam scan area.
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Figure 2: Dual-polarized 𝑇/𝑅modules for polarimetric phased array weather radars. (a) is for the ATSRmode and (b) is for the STSRmode.
In the ATSRmode, one channel is shared for transmitting𝐻 and𝑉 signals and two independent channels are used for reception. In the STSR
mode, four independent channels, two for transmission, two for reception, and one 𝑇/𝑅 switch to commute the transmission and reception
signals, are required.
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Figure 3: Channel imbalance and channel coupling.

2.2. Transmission and Reception Patterns. Figure 2 from [18]
shows dual-polarized 𝑇/𝑅 modules for polarimetric phased
array weather radars in the ATSR and STSR modes. As
explained in [4], the 𝑇/𝑅module connected to each element
may have cross-coupling between its 𝐻 and 𝑉 channels as
well as complex gain/phase imbalances. These cross-coup-
lings and imbalances can be modeled by a matrix multipli-
cation of the 𝐻 and 𝑉 signals presented to the 𝑇/𝑅 module
on both transmission and reception with components as
designated in Figure 3. In this paper, we use the term “channel
isolation” to express the cross-coupling between the𝐻 and𝑉
channels.Meanwhile, we use the term “channel imbalance” to
express complex gain/phase imbalances between the𝐻 and𝑉
channels.

For each element, we use a 2 × 2 complex matrix A to
model the channel imbalance and channel isolation for the
transmission while B is for the reception.A and B are written
as

A = [

𝑎ℎℎ 𝑎ℎV

𝑎Vℎ 𝑎VV
] , (3)

B = [
𝑏ℎℎ 𝑏ℎV

𝑏Vℎ 𝑏VV
] , (4)

where 𝑎ℎℎ, 𝑎VV, 𝑏ℎℎ, and 𝑏VV describe the channel imbalance
and 𝑎ℎV, 𝑎Vℎ, 𝑏ℎV, and 𝑏Vℎ give the channel isolation. For

simplicity, we assume 𝑎ℎℎ = 𝑏ℎℎ = 1. Then the channel imbal-
ance CIM is defined as

CIM = max{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

20 log 1
󵄨󵄨󵄨󵄨𝑎VV

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

20 log 1
󵄨󵄨󵄨󵄨𝑏VV

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} . (5)

Note that if |𝑎VV| > 1, there will be 20 log(1/|𝑎VV|) < 0. Thus
we use the expression |20 log(1/|𝑎VV|)| such that CIM remains
positive.

Similarly, the channel isolation CIS can be defined as

CIS = 20 log(max{ 1

󵄨󵄨󵄨󵄨𝑎Vℎ
󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑎VV
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎ℎV
󵄨󵄨󵄨󵄨

,
1

󵄨󵄨󵄨󵄨𝑏Vℎ
󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑏VV
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑏ℎV
󵄨󵄨󵄨󵄨

}) (6)

which means CIS is defined as the worst value among 1/|𝑎Vℎ|,
|𝑎VV|/|𝑎ℎV|, 1/|𝑏Vℎ|, and |𝑏VV|/|𝑏ℎV|.

The array transmission pattern T(𝜃, 𝜑) and reception
pattern R(𝜃, 𝜑) are expressed as [19]

T (𝜃, 𝜑) =
𝑀

∑

𝑚=1

𝑁

∑

𝑛=1
𝑋𝑚𝑛 (𝜃𝑆, 𝜑𝑆) f𝑚𝑛 (𝜃, 𝜑) ⋅A𝑚𝑛,

R (𝜃, 𝜑) =
𝑀

∑

𝑚=1

𝑁

∑

𝑛=1
𝑌𝑚𝑛 (𝜃𝑆, 𝜑𝑆) f𝑚𝑛 (𝜃, 𝜑) ⋅B𝑚𝑛,

(7)

where (𝜃𝑆, 𝜑𝑆) is the beam direction. 𝑋𝑚𝑛(𝜃𝑆, 𝜑𝑆) and
𝑌𝑚𝑛(𝜃𝑆, 𝜑𝑆) are weighting coefficients with respect to each
element. A𝑚𝑛 and B𝑚𝑛 model the imperfect channel effects.

The mutual coupling between array elements is compli-
cated so that a thorough analysis of the mutual coupling
usually includes the full-wave electromagnetic computation
and measurement experiments, which is beyond the scope of
this paper. Moreover, for a large array, most of the elements
are far from an edge. Therefore, except for the phase center
displacement, all of the central element patterns are nearly
the same. So it is reasonable to use the array average element
pattern to replace the single element pattern. Hence, T(𝜃, 𝜑)
and R(𝜃, 𝜑) reduce to

T (𝜃, 𝜑) = fave (𝜃, 𝜑) F𝑇, (8)

R (𝜃, 𝜑) = fave (𝜃, 𝜑) F𝑅, (9)
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where fave(𝜃, 𝜑) is called the array average element pattern.
The subscripts 𝑇 and 𝑅 in (8) and (9) represent the transmis-
sion and reception, respectively. F𝑇 and F𝑅 are written as

F𝑇 =
𝑀

∑

𝑚=1

𝑁

∑

𝑛=1
exp (𝑗𝑘 ⃗𝑟𝑚𝑛 ⋅ a𝑟)𝑋𝑚𝑛 (𝜃𝑆, 𝜑𝑆)A𝑚𝑛,

F𝑅 =
𝑀

∑

𝑚=1

𝑁

∑

𝑛=1
exp (𝑗𝑘 ⃗𝑟𝑚𝑛 ⋅ a𝑟) 𝑌𝑚𝑛 (𝜃𝑆, 𝜑𝑆)B𝑚𝑛.

(10)

3. Array Analysis in ATSR Mode

3.1. Formulation. For a point target with the polarization
scattering matrix (PSM) S in the direction (𝜃, 𝜑) at the range
𝑟, the received voltage matrix can be written as

V = 𝐶
exp (−𝑗2𝑘𝑟)

4𝜋𝑟2
R𝑡 ⋅ S ⋅T ⋅Einc

ATSR, (11)

where𝐶 is a gain term. Here the superscript “𝑡” meansmatrix
transpose. 𝑘 = 2𝜋/𝜆 and 𝜆 is the wavelength. Einc

ATSR is the unit
excitation for𝐻 and 𝑉 ports, which is written as

Einc
ATSR = [

1 0
0 1

] . (12)

The received voltage matrix for distributed precipitations
can be expressed as an integral. Consider

V = ∫
Ω

R𝑡 (𝜃, 𝜑) ⋅ S (𝜃, 𝜑) ⋅T (𝜃, 𝜑) 𝑑Ω, (13)

where Ω is the solid angle and 𝑑Ω = sin 𝜃𝑑𝜃 𝑑𝜑. In (13), the
gain term 𝐶 and the term related to range 𝑟 are dropped for
the sake of simplicity. To retrieve S(𝜃, 𝜑), the calibrated volt-
age matrix can be expressed as

V̂ = C𝑅 ⋅V ⋅C𝑇 = ∫
Ω

C𝑅 ⋅R
𝑡
⋅ S ⋅T ⋅C𝑇𝑑Ω, (14)

where the calibration matrices C𝑇 and C𝑅 are expressed as

C𝑇 = (T (𝜃, 𝜑)
󵄨󵄨󵄨󵄨𝜃=𝜃𝑆,𝜑=𝜑𝑆

)
−1

,

C𝑅 = (R
𝑡
(𝜃, 𝜑)

󵄨󵄨󵄨󵄨󵄨𝜃=𝜃𝑆,𝜑=𝜑𝑆
)

−1

.

(15)

C𝑇 and C𝑅 can be obtained through array pattern measure-
ments. By defining

R̂ = R ⋅ (C𝑅)
𝑡
= [

𝑅̂ℎℎ 𝑅̂ℎV

𝑅̂Vℎ 𝑅̂VV

] ,

T̂ = T ⋅C𝑇 = [
𝑇̂ℎℎ 𝑇̂ℎV

𝑇̂Vℎ 𝑇̂VV

] ,

(16)

the calibrated voltage matrix is written as

V̂ = ∫
Ω

R̂𝑡 ⋅ S ⋅ T̂ 𝑑Ω. (17)

Assuming

S (𝜃, 𝜑) = [
𝑆ℎℎ (𝜃, 𝜑) 0

0 𝑆VV (𝜃, 𝜑)
] (18)

the intrinsic differential reflectivity 𝑍DR is defined as

𝑍DR = 10 log
⟨
󵄨󵄨󵄨󵄨𝑆ℎℎ

󵄨󵄨󵄨󵄨

2
⟩

⟨
󵄨󵄨󵄨󵄨𝑆VV

󵄨󵄨󵄨󵄨

2
⟩

, (19)

where ⟨⋅⟩ means the ensemble average. The bias of 𝑍DR can
be calculated as

𝑍
𝑏

DR = 10 log
𝑃ℎℎ

𝑃VV
−𝑍DR, (20)

where 𝑃𝑖𝑗 (𝑖, 𝑗 = ℎ, V) is the received power. Meanwhile, the
integrated cross-polarization ratio (ICPR) is calculated as

ICPR = 10 log
𝑃Vℎ

𝑃ℎℎ

(21)

which is the minimal linear depolarization ratio 𝐿DR that
can be measured by a weather radar. After some trivial
mathematical derivations, we get

𝑍
𝑏

DR = 10 log
1 +𝑊1𝑍

−1/2
dr

𝑊2 +𝑊3𝑍
1/2
dr

,

ICPR = 10 log
𝑊4 +𝑊5𝑍

−1
dr +𝑊6𝑍

−1/2
dr

1 +𝑊1𝑍
−1/2
dr

,

(22)

where

𝜌ℎV exp (𝑗𝜙DP) =
⟨𝑆
∗

ℎℎ
𝑆VV⟩

√⟨
󵄨󵄨󵄨󵄨𝑆ℎℎ

󵄨󵄨󵄨󵄨

2
⟩ ⟨
󵄨󵄨󵄨󵄨𝑆VV

󵄨󵄨󵄨󵄨

2
⟩

, (23)

𝑊1 =
∫
Ω
2Re (𝑇̂Vℎ𝑅̂Vℎ𝑇̂

∗

ℎℎ
𝑅̂
∗

ℎℎ
𝜌ℎV exp (𝑗𝜙DP)) 𝑑Ω

∫
Ω

󵄨󵄨󵄨󵄨𝑇ℎℎ
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑅ℎℎ
󵄨󵄨󵄨󵄨

2
𝑑Ω

, (24)

𝑊2 =
∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑇̂VV
󵄨󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨󵄨
𝑅̂VV
󵄨󵄨󵄨󵄨󵄨

2

𝑑Ω

∫
Ω

󵄨󵄨󵄨󵄨𝑇ℎℎ
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑅ℎℎ
󵄨󵄨󵄨󵄨

2
𝑑Ω

, (25)

𝑊3 =
∫
Ω
2Re [𝑇̂VV𝑅̂VV𝑇̂

∗

ℎV𝑅̂
∗

ℎV𝜌ℎV exp (𝑗𝜙DP)] 𝑑Ω

∫
Ω

󵄨󵄨󵄨󵄨𝑇ℎℎ
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑅ℎℎ
󵄨󵄨󵄨󵄨

2
𝑑Ω

, (26)

𝑊4 =
∫
Ω

󵄨󵄨󵄨󵄨𝑇ℎℎ
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑅ℎV
󵄨󵄨󵄨󵄨

2
𝑑Ω

∫
Ω

󵄨󵄨󵄨󵄨𝑇ℎℎ
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑅ℎℎ
󵄨󵄨󵄨󵄨

2
𝑑Ω

, (27)

𝑊5 =
∫
Ω

󵄨󵄨󵄨󵄨𝑇Vℎ
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑅VV
󵄨󵄨󵄨󵄨

2
𝑑Ω

∫
Ω

󵄨󵄨󵄨󵄨𝑇ℎℎ
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑅ℎℎ
󵄨󵄨󵄨󵄨

2
𝑑Ω

, (28)

𝑊6 =
∫
Ω
2Re [𝑇Vℎ𝑅VV𝑇

∗

ℎℎ
𝑅
∗

ℎV𝜌ℎV exp (𝑗𝜙DP)] 𝑑Ω

∫
Ω

󵄨󵄨󵄨󵄨𝑇ℎℎ
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑅ℎℎ
󵄨󵄨󵄨󵄨

2
𝑑Ω

. (29)
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In (23) 𝜌ℎV is called the copolar correlation coefficient and
𝜙DP represents the differential phase. The symbol ∗ means
complex conjugate.

According to (22), it is clear that𝑍𝑏DR and ICPR are related
to both the array patterns and the intrinsic𝑍dr.The impacts of
𝑍dr and 𝜌ℎV exp(𝑗𝜙DP) on𝑍

𝑏

DR have been thoroughly analyzed
in [9] and those conclusions can be directly applied for the
analysis of a PPPAR. Hence, in this paper we assume 𝑍dr = 1
and 𝜌ℎV exp(𝑗𝜙DP) = 1 so that we can focus on the biases due
to the radar system.

3.2. Array with Perfect H/V Channels. An array with perfect
𝐻/𝑉 channels means that the channel imbalance and isola-
tion can be ignored. Hence, the transmission and reception
patterns can be written as

T (𝜃, 𝜑)

= fave (𝜃, 𝜑)
𝑀

∑

𝑚=1

𝑁

∑

𝑛=1
exp (𝑗𝑘 ⃗𝑟𝑚𝑛 ⋅ a𝑟)𝑋𝑚𝑛 (𝜃𝑆, 𝜑𝑆) ,

R (𝜃, 𝜑)

= fave (𝜃, 𝜑)
𝑀

∑

𝑚=1

𝑁

∑

𝑛=1
exp (𝑗𝑘 ⃗𝑟𝑚𝑛 ⋅ a𝑟) 𝑌𝑚𝑛 (𝜃𝑆, 𝜑𝑆) .

(30)

For the transmission pattern, the radiation power is
principal. Thus, a uniform illumination is applied. For the
reception pattern, a beamwith low sidelobes is desired. Here,
we choose the Taylor weighting. So R̂ and T̂ are written as

T̂ = T ⋅C𝑇 = 𝐹uni (𝜃, 𝜑) fave (𝜃, 𝜑) ⋅C𝑇,

R̂ = R ⋅ (C𝑅)
𝑡
= 𝐹tay (𝜃, 𝜑) fave (𝜃, 𝜑) ⋅ (C𝑅)

𝑡
,

(31)

where 𝐹uni(𝜃, 𝜑) and 𝐹tay(𝜃, 𝜑) are the array factors of the
uniform and Taylor weightings. According to the definitions
of C𝑇 and C𝑅, T̂ and R̂ can be modeled as

T̂ = 𝐹uni [
1 + 𝜀𝑇
ℎℎ
(𝜃, 𝜑) 𝜀

𝑇

ℎV (𝜃, 𝜑)

𝜀
𝑇

Vℎ (𝜃, 𝜑) 1 + 𝜀𝑇VV (𝜃, 𝜑)
] , (32)

R̂ = 𝐹tay [
1 + 𝜀𝑅
ℎℎ
(𝜃, 𝜑) 𝜀

𝑅

ℎV (𝜃, 𝜑)

𝜀
𝑅

Vℎ (𝜃, 𝜑) 1 + 𝜀𝑅VV (𝜃, 𝜑)
] , (33)

where 𝜀𝑖𝑗 are the error terms after the calibration. 𝐹uni and
𝐹tay are the normalized array factors. The superscripts 𝑇 and
𝑅 represent the transmission and reception, which are usually
dropped for simplicity. To simplify the analysis, 𝜀𝑖𝑗 is modeled
as

𝜀𝑖𝑗 (𝜃, 𝜑) ≈ 𝛼𝑖𝑗 (𝜃 − 𝜃𝑆) + 𝛽𝑖𝑗 (𝜑 −𝜑𝑆) + 𝛿𝑖𝑗, (34)

where 𝛼𝑖𝑗, 𝛽𝑖𝑗, and 𝛿𝑖𝑗 are complex numbers. The unit of 𝜃
and 𝜑 is radian. If C𝑇 and C𝑅 have no error, there will be
𝜀𝑖𝑗 = 0 at (𝜃𝑆, 𝜑𝑆); that is, 𝛿𝑖𝑗 = 0. However, due to the
antenna pattern measurement errors, 𝛿𝑖𝑗 is not 0. In addition,
𝛼𝑖𝑗 and 𝛽𝑖𝑗 indicate the polarization variation near (𝜃𝑆, 𝜑𝑆).
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Figure 4: The relation between Δ and |𝑍𝑏DR|.

It should be pointed out that the linear error model (34) is
most appropriate for well-behaved elements making up an
array that is large enough to ensure that it is accurate over
the beamwidth of the overall array.

According to Appendix, we know that the upper bound
of 𝛿𝑖𝑗 has the same level as the relative error upper bound 𝐸𝑓
of the antenna measurements. Therefore, in the rest of this
paper we just focus on 𝛿𝑖𝑗.

First, we analyze a simple case to get some insights
towards 𝛿𝑖𝑗.We assume there is only one spherical scatterer in
the beam direction (𝜃𝑆, 𝜑𝑆), indicating𝑍DR = 0 dB and 𝐿DR =
−∞ dB. So we can ignore the impacts of the finite beamwidth
and sidelobes. Consequently, 𝑍𝑏DR can be calculated as

𝑍
𝑏

DR = 20 log
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 + 𝛿
𝑇

ℎℎ
+ 𝛿
𝑅

ℎℎ
+ 𝛿
𝑇

ℎℎ
𝛿
𝑅

ℎℎ
+ 𝛿
𝑇

Vℎ𝛿
𝑅

Vℎ

1 + 𝛿𝑇VV + 𝛿
𝑅
VV + 𝛿
𝑇
VV𝛿
𝑅
VV + 𝛿
𝑅

ℎV𝛿
𝑇

ℎV

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (35)

Furthermore, we assume |𝛿𝑖𝑗| = Δ and the phase of 𝛿𝑖𝑗 is
uniformly distributed in [0, 2𝜋]. Using Taylor expansion and
ignoring the second and higher order terms, we can get the
approximation of the average bias of |𝑍DR|:

󵄨󵄨󵄨󵄨𝑍
𝑏

DR
󵄨󵄨󵄨󵄨 ≈ 10Δ, (36)

where ∙ means mathematical expectation. Since 𝑍𝑏DR has a
symmetric distribution centered at 0, there is𝑍𝑏DR = 0.Hence,
we use |𝑍𝑏DR| other than 𝑍𝑏DR. Figure 4 shows the relation
between Δ and |𝑍𝑏DR|. The red line is calculated from (36)
while the blue line is obtained through Monte Carlo simula-
tion inwhich 𝛿𝑇

𝑖𝑗
and 𝛿𝑅
𝑖𝑗
are generated from a randomnumber

generator and 𝑍𝑏DR is calculated from (35). In Figure 4 we see
that the approximation from (36) agrees well with the result
fromMonte Carlo simulation.

Using the same procedure, the average ICPR is derived in
(37). Figure 5 shows the relation between Δ and ICPR:

ICPR ≈ 20 log (Δ) . (37)
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Table 1: Array parameters.

Array size 64 × 64
Elements separation 𝜆/2
Sidelobe level of 𝐹tay −40 dB

Simulation
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Figure 5: The relation between Δ and ICPR.

From Figures 4 and 5, we know that the calibration error
𝛿𝑖𝑗 has great impacts on𝑍𝑏DR and ICPR. For a single spherical
scatterer, to achieve |𝑍𝑏DR| < 0.1 dB, Δ should be less than
0.01, which is really demanding for antenna pattern mea-
surements. Moreover, we see that the relation between Δ and
|𝑍
𝑏

DR| is linear while the relation between Δ and ICPR is
logarithmic.

As revealed in [9, 12, 13], the finite beamwidth has consid-
erable impacts on themeasurement of polarimetric variables.
In order to evaluate the bias under different conditions, a
method based on Monte Carlo simulation is developed so
that we can evaluate the polarimetric bias with different
parameters. The array parameters are shown in Table 1. The
simulation procedure is shown below.

Step 1. Specify the polarization distortion calibration error
|𝛿𝑖𝑗|.

Step 2. Generate 𝛼𝑖𝑗, 𝛽𝑖𝑗, and 𝛿𝑖𝑗 through a random number
generator.

Step 3. Calculate T̂ from (32) and R̂ from (33).

Step 4. Calculate V̂ from (17).

Step 5. Calculate 𝑍𝑏DR from (20) and ICPR from (21).

The simulation parameters are listed in Table 2. 𝑈(𝑎, 𝑏)
means the uniform distribution in [𝑎, 𝑏] and Arg(𝑧) repre-
sents the phase of 𝑧. It should be pointed out that a −40 dB
Taylor weighting is not practical for the implementation.

Table 2: Simulation parameters.

𝑍DR 0 dB
𝐿DR −∞ dB
|𝛿𝑖𝑗| 0.01
|𝛼𝑖𝑗| 𝑈(0, 2)
|𝛽
𝑖𝑗
| 𝑈(0, 2)

Arg(𝛼𝑖𝑗) 𝑈(0, 2𝜋)
Arg(𝛽𝑖𝑗) 𝑈(0, 2𝜋)
Arg(𝛿𝑖𝑗) 𝑈(0, 2𝜋)

Table 3: The model parameters of a pair of crossed dipoles in the
beam direction (60∘, 45∘).

𝛼 𝛽 𝛿 𝑅
2

𝜀hh 0.0000 −1.1092 −0.0013 0.99
𝜀hv 0 0 0 None
𝜀vh 1.1526 −0.4989 0.0007 0.99
𝜀vv 0.5769 0.0000 −0.0013 0.99

According to [14], for weather observations the two-way
sidelobe level of a PPPAR is expected to be under −54 dB
which is equal to that of the WSR-88D. Thus the simulated
results with a −13 dB uniform weighting and −40 dB Taylor
weighting are more comparable to those of radars with
mechanical scanning antennas.

The ranges of 𝛼𝑖𝑗 and 𝛽𝑖𝑗 in Table 2 are determined based
on the radiation pattern of a pair of crossed dipoles, which is
written as

fdipole (𝜃, 𝜑) = [
cos𝜑 0

cos 𝜃 sin𝜑 sin 𝜃
] . (38)

The calibrated pattern f̂dipole(𝜃, 𝜑) is then written as

f̂dipole (𝜃, 𝜑) = [
cos𝜑 0

cos 𝜃 sin𝜑 sin 𝜃
]

⋅ [

cos𝜑𝑆 0
cos 𝜃𝑆 sin𝜑𝑆 sin 𝜃𝑆

]

−1

≡ [

1 + 𝜀ℎℎ (𝜃, 𝜑) 𝜀ℎV (𝜃, 𝜑)

𝜀Vℎ (𝜃, 𝜑) 1 + 𝜀VV (𝜃, 𝜑)
] .

(39)

Choosing (𝜃𝑆, 𝜑𝑆) = (60
∘
, 45∘), we calculate 𝜀𝑖𝑗(𝜃, 𝜑). By using

Matlab Curve Fitting Toolbox, we calculate the parameters
𝛼𝑖𝑗, 𝛽𝑖𝑗, and 𝛿𝑖𝑗 and show them in Table 3. 𝑅2 is called the
coefficient of determination, which is a number that indi-
cates how well data fit a statistical model. As shown in
Table 3, 𝑅2 with respect to 𝜀𝑖𝑗 is 0.99, indicating a very good
approximation performance of the linear error model.
According toTable 3,we know𝛼𝑖𝑗, 𝛽𝑖𝑗 ∼ 𝑈(0, 2) is valid.Using
the same procedure, we calculate the parameters 𝛼𝑖𝑗, 𝛽𝑖𝑗, and
𝛿𝑖𝑗 for a pair of crossed dipoles with the length of 𝜆 and show
them in Table 4. Actually, the practical phased array usually
has an element spacing of about 𝜆/2. Thus the ranges of 𝛼𝑖𝑗
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Table 4:Themodel parameters of a pair of crossed dipoles with the
length of 𝜆 in the beam direction (60∘, 45∘).

𝛼 𝛽 𝛿 𝑅
2

𝜀hh −1.0078 −2.7556 0.0076 0.99
𝜀hv 0 0 0 None
𝜀vh −2.5394 −0.3672 0.0003 0.99
𝜀vv 2.3362 0.0000 −0.0010 0.99
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Figure 6: |𝑍𝑏DR| in dB with |𝛿𝑖𝑗| = 0.01, |𝛼𝑖𝑗|, |𝛽𝑖𝑗| ∼ 𝑈(0, 2).

and 𝛽𝑖𝑗 should be better than the worst value in Table 4. In
this paper, we assume |𝛼𝑖𝑗| < 4 and |𝛽𝑖𝑗| < 4.

Figures 6 and 7 show the simulated |𝑍𝑏DR| and ICPR in
the beam scan area [60∘, 90∘] × [0∘, 45∘]. In Figure 6 most
of |𝑍𝑏DR| are between 0.095 dB and 0.105 dB, which agrees
with the approximation of (36). Figure 6 indicates that the
impact of the finite beamwidth on 𝑍𝑏DR is not obvious and
𝑍
𝑏

DR is not sensitive to the beam expansion due to the beam
scan. On the contrary, in Figure 7 the impact of the beam
expansion on ICPR is obvious, with about a 2.5 dB difference
between the broadside and the beam direction (60∘, 45∘).
Furthermore, the ICPR of −32.6 dB at the broadside in
Figure 7 is much larger than that of −40 dB calculated from
(37), indicating that the finite beamwidth considerably affects
the measurement of 𝐿DR.

We then set |𝛿𝑖𝑗| = 0.02, |𝛼𝑖𝑗|, |𝛽𝑖𝑗| ∈ 𝑈(0, 4) and keep
other parameters the same as those in Tables 1 and 2. Figures
8 and 9 show the simulation results. In Figure 8,most of |𝑍𝑏DR|
are between 0.19 dB and 0.21 dB, which also agrees with (36)
very well. In Figure 9, the difference between the broadside
and the beam direction (60∘, 45∘) is about 2.5 dB and the
minimal ICPR at the broadside (90∘, 0∘) is about −26.5 dB,
increasing by about 7.5 dB compared with that calculated
from the approximation of (37).
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Figure 8: |𝑍𝑏DR| in dB with |𝛿𝑖𝑗| = 0.02, |𝛼𝑖𝑗|, |𝛽𝑖𝑗| ∼ 𝑈(0, 4).
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Figure 9: ICPR in dB with |𝛿𝑖𝑗| = 0.02, |𝛼𝑖𝑗|, |𝛽𝑖𝑗| ∼ 𝑈(0, 4).
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3.3. Array with Imperfect H/V Channels. With imperfect
𝐻/𝑉 channels, R̂ and T̂ can be written as

T̂ (𝜃, 𝜑) = [
1 + 𝜀
𝑇

ℎℎ
𝜀
𝑇

ℎV

𝜀
𝑇

Vℎ 1 + 𝜀
𝑇

VV

] F̂𝑇,

R̂ (𝜃, 𝜑) = [
1 + 𝜀
𝑅

ℎℎ
𝜀
𝑅

ℎV

𝜀
𝑅

Vℎ 1 + 𝜀
𝑅

VV

] F̂𝑅.

(40)

A and B are expressed as

A = [

1 𝜂ℎV exp (𝑗𝛾ℎV)
𝜂Vℎ exp (𝑗𝛾Vℎ) 𝜂VV exp (𝑗𝛾VV)

] ,

B = [
1 𝜏ℎV exp (𝑗𝜓ℎV)

𝜏Vℎ exp (𝑗𝜓Vℎ) 𝜏VV exp (𝑗𝜓VV)
] .

(41)

First, we analyze the case with a single spherical scatterer
in the beam direction (𝜃𝑆, 𝜑𝑆). Thus we just need to consider
T̂(𝜃, 𝜑)|𝜃=𝜃𝑆,𝜑=𝜑𝑆 and R̂(𝜃, 𝜑)|𝜃=𝜃𝑆,𝜑=𝜑𝑆 . Since 𝑋𝑚𝑛(𝜃𝑆, 𝜑𝑆) and
𝑌𝑚𝑛(𝜃𝑆, 𝜑𝑆) compensate the phase displacement exp(𝑗𝑘 ⃗𝑟𝑚𝑛 ⋅
a𝑟), we can get

T̂ (𝜃𝑆, 𝜑𝑆) = [
1 + 𝛿
𝑇

ℎℎ
𝛿
𝑇

ℎV

𝛿
𝑇

Vℎ 1 + 𝛿
𝑇

VV

]

⋅

𝑀

∑

𝑚=1

𝑁

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
𝑋𝑚𝑛 (𝜃𝑆, 𝜑𝑆)

󵄨󵄨󵄨󵄨󵄨
A𝑚𝑛,

R̂ (𝜃𝑆, 𝜑𝑆) = [
1 + 𝛿
𝑅

ℎℎ
𝛿
𝑅

ℎV

𝛿
𝑅

Vℎ 1 + 𝛿
𝑅

VV

]

⋅

𝑀

∑

𝑚=1

𝑁

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
𝑌̂𝑚𝑛 (𝜃𝑆, 𝜑𝑆)

󵄨󵄨󵄨󵄨󵄨
B𝑚𝑛.

(42)

As ∑𝑀
𝑚=1∑

𝑁

𝑛=1 |𝑋𝑚𝑛(𝜃𝑆, 𝜑𝑆)| = 1 and ∑
𝑀

𝑚=1∑
𝑁

𝑛=1 |𝑌̂𝑚𝑛(𝜃𝑆,
𝜑𝑆)| = 1, the double summations on the right sides of (42)
are close to the mathematical expectations of A and B. If
𝛾ℎV, 𝛾Vℎ, 𝜓ℎV, 𝜓Vℎ ∼ 𝑈(0, 2𝜋), we have 𝑎ℎV = 0, 𝑎Vℎ = 0, 𝑏ℎV = 0,
and 𝑏Vℎ = 0. In this situation, 𝑍𝑏DR can be calculated as

𝑍
𝑏

DR

= 20 log
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑎VV𝑏VV

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 + 𝛿
𝑇

ℎℎ
+ 𝛿
𝑅

ℎℎ
+ 𝛿
𝑇

ℎℎ
𝛿
𝑅

ℎℎ
+ 𝛿
𝑇

Vℎ𝛿
𝑅

Vℎ

1 + 𝛿𝑇VV + 𝛿
𝑅
VV + 𝛿
𝑇
VV𝛿
𝑅
VV + 𝛿
𝑇

ℎV𝛿
𝑅

ℎV

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(43)

If 𝛿𝑇
𝑖𝑗
= 𝛿
𝑅

𝑖𝑗
= 0, (43) reduces to

𝑍
𝑏

DR = 20 log
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
𝑎VV𝑏VV

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (44)

Assuming |𝑎VV| = |𝑏VV| < 1, based on the definition of CIM in
(5), (44) can be expressed as

𝑍
𝑏

DR = 2CIM. (45)
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Figure 10: |𝑍𝑏DR| of a single spherical scatterer with imperfect𝐻/𝑉
channels.

Figure 10 shows the simulated |𝑍𝑏DR| of a single spherical
scatterer based on (43), in which 𝜂VV = 𝜏VV = 0.99, 𝛾VV, 𝜓VV ∼

𝑈(−10∘, 10∘), 𝜂ℎV = 𝜂Vℎ = 𝜏ℎV = 𝜏Vℎ = 0, |𝛿𝑖𝑗| = Δ, and
Arg(𝛿𝑖𝑗)∼ 𝑈(0, 2𝜋). In Figure 10 whenΔ < 0.01, |𝑍𝑏DR| almost
remains constant around 0.26 dB and when Δ > 0.02, |𝑍𝑏DR|
increases linearly with a slope less than 10. When Δ is small
the channel imbalance has the main contribution to 𝑍𝑏DR.
Otherwise, the polarization distortion calibration error is the
dominant bias source.

In order to evaluate the bias under different conditions,
we use the Monte Carlo simulation method again, which is
shown below.

Step 1. Specify |𝛿𝑖𝑗|.

Step 2. Generate 𝛼𝑖𝑗, 𝛽𝑖𝑗, and 𝛿𝑖𝑗 from a random number
generators and then calculate 𝜀𝑖𝑗.

Step 3. Generate A𝑚𝑛 and B𝑚𝑛 for each element.

Step 4. Calculate R̂ and T̂.

Step 5. Calculate 𝑍𝑏DR and ICPR.

Figures 11 and 12 show simulated |𝑍𝑏DR| and ICPR in the
beam direction (90∘, 0∘), in which |𝛼𝑖𝑗| = |𝛽𝑖𝑗| = 2, 𝜂ℎV = 𝜂Vℎ =
𝜏ℎV = 𝜏Vℎ = 0, 𝜂VV, 𝜏VV ∼ 𝑁(0.99, 0.01

2
), and 𝛾VV, 𝜓VV ∼ 𝑈(−10

∘
,

10∘). In Figure 11, the results with the finite beamwidthmatch
the results of a single spherical scatterer well. However,
Figure 12 indicates the finite beamwidth considerably affects
ICPR when Δ is small.

We then set 𝜂ℎV, 𝜂Vℎ, 𝜏ℎV, 𝜏Vℎ ∼ 𝑁(0.01, 0.01
2
), 𝛾ℎV, 𝛾Vℎ, 𝜓ℎV,

𝜓Vℎ ∼ 𝑈(−10∘, 10∘) and keep other parameters the same as
those in Figures 11 and 12 to evaluate the impact of the channel
isolation. The simulated |𝑍

𝑏

DR| and ICPR considering the
imperfect channel isolation are given in Figures 13 and 14
with the blue squares while the simulated |𝑍𝑏DR| and ICPR
from Figures 11 and 12 are still shown with the red triangles.
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Figure 11: |𝑍𝑏DR| of a single spherical scatterer and finite beamwidth.
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Figure 12: ICPR of a single spherical scatterer and finite beamwidth.

In Figure 13 the impact of the imperfect channel isolation
on 𝑍𝑏DR is not obvious. However, in Figure 14, the impact on
ICPR is obvious when Δ is small.

4. Array Analysis in STSR Mode

In the STSR mode, the received voltages for distributed pre-
cipitations are expressed as

[

𝑉ℎ (𝑡)

𝑉V (𝑡)
]

= ∫
Ω

R𝑡 (𝜃, 𝜑) ⋅ S (𝜃, 𝜑) ⋅T (𝜃, 𝜑) ⋅ [
𝑠ℎ (𝑡)

𝑠V (𝑡)
] 𝑑Ω,

(46)
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Figure 13: The impact of the channel coupling on |𝑍𝑏DR|.
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Figure 14: The impact of the channel coupling on ICPR.

where 𝑠ℎ(𝑡) and 𝑠V(𝑡) represent two waveforms from the 𝐻
and 𝑉 channels. Assuming 𝑆ℎV(𝜃, 𝜑) = 𝑆Vℎ(𝜃, 𝜑) = 0, (46) can
be written as

𝑉ℎ (𝑡) = (𝑅ℎℎ𝑆ℎℎ𝑇ℎℎ +𝑅Vℎ𝑆VV𝑇Vℎ) 𝑠ℎ (𝑡)

+ (𝑅ℎℎ𝑆ℎℎ𝑇ℎV +𝑅Vℎ𝑆VV𝑇VV) 𝑠V (𝑡) ,

𝑉V (𝑡) = (𝑅ℎV𝑆ℎℎ𝑇ℎℎ +𝑅VV𝑆VV𝑇Vℎ) 𝑠ℎ (𝑡)

+ (𝑅ℎV𝑆ℎℎ𝑇ℎV +𝑅VV𝑆VV𝑇VV) 𝑠V (𝑡) .

(47)

As shown in (47), 𝑉ℎ(𝑡) is contaminated by both the first-
and second-order terms of the cross-polar patterns. In the
ATSR mode, the received voltages are just contaminated by
the second-order terms of the cross-polar patterns. Thus
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the accuracy requirement in the STSRmode should be higher
than that in the ATSR mode. As discussed in Section 3, in
the ATSR mode, the relative error of the antenna pattern
measurement should be under 1% to achieve 𝑍𝑏DR < 0.1 dB.
Hence, the accuracy requirement in the STSR mode is more
demanding.

The orthogonal waveforms are usually employed to
improve the polarimetric performance [20–23]. The received
voltages after passing the matched filters of the 𝐻 and 𝑉
channels can be written as

[

𝑉ℎℎ (𝑡) 𝑉ℎV (𝑡)

𝑉Vℎ (𝑡) 𝑉VV (𝑡)
] = [

𝑉ℎ (𝑡) ⊗ 𝑠ℎ (𝑡) 𝑉ℎ (𝑡) ⊗ 𝑠V (𝑡)

𝑉V (𝑡) ⊗ 𝑠ℎ (𝑡) 𝑉V (𝑡) ⊗ 𝑠V (𝑡)
]

= ∫
Ω

R𝑡 ⋅ S ⋅T ⋅ [
𝑠ℎ (𝑡) ⊗ 𝑠ℎ (𝑡) 𝑠ℎ (𝑡) ⊗ 𝑠V (𝑡)

𝑠V (𝑡) ⊗ 𝑠ℎ (𝑡) 𝑠V (𝑡) ⊗ 𝑠V (𝑡)
] 𝑑Ω,

(48)

where 𝑠ℎ(𝑡) = 𝑔ℎ𝑠
∗

ℎ
(𝑡0 − 𝑡) and 𝑠V(𝑡) = 𝑔V𝑠

∗

V (𝑡0 − 𝑡) are the
matched filters of the𝐻 and𝑉 channels, respectively.⊗means
signal convolution. If 𝑠ℎ(𝑡) and 𝑠V(𝑡) are completely ortho-
gonal, we can get

[

𝑠ℎ (𝑡) ⊗ 𝑠ℎ (𝑡) 𝑠ℎ (𝑡) ⊗ 𝑠V (𝑡)

𝑠V (𝑡) ⊗ 𝑠ℎ (𝑡) 𝑠V (𝑡) ⊗ 𝑠V (𝑡)
] ∝ [

1 0
0 1

] . (49)

In this situation, (48) is equivalent to (13) derived in theATSR
mode. Thus the same calibration procedure and analysis in
Section 3 can be applied.

In practice, 𝑠ℎ(𝑡) and 𝑠V(𝑡) cannot be completely orthogo-
nal. Then we define

P (𝑡) = [
𝑠ℎ (𝑡) ⊗ 𝑠ℎ (𝑡) 𝑠ℎ (𝑡) ⊗ 𝑠V (𝑡)

𝑠V (𝑡) ⊗ 𝑠ℎ (𝑡) 𝑠V (𝑡) ⊗ 𝑠V (𝑡)
] . (50)

So (48) can be written as

V (𝑡) = ∫
Ω

R𝑡 (𝜃, 𝜑) ⋅ S (𝜃, 𝜑) ⋅T (𝜃, 𝜑) ⋅P (𝑡) 𝑑Ω. (51)

Accordingly, the calibrated voltagematrix V̂(𝑡) can be written
as

V̂ (𝑡) = C𝑅 ⋅V (𝑡) ⋅P
−1
(𝑡) ⋅C𝑇, (52)

where C𝑇 and C𝑅 are defined in (15).
Once the waveforms 𝑠ℎ(𝑡) and 𝑠V(𝑡) are known, P(𝑡) can

be calculated from (50).Then the calibration procedure in the
STSR mode is still the same as that in the ATSR mode.

5. Conclusions

In this paper, we analyze the accuracy requirements of a
PPPAR in the ATSR and STSR modes. Among many factors,
we focus on the polarization distortion due to the intrinsic
limitation of a dual-polarized antenna element, the antenna
pattern measurement error, the entire array patterns, and the
imperfect 𝐻/𝑉 channels. Other factors such as the mutual
coupling between the array elements are also important for
the accurate weather measurement. However, these factors
are ignored to simplify the analysis in this study.

The polarization distortion calibration error 𝛿𝑖𝑗 that has
the same level as the relative error upper bound 𝐸𝑓 of the
antenna pattern measurement is critical for the biases of 𝑍DR
and 𝐿DR. 𝛿𝑖𝑗 should be under 0.01 to achieve 𝑍DR < 0.1 dB,
indicating that 𝐸𝑓 should be under 1%. The imperfect𝐻 and
𝑉 channels have considerable contributions to the biases of
𝑍DR and 𝐿DR.The channel isolation CIS should be over 40 dB
so that the impact of the channel isolation is negligiable.
According to (45), the channel imbalance CIM should be
under 0.05 dB to ensure 𝑍𝑏DR < 0.1 dB.

The finite beamwidth considerably affects the measure-
ment of 𝐿DR. However, the measurement of 𝑍DR is not
sensitive to the finite beamwidth. Moreover, the impact of
the beam scan that results in the beam expansion is just
obvious on the measurement of 𝐿DR. Therefore, for a large
array with a narrow beam that is commonly used for weather
radars, the measurement performance of 𝑍DR can be directly
estimated through the measurement at the boresight, which
can significantly simplify the analysis for the measurement of
𝑍DR.

In the STSR mode, if orthogonal waveforms are applied,
the analysis is the same as that in the ATSRmode. Otherwise,
the measurement performance may be worse than that in
the ATSR mode. In the future research, those ignored factors
could be taken into account to have a better understanding
about the accuracy requirements of a PPPAR.

Appendix

Polarization Distortion Calibration Error

Themeasured element pattern f𝑚 can be expressed as

f𝑚 = f + e = [
𝑓ℎℎ 𝑓ℎV

𝑓Vℎ 𝑓VV
]+[

𝑒ℎℎ 𝑒ℎV

𝑒Vℎ 𝑒VV
] , (A.1)

where e represents the absolute measurement error and f is
the real element pattern. It should be pointed out that the
measured element pattern f𝑚 does not include the errors
associated with the imperfect 𝐻 and 𝑉 channels which
are characterized by the matrices A and B in (3) and (4),
respectively. The matricesA and B are integrated in the array
transmission and reception patterns to account for the bias
contributions of the imperfect𝐻 and 𝑉 channels. Therefore,
we can just focus on the measurement error of f𝑚.

The calibrated element pattern f̂ can be expressed as

f̂ = f ⋅ (f𝑚)
−1
. (A.2)

By using the Matrix Inversion Lemma, we can get

(f𝑚)
−1
= (f + e)−1 = f−1 − f−1 (f−1 + e−1)

−1

f−1. (A.3)

Substituting (A.3) in (A.2), we can get

f̂ = I− (f−1 + e−1)
−1
f−1, (A.4)
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where I is the identitymatrix.Thus the polarization distortion
calibration error can be written as

f̂ − I = [
𝛿ℎℎ 𝛿ℎV

𝛿Vℎ 𝛿VV
] = − (f−1 + e−1)

−1
f−1. (A.5)

Equation (A.5) shows that the polarization distortion cali-
bration error 𝛿𝑖𝑗 is related to both the absolute measurement
error e and the element pattern f itself.

For awell-designed antenna element, the copolar patterns
are larger than the cross-polar patterns. In addition, since
|𝑓𝑖𝑗| ≫ |𝑒𝑖𝑗|, the matrix elements of f−1 are far less than the
matrix elements of e−1. Thus, (A.5) can be approximated as

f̂ − I = − (f−1 + e−1)
−1
f−1 ≈ − (e−1)

−1
f−1

≈ − e ⋅ f−1.
(A.6)

It should be pointed out that (A.6) is only valid under the
condition that the matrix elements of f−1 are far less than the
matrix elements of e−1. Fortunately, this condition is usually
satisfied for a well-designed antenna element in the beam
scan area.

Since the relative error is more essential to represent the
measurement accuracy than the absolute error, we define the
relative error upper bound 𝐸𝑓 of e as

𝐸𝑓 = max
𝑖,𝑗=ℎ,V

{

󵄨󵄨󵄨󵄨󵄨
𝑒𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝑓𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

} . (A.7)

According to (A.6), the polarization distortion calibration
error can be estimated as

f̂ − I ≈ −1
𝑓ℎℎ𝑓VV − 𝑓ℎV𝑓Vℎ

⋅
[
[
[

[

𝑒ℎℎ

𝑓ℎℎ

𝑓ℎℎ𝑓VV −
𝑒ℎV

𝑓ℎV
𝑓ℎV𝑓Vℎ 𝑓ℎℎ𝑓ℎV (

𝑒ℎV

𝑓ℎV
−
𝑒ℎℎ

𝑓ℎℎ

)

𝑓Vℎ𝑓VV (
𝑒Vℎ

𝑓Vℎ
−
𝑒VV

𝑓VV
)

𝑒VV

𝑓VV
𝑓ℎℎ𝑓VV −

𝑒Vℎ

𝑓Vℎ
𝑓ℎV𝑓Vℎ

]
]
]

]

.

(A.8)

Consequently, we can get

󵄨󵄨󵄨󵄨𝛿ℎℎ
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑓ℎℎ𝑓VV
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓ℎV𝑓Vℎ

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓ℎℎ𝑓VV − 𝑓ℎV𝑓Vℎ

󵄨󵄨󵄨󵄨

𝐸𝑓,

󵄨󵄨󵄨󵄨𝛿ℎV
󵄨󵄨󵄨󵄨 ≤

2
󵄨󵄨󵄨󵄨𝑓ℎℎ𝑓ℎV

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓ℎℎ𝑓VV − 𝑓ℎV𝑓Vℎ

󵄨󵄨󵄨󵄨

𝐸𝑓,

󵄨󵄨󵄨󵄨𝛿Vℎ
󵄨󵄨󵄨󵄨 ≤

2
󵄨󵄨󵄨󵄨𝑓Vℎ𝑓VV

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓ℎℎ𝑓VV − 𝑓ℎV𝑓Vℎ

󵄨󵄨󵄨󵄨

𝐸𝑓,

󵄨󵄨󵄨󵄨𝛿VV
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑓ℎℎ𝑓VV
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓ℎV𝑓Vℎ

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓ℎℎ𝑓VV − 𝑓ℎV𝑓Vℎ

󵄨󵄨󵄨󵄨

𝐸𝑓.

(A.9)

For a well-designed antenna element, (A.9) reveals that
𝐸𝑓 and |𝛿𝑖𝑗| are at the same level. Thus we just focus on
the polarization distortion calibration error 𝛿𝑖𝑗 in this paper.
When we need to focus on a specific array, the analysis herein
can be applied.
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