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In the past decade, researchers in oncology have sought to develop survival predictionmodels using gene expression data.The least
absolute shrinkage and selection operator (lasso) has been widely used to select genes that truly correlated with a patient’s survival.
The lasso selects genes for prediction by shrinking a large number of coefficients of the candidate genes towards zero based on
a tuning parameter that is often determined by a cross-validation (CV). However, this method can pass over (or fail to identify)
true positive genes (i.e., it identifies false negatives) in certain instances, because the lasso tends to favor the development of a
simple prediction model. Here, we attempt to monitor the identification of false negatives by developing a method for estimating
the number of true positive (TP) genes for a series of values of a tuning parameter that assumes a mixture distribution for the lasso
estimates. Using our developed method, we performed a simulation study to examine its precision in estimating the number of TP
genes. Additionally, we applied our method to a real gene expression dataset and found that it was able to identify genes correlated
with survival that a CV method was unable to detect.

1. Introduction

In the past decade, researchers have predicted survival in a
cancer patient based on gene expression data [1–4]. Revealing
the relationship between gene expression profiles and the
time to an event of interest (e.g., overall survival, metastasis-
free survival) can improve treatment strategies and establish
accurate prognostic markers. The Cox proportional hazard
model is the most popular method for relating covariates to
survival times [5]. However, due to the high dimensionality
of gene expression data (i.e., the number of genes expressed
exceeds the number of patients), it is not possible to take an
estimation approach based on the Cox log partial likelihood.
To overcome this problem, a penalized estimation approach,
which includes a shrinkage estimation of coefficients, is
frequently taken [6–8].

In penalized estimation approaches, the least absolute
shrinkage and selection operator (lasso) [9, 10] is often
used because of its attractive ability to simultaneously select

the genes correlated with survival and estimate the coef-
ficients in the Cox model. The lasso shrinks most of the
coefficients towards zero exactly by adding 𝐿

1
norm to the

Cox log partial likelihood, and the amount of shrinkage is
dependent on the tuning parameter. The value of the tuning
parameter is often determined by a cross-validation (CV),
which maximizes the out-of-data prediction accuracy [11].

Several researchers have investigated the operating char-
acteristics of the lasso. Goeman [12] used the lasso to analyze
a publicly available gene expression dataset, obtained from
the articles of van’t Veer et al. [2] and van de Vijver et al.
[3] in which a 70-gene signature for prediction of metastasis-
free survival in breast cancer patients had been established.
This data included 295 patients with 4919 genes that were
prescreened from 24,885 genes based on the quality criteria
in van’t Veer et al.’s work [2]. The lasso selected 16 genes with
which to develop a predictionmodel of overall survival when
using the tuning parameter that was determined using a CV.
Goeman [12] also conducted ridge regression using all 4919

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 259474, 7 pages
http://dx.doi.org/10.1155/2015/259474

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192750975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Computational and Mathematical Methods in Medicine

genes to develop a model by adding 𝐿
2
norm to the Cox

log partial likelihood. The prediction accuracy of the lasso
and ridge regression were compared, and the ridge regression
with 4919 genes slightly outperformed the lasso with 16 genes.
Goeman [12] concluded that the lasso potentially passes over
genes that are correlated with survival in order to develop a
simple predictionmodel. Bøvelstad et al. [7] reached the same
conclusion in a review of the survival prediction methods
available for analyzing breast cancer gene expression datasets.
Table 1 summarizes a typical result of gene selection by the
lasso.

The CV method determines the value of the tuning
parameter by considering the trade-off between the number
of true positives (TP) and false positives (FP), and so the
possibility of identifying false negatives (FN) cannot be
eliminated. One solution for identifying more outcome-
predictive genes is to monitor the number of TP in several
values of the tuning parameter and, subsequently, determine
its final value. In this study, we developed a method for
estimating the number of TP for a series of values of the
tuning parameter. We assumed a mixture distribution with
components of TP and FP for the lasso estimates, and these
could be used to estimate the number of TP and FP. It is
possible to generate the solution path that includes the lasso
estimates for a series of values of the tuning parameter using
the methods developed by Goeman [12]. Here, we proposed
an algorithm to sequentially fit the mixture distribution for
this solution path, and we used a simulation study to test the
precision of the algorithm when estimating the number of
TP.We further demonstrated the proposed algorithm using a
well-known diffuse large B-cell lymphoma (DLBCL) dataset
comprising overall survival of 240 DLBCL patients and gene
expression data of 7399 genes [1].

2. Materials and Methods

2.1. Lasso in the Cox Proportional Hazard Model. The Cox
proportional hazard model is the most popular method for
evaluating the relationship between gene expression and time
to an event of interest [5]. The hazard function of an event at
time 𝑡 for a patient 𝑖 (𝑖 = 1, . . . , 𝑛) with the gene expression
levels x

𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑝
)
T is given by

ℎ (𝑡 | x
𝑖
) = ℎ
0
(𝑡) exp (xT

𝑖
𝛽) , (1)

where 𝛽 = (𝛽
1
, . . . , 𝛽

𝑝
)
T is a parameter vector and ℎ

0
(𝑡) is

the baseline hazard, which is the hazard for the respective
individual when all variable values are equal to zero. In the
general setting where 𝑛 > 𝑝, the coefficients are estimated by
maximizing Cox log partial likelihood as follows:

𝑙 (𝛽) =
𝑛

∑

𝑖=1

𝛿
𝑖
[

[

xT
𝑖
𝛽 − log

{

{

{

∑

𝑟∈𝑅(𝑡𝑖)

exp (xT
𝑟
𝛽)

}

}

}

]

]

, (2)

where 𝛿
𝑖
is an indicator, which is 1, if the survival time

is observed, or 0, if censored. 𝑅(𝑡
𝑖
) is the risk set of the

individuals at 𝑡
𝑖
.

Table 1: Typical results of gene selection by the lasso.

True condition The lasso
Select No select

Genes that are not correlated
with survival
(none-outcome-predictive genes)

False positive
(FP)

True negative
(TN)

Genes that are truly correlated
with survival
(outcome-predictive genes)

True positive
(TP)

False negative
(FN)

In the lasso for the high-dimensional setting where 𝑛 <

𝑝, the coefficients are estimated by maximizing the following
penalized likelihood function [9, 10]:

𝑙
𝑝
(𝛽, 𝜆) = 𝑙 (𝛽) − 𝜆

𝑝

∑

𝑗=1


𝛽
𝑗


, (3)

where 𝜆 is the tuning parameter, which determines the
amount of shrinkage.

2.2. Solution Path of the Lasso Estimates. Goeman [12] intro-
duced a method to calculate the solution path of the lasso
estimates as a function of 𝜆, �̂�(𝜆), which is based on the
algorithm developed by Park and Hastie [13]. The method
maximizes 𝑙

𝑝
(𝛽, 𝜆) at a fixed 𝜆 based on a combination

of gradient ascent optimization with the Newton-Raphson
algorithm. �̂�(𝜆) are calculated for 𝜆

0
> ⋅ ⋅ ⋅ > 𝜆

𝑘
> ⋅ ⋅ ⋅ > 𝜆

𝑧
>

0 successively, starting from 𝜆
0
= max

𝑗
𝜕𝑙/𝜕𝛽
𝑗
|
𝛽𝑗=0

(which
gives �̂�(𝜆

0
) = 0 because the value has zero gradients). 𝜆

𝑧
is

chosen arbitrarily but is often set to 0.05 × 𝜆
0
in analyses of

gene expression data [14].The lasso estimates at a current step
are set to initial values for calculation of the subsequent step.
Step length Δ

𝑘
= 𝜆
𝑘
− 𝜆
𝑘+1

is the minimum decrement to
change the number of selected genes 𝑚(𝑘) (= #{𝑗; 𝛽

𝑗
(𝜆
𝑘
) ̸=

0}); that is, only one gene is newly selected or excluded from
𝜆
𝑘
to 𝜆
𝑘+1

.

2.3. Mixture Distribution for Estimating the Number of TP
in the Lasso Estimates. To estimate the number of TP in
the lasso estimates at a fixed value of 𝜆, we assumed a
mixture distribution developed in our previous study [15].We
introduced themixture distribution based on the two features
of the lasso: (i) the lasso selects at most 𝑛 genes because of
the nature of the convex optimization problem when 𝑛 <

𝑝 [16, 17] and (ii) in the Bayesian paradigm the lasso esti-
mates are the posterior mode with the independent Laplace
prior distribution 𝑓

𝐿
(𝛽
𝑗
; 0, 1/𝜏) = (𝜏/2) exp(−𝜏|𝛽

𝑗
|), where

𝑓
𝐿
(𝑦; 𝑎, 𝑏) = 1/2𝑏 exp(−|𝑦 − 𝑎|/𝑏) is the probability density

function of Laplace distribution with location parameter 𝑎
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and scale parameter 𝑏 [9].Therefore, themixture distribution
assumed for the lasso estimates at 𝜆 was as follows:

𝑓 (𝛽
𝑗
(𝜆) ; 𝜋

0
, 𝜋
𝑐
, 𝜏, 𝜇
𝑐
, 𝜎
𝑐
)

=
𝑛

𝑝
{𝜋
0
𝑓
𝐿
(𝛽
𝑗
(𝜆) ; 0,

1

𝜏
) +

𝐶

∑

𝑐=1

𝜋
𝑐
𝑓
𝑁
(𝛽
𝑗
(𝜆) ; 𝜇

𝑐
, 𝜎
2

𝑐
)}

+ (1 −
𝑛

𝑝
)𝑓
𝐿
(𝛽
𝑗
(𝜆) ; 0, 𝜖) ,

(4)

where 𝜋
0
and 𝜋

𝑐
are mixed proportions (𝜋

0
+ ∑
𝐶

𝑐=1
𝜋
𝑐

=

1); 𝑓
𝑁
(𝛽
𝑗
(𝜆); 𝜇
𝑐
, 𝜎
2

𝑐
) is the probability density function of

the normal distribution with mean 𝜇
𝑐
( ̸=0) and variance 𝜎2

𝑐

in component 𝑐; 𝐶 is the number of components, which is
determined by model selection criteria; and 𝜖 is the constant
value, which is boundlessly close to 0; for example, 𝜖 = 10

−8.
The unknown parameters, 𝜋

0
, 𝜋
𝑐
, 𝜏, 𝜇
𝑐
, and 𝜎

𝑐
, are estimated

bymaximizing the log-likelihood function of (4) by using the
Newton-Raphson method.

The mixture distribution defined in (4) is formulated on
the basis of the following concepts: since the lasso selects
a maximum of 𝑛 genes when 𝑝 > 𝑛, the coefficients for
𝑝 − 𝑛 genes are exactly zero; therefore, (4) consists of 2 terms
(𝑛/𝑝 term and 1 − 𝑛/𝑝 term). In the 𝑛/𝑝 term, the Laplace
distribution with location parameter 0 and scale parameter
1/𝜏 was assumed to be the distribution for the FP on the
basis of the lasso feature (ii) discussed above, while the 𝐶

component normal distribution with location parameter 𝜇
𝑐

and scale parameter 𝜎2
𝑐
was assumed as the distribution for

the TP. In the 1 − 𝑛/𝑝 term, the Laplace distribution with
location parameter 0 and scale parameter 𝜖 was assumed as
the distribution of 𝑝 − 𝑛 genes based on the aforementioned
lasso feature (i).

The𝑓
𝐿
with location parameter 0 and scale parameter 1/𝜏

was assumed to be the distribution for the FP on the basis
of lasso feature (i), discussed above. The 𝑓

𝑁
with location

parameter 𝜇
𝑐
and scale parameter 𝜎

2

𝑐
was assumed as the

distribution for the TP. The 𝑓
𝐿
of the (1 − 𝑛/𝑝) term was

assumed as the distribution of 𝑝 − 𝑛 genes based on the
aforementioned lasso feature (ii). Given a cut-off value 𝜁 (>0),
the estimated proportions of the FP andTP are the area under
the estimated Laplace and normal distribution in the 𝑛/𝑝

term of (4), respectively, and can be written as follows:

�̂�FP = �̂�
0
[∫

−𝜁

−∞

𝑓
𝐿
(𝑢; 0, 𝜏

−1
) 𝑑𝑢 + ∫

+∞

𝜁

𝑓
𝐿
(𝑢; 0, 𝜏

−1
) 𝑑𝑢] ,

�̂�TP

=

𝐶

∑

𝑐=1

�̂�
𝑐
[∫

−𝜁

−∞

𝑓
𝑁
(𝑢; 𝜇
𝑐
, �̂�
2

𝑐
) 𝑑𝑢 + ∫

+∞

𝜁

𝑓
𝑁
(𝑢; 𝜇
𝑐
, �̂�
2

𝑐
) 𝑑𝑢] .

(5)
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Figure 1: Illustration for estimating the number of FP and TP. The
areas denoted by the vertical and diagonal lines are the proportion
of FP and TP, respectively.

Figure 1 illustrates the calculation in (5) when the number of
components, 𝐶, is 1. Using (5), the number of TP and FP was
estimated by

F̂P =
�̂�FP

�̂�TP + �̂�FP
× 𝑚, (6)

T̂P =
�̂�TP

�̂�TP + �̂�FP
× 𝑚. (7)

2.4. Algorithm for Estimating Number of TP in a Series of
Values 𝜆. Here, we propose an algorithm to sequentially fit
the mixture distribution in (4) to the solution path of the
lasso estimates, which was described in Section 2.2. In this
algorithm, we assumed that the number of TP changed when
the newly selected or excluded gene from 𝜆

𝑘
to 𝜆
𝑘+1

was truly
correlated to survival, based on the maximum log-likelihood
of (4). First, we approximated �̂�FP ≈ �̂�

0
and �̂�TP ≈ ∑

𝐶

𝑐=1
�̂�
𝑐

in (5) by assuming a suitably small cut-off value 𝜁 (≈0). We
then obtained �̂�

0
= F̂P/𝑚 and �̂�

𝑐
= T̂P

𝑐
/𝑚 (𝑐 = 1, . . . , 𝐶)

from (6) and (7), respectively, where T̂P
𝑐
is an estimate of the

number of TP in component 𝑐. For 𝑘 = 1, . . . , 𝑧, the proposed
algorithm was as follows.

Step 1

Step 1.1. In this step, we assumed that the newly selected
or excluded gene from 𝜆

𝑘
to 𝜆
𝑘+1

was FP. 𝜋
0
denotes the

proportion of FP and is set as

𝜋
(𝑘+1)

0
=

{{{{{{

{{{{{{

{

F̂P(𝑘) + 1

𝑚(𝑘+1)
, if 𝑚(𝑘+1) = 𝑚

(𝑘)
+ 1,

F̂P(𝑘) − 1

𝑚(𝑘+1)
, if 𝑚(𝑘+1) = 𝑚

(𝑘)
− 1.

(8)

For the other components, 𝑐 (𝑐 = 1, . . . , 𝐶), set 𝜋(𝑘+1)
𝑐

=

T̂P(𝑘)
𝑐
/𝑚
(𝑘+1).
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Step 1.2. Given �̂�(𝜆
𝑘+1

) and 𝜋
(𝑘+1)

0
, . . . , 𝜋

(𝑘+1)

𝐶
, calculate the

maximum log-likelihood of (4), 𝐿(𝑘+1)
0

.

Step 2

Step 2.1. Set 𝑐 = 1.

Step 2.2. In this step, we assumed that the newly selected or
excluded gene from 𝜆

𝑘
to 𝜆
𝑘+1

was TP. For the component 𝑐,
set

𝜋
(𝑘+1)

𝑐
=

{{{{{

{{{{{

{

T̂P(𝑘)
𝑐

+ 1

𝑚(𝑘+1)
, if 𝑚(𝑘+1) = 𝑚

(𝑘)
+ 1,

T̂P(𝑘)
𝑐

− 1

𝑚(𝑘+1)
, if 𝑚(𝑘+1) = 𝑚

(𝑘)
− 1.

(9)

For the other components, set 𝜋(𝑘+1)
0

= F̂P(𝑘)/𝑚(𝑘+1) and
𝜋
(𝑘+1)

𝑑
= T̂P(𝑘)
𝑑
/𝑚
(𝑘+1)

(𝑑 = 1, . . . , 𝐶; 𝑑 ̸= 𝑐).

Step 2.3. Given �̂�(𝜆
𝑘+1

) and 𝜋
(𝑘+1)

0
, . . . , 𝜋

(𝑘+1)

𝐶
, calculate the

maximum log-likelihood of (4), 𝐿(𝑘+1)
𝑐

.

Step 2.4. Set 𝑐 = 𝑐 + 1. Repeat Steps 2.2 and 2.3 until 𝑐 = 𝐶.

Step 3. In this step, we determinedwhether the newly selected
or excluded gene from 𝜆

𝑘
to 𝜆
𝑘+1

was TP or FP based on
the maximum log-likelihood which was calculated in Steps
1.2 and 2.3. If 𝐿(𝑘+1)

0
was the largest in 𝐿

(𝑘+1)

𝑐
(𝑐 = 0, . . . , 𝐶),

we assumed that the newly selected or excluded gene was
FP; if not, we assumed that it was TP. Therefore, calculate
𝐶max = argmax

𝑐∈{0,1,...,𝐶}
𝐿
(𝑘+1)

𝑐
. If 𝐶max = 0, update F̂P(𝑘) as

follows:

F̂P(𝑘+1) = {
F̂P(𝑘) + 1, if 𝑚(𝑘+1) = 𝑚

(𝑘)
+ 1,

F̂P(𝑘) − 1, if 𝑚(𝑘+1) = 𝑚
(𝑘)

− 1.

(10)

If 𝐶max > 0, update T̂P(𝑘)
𝐶max

as follows:

T̂P(𝑘+1)
𝐶max

=

{

{

{

T̂P(𝑘)
𝐶max

+ 1, if 𝑚(𝑘+1) = 𝑚
(𝑘)

+ 1,

T̂P(𝑘)
𝐶max

− 1, if 𝑚(𝑘+1) = 𝑚
(𝑘)

− 1.

(11)

Here, calculate the estimated TP at 𝑘 + 1 by T̂P(𝑘+1) =

∑
𝐶

𝑐=1
T̂P(𝑘+1)
𝑐

.

3. Results

3.1. Simulation Study. We performed a simulation study to
examine the precision of our estimated TP. In this study, the
number of patients, 𝑛, was set to 200.The number of genes, 𝑝,
was set to 1000, which included the 𝑝

1
(=5 or 30) outcome-

predictive genes that are randomly chosen from 𝑝 genes in
each simulation. The coefficient for gene 𝑗 (𝑗 = 1, . . . , 𝑝), 𝛽

𝑗
,

was set to 1.5 for the 𝑝
1
outcome-predictive genes and 0 for

the remaining 𝑝−𝑝
1
none-outcome-predictive genes. We set

𝜆
𝑧
to 5 and the number of components, 𝐶, to 1 throughout

(although𝐶was determined using amodel selection criterion

in practice). The gene expression levels for patient 𝑖, x
𝑖
, were

generated from the multivariate normal distribution with
mean vector 0 and covariance matrix Σ so that the variance
was 1 and the correlation 𝜌(𝑥

𝑖𝑘
, 𝑥
𝑖𝑙
) = 0 or 0.5|𝑘−𝑙| [18].

The survival time for patient 𝑖 was generated based on the
exponential model 𝑡

𝑖
= − log(𝑈)/ exp(xT

𝑖
𝛽) where 𝑈 is the

uniform random variable between 0 and 1 [19]. In order to
evaluate the precision of the estimated TP for various values
of 𝜆, we report a number of selected genes, including true TP,
and estimated TP and FP, for 𝜆

𝑘
(𝑘 = 5, 10, 50, 100, 150).

Table 2 shows the average of 𝜆, a number of selected
genes, true TP, and estimated TP and FP, through 1000
repeats. We observed that the precision of estimated TP
varied depending on the value of both 𝑝

1
and 𝑘 (see Table 2).

When 𝑝
1
= 5, the precision of the estimates was sufficient for

𝑘 = 10, 50, 100, and 150, while TPwas slightly underestimated
for 𝑘 = 5. However, when 𝑝

1
= 30, the precision of the

estimates was sufficient for 𝑘 = 5, 10, and 150, while TP
was overestimated for 𝑘 = 50 and 100. For example, when
𝑝
1
= 30, 𝜌 = 0.5, and 𝑘 = 100, the average number of true

and estimated TP was 29.9 and 35.3, respectively. The values
of 𝜌 did not greatly affect the accuracy of the estimated TP.

3.2. Real Data Analysis. To illustrate how our proposed
algorithm could be used to determine 𝜆, we applied it to
the DLBCL dataset, comprising survival of 240 DLBCL
patients and gene expression data from 7399 genes [1]. In
the gene expression data from the 240 patients, we identified
434 genes with complete sets of gene expression values; all
other genes had missing expression values, with an average
of 24.7 missing values per gene. Here, we used 0.0 as the
missing expression value for descriptive purposes. Similar to
Rosenwald et al. [1], we divided the data into two: training
data consisting of 160 patients and validation data consisting
of 80 patients.

For the training data, we obtained the solution path of
the lasso estimates; �̂�(𝜆

𝑘
) (𝑘 = 0, 1, . . . , 𝑧). 𝜆

0
= 72.5 was

calculated as described in Section 2.2. We set 𝜆
𝑧

= 3.625

(=0.05 ×𝜆
0
) according to Simon et al. [14].

We applied our proposed algorithm to the obtained
solution path. We assumed three mixture distributions on
the lasso estimates with 𝐶 = 1, 2, or 3 and compared their
goodness of fit for the �̂�(𝜆

𝑘
) (𝑘 = 0, 1, . . . , 𝑧) by the Akaike

information criterion (AIC). As a result, we chose 𝐶 = 1

because it had the best AIC for all 𝜆
𝑘
(𝑘 = 0, 1, . . . , 𝑧).

Figure 2 shows the estimated number of TP in a series of
values of 𝜆. We found that the lasso selected at most 42 TP,
with the number of selected genes at 96,when𝜆 = 7.19 (=0.86
as log

10
). Therefore, we selected 𝜆 = 7.19 as the optimum 𝜆,

and the estimated mixture distribution for the value of 𝜆 was
as follows:

𝑓 (𝛽
𝑗
(7.19)) =

160

7399
{0.57 × 𝑓

𝐿
(𝛽
𝑗
(7.19) ; 0, 0.11) + 0.43

× 𝑓
𝑁
(𝛽
𝑗
(7.19) ; 0.03, 0.11

2
)}

+
7239

7399
𝑓
𝐿
(𝛽
𝑗
(7.19) ; 0, 10

−8
) .

(12)
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Table 2: Accuracy of the estimated number of true positives (TP) obtained using the proposed algorithm in the simulation study. Average of
a tuning parameter (𝜆), number of selected genes (#{𝑗; 𝛽

𝑗
(𝜆) ̸= 0}) in the lasso, true number of true positives (True TP), estimated number

of TP (T̂P), and false positives (F̂P) are reported at 𝜆
𝑘
(𝑘 = 5, 10, 50, 100, 150) of the solution path.

𝑝
1

𝜌 𝑘 𝜆 #{𝑗; 𝛽
𝑗
(𝜆) ̸= 0} True TP T̂P F̂P

30

0

5 47.0 5.0 4.4 2.9 2.2

10 40.8 10.1 8.0 5.8 4.3

50 22.9 48.6 25.6 28.5 20.1

100 12.6 86.7 29.9 32.1 54.7

150 8.6 124.5 30.0 30.7 93.9

0.5

5 48.6 5.0 4.1 2.8 2.2

10 42.1 10.0 7.5 5.8 4.2

50 23.5 48.1 25.2 31.9 16.3

100 12.4 84.9 29.9 35.3 49.6

150 8.4 121.2 30.0 31.6 89.6

5

0

5 66.9 5.0 5.0 3.0 2.0

10 26.3 10.4 5.0 5.2 5.2

50 17.2 50.1 5.0 5.2 44.9

100 12.7 93.9 5.0 5.0 88.9

150 9.8 128.4 5.0 5.0 123.4

0.5

5 66.8 5.0 5.0 3.0 2.0

10 26.5 10.3 5.0 5.2 5.1

50 16.9 49.5 5.0 5.1 44.4

100 12.4 92.1 5.0 5.0 87.1

150 9.6 125.2 5.0 5.0 120.2

N
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r o
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Figure 2: Trace plot of number of selected genes and estimated
number of true positives (TP) produced by applying the proposed
algorithm to the training data from the diffuse large B-cell lym-
phoma (DLBCL) dataset. We determined 𝜆 = 7.19 (log

10
= 0.86)

as the optimum 𝜆 based on the estimated number of TP. Using
cross-validation (CV), we determined 𝜆 = 27 (log

10
= 1.43) as the

optimum 𝜆.

In order to identify the 42 TP from the 96 selected genes, we
arranged the 96 in descending order of |𝛽

𝑗
| and identified

the first 42 listed genes with a cut-off value 𝜁 = 0.084.
Subsequently, the model that included these 42 genes is
identified as the “42 TP-model.”

Table 3: GenBank accession numbers and descriptions for 4 genes
selected by both CV and themodel including the 42 genes identified
by the algorithm that we developed.

GenBank accession number Description
X82240 (AA729003) T-cell leukemia/lymphoma 1A

AA805575 Thyroxine-binding globulin
precursor

LC 29222 —

X59812(H98765) Cytochrome P450, subfamily
XXVIIA polypeptide

In comparison to the 42 TP-model, we performed CV.
Briefly, the𝐾-fold CV was given by

CV (𝜆) =

𝐾

∑

𝑘=1

{𝑙 (�̂�
(−𝑘)

(𝜆)) − 𝑙
(−𝑘)

(�̂�
(−𝑘)

(𝜆))} , (13)

where 𝑙
(−𝑘)

(𝛽) and �̂�
(−𝑘)

are the log partial likelihood and the
lasso estimate with left 𝑘th fold out, respectively. The optimal
value of𝜆was obtained bymaximizingCV(𝜆). On the basis of
5-fold CV, 12 genes were selected with 𝜆 = 27 (=1.43 as log

10
).

Subsequently, themodel including these 12 genes is identified
as the “CV-model.” Notably, both the 42 TP-model with 42
genes and the CV-model with 12 genes selected 4 genes in
common. Table 3 shows the GenBank accession number and
description for each of the 4 genes selected by both models.

We compared the prediction accuracy of the 42 TP-
model and the CV-model using validation data consisting
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Figure 3: Kaplan-Meier curves of overall survival for “better” and “worse” prognostic groups: (a) the model including 12 genes determined
by CV (CV-model) and(b) the model including 42 genes identified by the developed method (42 TP-model).

Table 4: Values of the comparison criteria for the model including
12 genes determined by CV (CV-model) and the model including
the 42 genes identified by our developed algorithm (42 TP-model).

Criteria CV-model 42 TP-model
𝑃 value of the log-rank test 0.007 <0.001
𝑃 value for the prognostic index 0.002 <0.001
Deviance −9.079 −11.297

of 80 patients. For this data, we calculated 3 values that
served as comparison criteria: 𝑃 values for the log-rank
test and prognostic index and the deviance. The 80 patients
were categorized into 2 groups, the “better” and “worse”
prognostic groups, using the boundary of the median of
prognostic index 𝜂

𝑖
= xT
𝑖
𝛽.TheKaplan-Meier curves between

the 2 groups were compared with a log-rank test. Next,
we calculated the 𝑃 value for the parameter 𝛼 multiplied
by the prognostic index 𝜂

𝑖
in the Cox proportional hazard

model ℎ(𝑡
𝑖
| x) = ℎ

0
(𝑡) exp(𝛼𝜂

𝑖
). Finally, the deviance was

calculated by −2{𝑙
(validation)

(�̂�training) − 𝑙
(validation)

(0)}, where
𝑙
(validation)

(�̂�training) and 𝑙
(validation)

(0) are the Cox log partial-
likelihood function for the estimated coefficients by using the
training data and zero vector 0, respectively. For each crite-
rion, the lower value suggested better prediction accuracy.

Table 4 shows the values of the 3 criteria for each model.
We found that the values of all 3 criteria for the 42 TP-model
were lower than those for the CV-model, suggesting that the
model based on the proposedmethodwasmore accurate (see
Table 4). Additionally, Figure 3 shows that the Kaplan-Meier
curves for the 42 TP-model distinguished the “better” and
“worse” prognostic groups more definitely than those for the

CV-model (42 TP-model, 𝑃 < 0.001; CV-model, 𝑃 = 0.007).
Therefore, by using our proposed algorithm,we determined𝜆
andwere able to select important genes, likely to be correlated
with survival, in which the CV was unable to select.

4. Discussions

In this study, we proposed an algorithm for estimating
the number of TP on the solution path of lasso estimates.
Monitoring and determining the number of TP for a series
of values 𝜆 are important because they can increase the
probability of uncovering all outcome-predictive genes. The
number of TP should be estimatedwith appropriate accuracy.
To confirm the accuracy of our TP,we conducted a simulation
study using a typical gene expression dataset. We found that
the precision of our algorithm for estimating the number
of TP was adequate, although an overestimation occurred
with some values of 𝜆. However, the overestimation occurred
when the true number of TP was saturated, and so it may not
cause a problem by passing over genes that truly correlated
with survival. In the simulation study where 𝑝

1
= 30 and

𝜌 = 0.5, the maximum average estimated number of TP was
35.3 at 𝜆 = 12.4 (see Table 2). Using this 𝜆 to select TP, an
average selection of 29.9 TP within 30 outcome-predictive
genes can be made, with the number of TP genes that are
passed over being negligible in practice.

The data that have been provided in Table 2 showed that
the number of false positives increased, while the number
of true positives increased and then plateaued as the tuning
parameter decreased. To decrease the number of FP identified
while maintaining an adequate number of TP, we should
determine the value of 𝜆 by monitoring both the number of
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TP and the false positive rate (=FP/(TP+FP)) in the proposed
method.

Additionally, our proposed algorithm was applied to
DLBCL data. We determined the value of the tuning param-
eter based on the maximum number of estimated TP uncov-
ered by the algorithm. We identified 42 TP genes among 96
selected genes based on the ranking of the absolute values
of the lasso estimates. We can also identify TP based on
model evaluation criteria such as AIC among all possible
combinations of 42 genes from 96, that is,

96
C
42
(>1027)

combinations in total; however, calculation of AIC for all
possible gene combinations is a distant approach. To evaluate
the efficiency of the approach using the ranking of the lasso
estimates, we calculated the AIC for 10,000 randomly chosen
models among all the possible models and subsequently
compared it with the AIC of our approach. From 10,000
models, the AIC of 425 models (4.25%) was better than
that of our approach. This result indicated that our ranking-
based approach has a satisfactory performance in practice
with respect to the identification of 42 genes. Although
investigation of all possible gene combinations is ideal, our
approach is a good alternative.

In the application to DLBCL data, in comparison to a CV
method by which 12 genes were identified, we identified 42
TP geneswith our algorithm, andwe improved the prediction
accuracy of themodel. In practice, some researchersmight be
satisfied with identifying a few promising genes and would
not be unduly worried about passing over others. In such a
situation, the CV would be preferable because it developed
the model to uncover a few genes with just a small loss of
prediction accuracy. However, genes that are selected by the
lasso are often investigated with greater scrutiny by genetic
researchers, and so passing over outcome-predictive genes by
the lasso could represent amajor problem. Indeed, if the lasso
passes over outcome-predictive genes, some genetic research
may not take place. Therefore, when identifying all outcome-
predictive genes is a priority, our proposed algorithm will be
most useful.

5. Conclusions

We developed a method for estimating the number of true
positives for a series of values of a tuning parameter in the
lasso. We demonstrated the utility of the developed method
through a simulation study and an application to a real
dataset. Our results indicated that our developedmethodwas
useful for determining a value for the tuning parameter in the
lasso and reducing the probability of passing over genes that
are truly correlated with survival.
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