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A novel mathematical fractional model of multistrain tuberculosis with time delay memory is presented. The proposed model
is governed by a system of fractional delay differential equations, where the fractional derivative is defined in the sense of
the Grünwald–Letinkov definition. Modified parameters are introduced to account for the fractional order. The stability of the
equilibrium points is investigated for any time delay. Nonstandard finite deferencemethod is proposed to solve the resulting system
of fractional-order delay differential equations. Numerical simulations show that nonstandard finite difference method can be
applied to solve such fractional delay differential equations simply and effectively.

1. Introduction

It is known that tuberculosis (TB) is one of the most impor-
tant infectious diseases and is considered as the second largest
cause of mortality by infectious diseases and a challenging
disease to control [1]. Time delays required to treatment
of active TB present a major obstacle to the control of a
TB epidemic [2]; it worsens the disease, increases the risk
of death, and enhances tuberculosis transmission to the
community [3, 4]. Both patient and the health system may
be responsible for the treatment delay [3]. On the other hand,
mathematical models are quite important and efficient tool to
describe and investigate TB diseases; see [5–9]. In [10], Silva
et al. presented TB model with time-delay memory. Herein,
we consider a general model of multistrain TB diseases with
time-delay memory. A discrete time delay is incorporated, in
the variables of active TB infection of two and three strains, to
represent the required time to commencement of treatment
and diagnosis [11].

The multistrain TB model incorporates three strains:
extensively drug-resistant (XDR), emerging multidrug resis-
tant (MDR), and drug sensitive, and has been developed by
Arino and Soliman [12] in 2015. Several factors of spreading
TB such as the exogenous reinfection, the fast infection, and
secondary infection are included in this model. Sweilam et al.
introduced some numerical studies for this model in [13–16].

Fractional differential equations have been the focus of
many studies due to their frequent appearance in various
sciences [13–20]. The general theory of differential equations
with delays (DDEs) is widely developed and discussed in
the literature [21–25].Delayed fractional differential equations
(DFDEs) are also used to describe dynamical systems [26–
28]. Recently, DFDEs begin to raise the attention of many
researchers [29–33]. Relatable and efficient numerical tech-
niques for DFDEs are very necessary and important [34].
Nonstandard finite difference method (NSFDM) was firstly
proposed by Mickens [35] in 1980s to solve numerically the
ordinary differential equations (ODEs) and partial differential
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Table 1: Interpretation of the variable states of system (1).

Variable Interpretation𝑆(𝑡) Individuals have never encountered TB.𝐿 𝑠(𝑡) The individuals infected with drug-sensitive TB but not infectious.𝐿𝑚(𝑡) Infected with MDR-TB but not infectious.𝐿𝑥(𝑡) Infected with XDR-TB but not infectious.𝐼𝑠(𝑡) Able to infect others with drug sensitive strain.𝐼𝑚(𝑡) Able to infect others with MDR strain.𝐼𝑥(𝑡) Able to infect others with XDR strain.𝑅(𝑡) Recovered by getting a successful treatment.𝑁(𝑡) The variable of population size.𝑁(𝑡) = 𝑆(𝑡) + 𝐿 𝑠(𝑡) + 𝐿𝑚(𝑡) + 𝐿𝑥(𝑡) + 𝐼𝑠(𝑡) + 𝐼𝑚(𝑡) + 𝐼𝑥(𝑡) + 𝑅(𝑡).
Table 2: All adapted parameters and their interpretation of system (1).

Parameter Interpretation𝑑𝛼 Natural death rate𝑏𝛼 Birth rate𝜆𝛼𝑗 Rate of infected individuals move to 𝐿𝑗 with strain 𝑗 ∈ {𝑠, 𝑚, 𝑥}1 − 𝜆𝛼𝑗 Rate of newly infected individuals progressing to active TB with strain 𝑗 ∈ {𝑠, 𝑚, 𝑥}𝛽𝛼𝑗 Transmission coefficient with strain 𝑗 ∈ {𝑠, 𝑚, 𝑥}𝜀𝛼𝑗 Rate of endogenous reactivation of 𝐿𝑗𝛾𝛼𝑗 Rate of natural recovery to the latent stage 𝐿𝑗𝛿𝛼𝑗 Rate of death due to TB of strain 𝑗𝛼𝛼𝑗1, 𝛼𝛼𝑗2 Rate of exogenous reinfection of 𝐿𝑗1 due to contact with 𝐼𝑗21 − 𝜎𝛼𝑗 Efficiency of treatment in preventing infection with strain 𝑗𝑃𝛼1 Probability of treatment success for 𝐿 𝑠1 − 𝑃𝛼1 Proportion of treated 𝐿 𝑠 moved to 𝐿𝑚 due to incomplete treatment or lack of strict compliance in the use of drugs𝑃𝛼2 Probability of treatment success for 𝐼𝑠1 − 𝑃𝛼2 Proportion of treated 𝐼𝑠 moved to 𝐿𝑚 due to incomplete treatment or lack of strict compliance in the use of drugs𝑃𝛼3 Probability of treatment success for 𝐼𝑚1 − 𝑃𝛼3 proportion of treated 𝐼𝑚 moved to 𝐿𝑥 due to incomplete treatment or lack of strict compliance in the use of drugs𝑡𝛼1𝑠 Rate of treatment for 𝐿 𝑠𝑡𝛼2𝑗 Rate of treatment for 𝐼𝑗. Note that 𝑡2𝑥 is the rate of successful treatment of 𝐼𝑥, 𝑗 ∈ {𝑥,𝑚, 𝑠}
equations (PDEs) withmore accuracy than standard finite dif-
ferencemethod (SFDM). It is considered as a powerful numer-
ical scheme that preserves properties of exact solutions of the
differential equation [36].

The main aim of work is to study numerically the solu-
tions of fractional-order model of multistrain TB with time
delay memory. The presence of fractional-order and time
delays in the model can lead to a notable increase in the com-
plexity of the observed behavior, and the solution contin-
uously depends on all the previous states. An efficient nu-
merical method, NSFDM, is used to numerically solve the
fractional-order delay model. The rest of the paper is orga-
nized as follows: In Section 2, we present a fractional
order model with time delay for multistrain TB. Stability
of equilibrium points is presented in Section 3. NSFD for
fractional-order delay differential equations is introduced in
Section 4. Some numerical simulations are given in Section 5,
and conclusion in Section 6. Some definitions on fractional
calculus and some properties of nonstandard discretization
are given in Appendix.

2. Fractional Multistrain TB Model
with Time Delay

In this section, a multistrain TB model of fractional-order
and time delaymemory is presented.The population of inter-
est is divided into eight compartments depending on their
epidemiological stages as follows: susceptible (𝑆); latently
infected with drug sensitive TB (𝐿 𝑠); latently infected with
MDR TB (𝐿𝑚); latently infected with XDR TB (𝐿𝑥); sensitive
drug TB infectious (𝐼𝑠); MDR TB infectious (𝐼𝑚); XDR
TB infectious (𝐼𝑥); recovered 𝑅. One biological meaning
of the given parameters is given in Table 1. One of the
main assumptions of this model is that the total population𝑁(𝑡), with 𝑁(𝑡) = 𝑆(𝑡) + 𝐿 𝑠(𝑡) + 𝐿𝑚(𝑡) + 𝐿𝑥(𝑡) + 𝐼𝑠(𝑡) +𝐼𝑚(𝑡) + 𝐼𝑥(𝑡) + 𝑅(𝑡), is variable of the time. We introduce a
discrete time delay in the state variables 𝐼𝑚 and 𝐼𝑥, denoted
by 𝜏, that represents the time required for diagnosis and
commencement of treatment of active TB infection of two
and three strains. The parameters in the modified the model
are described in Table 2; see [37]. The modified system of
multistrain TB model of fractional-order and time delay is



Complexity 3

𝐷𝛼𝑡 𝑆 = 𝑏𝛼 − 𝑑𝛼𝑆 − 𝛽𝛼𝑠 𝑆𝐼𝑠𝑁 − 𝛽𝛼𝑚 𝑆𝐼𝑚𝑁 − 𝛽𝛼𝑥 𝑆𝐼𝑥𝑁 ,𝐷𝛼𝑡 𝐿 𝑠 = 𝜆𝛼𝑠𝛽𝛼𝑠 𝑆𝐼𝑠𝑁 + 𝜎𝛼𝑠 𝜆𝛼𝑠𝛽𝛼𝑠 𝑅𝐼𝑠𝑁 + 𝛾𝛼𝑠 𝐼𝑠 − 𝛼𝛼𝑠𝑠𝛽𝛼𝑠 𝐿 𝑠𝐼𝑠𝑁− 𝛼𝛼𝑠𝑚𝛽𝛼𝑚 𝐿 𝑠𝐼𝑚𝑁 − 𝛼𝛼𝑠𝑥𝛽𝛼𝑥 𝐿 𝑠𝐼𝑥𝑁 − (𝑑𝛼 + 𝜀𝛼𝑠 + 𝑡𝛼1𝑠) 𝐿 𝑠,𝐷𝛼𝑡 𝐿𝑚 = 𝜆𝛼𝑚𝛽𝛼𝑚 𝑆𝐼𝑚𝑁 + 𝜎𝛼𝑚𝜆𝛼𝑚𝛽𝛼𝑚𝑅𝐼𝑚𝑁 + 𝛾𝛼𝑚𝐼𝑚+ 𝛼𝛼𝑠𝑚𝛽𝛼𝑚𝜆𝛼𝑚 𝐿 𝑠𝐼𝑚𝑁 + (1 − 𝑃𝛼1 ) 𝑡𝛼1𝑠𝐿 𝑠 + (1 − 𝑃𝛼2 ) 𝑡𝛼2𝑠𝐼𝑠− 𝛼𝛼𝑚𝑚𝛽𝛼𝑚 𝐿𝑚𝐼𝑚𝑁 − 𝛼𝛼𝑚𝑥𝛽𝛼𝑥 𝐿𝑚𝐼𝑥𝑁 − (𝑑𝛼 + 𝜀𝛼𝑚) 𝐿𝑚,𝐷𝛼𝑡 𝐿𝑥 = 𝜆𝛼𝑥𝛽𝛼𝑥 𝑆𝐼𝑥𝑁 + 𝜎𝛼𝑥𝜆𝛼𝑥𝛽𝛼𝑥 𝑅𝐼𝑥𝑁 + 𝛾𝛼𝑥𝐼𝑥 + 𝛼𝛼𝑠𝑥𝛽𝛼𝑥𝜆𝛼𝑥⋅ 𝐿 𝑠𝐼𝑥𝑁 + 𝛼𝛼𝑚𝑥𝛽𝛼𝑥𝜆𝛼𝑥 𝐿𝑚𝐼𝑥𝑁 + (1 − 𝑃𝛼3 ) 𝑡𝛼2𝑚𝐼𝑚 − 𝛼𝛼𝑥𝑥𝛽𝛼𝑥⋅ 𝐿𝑥𝐼𝑥𝑁 − (𝑑𝛼 + 𝜀𝛼𝑥) 𝐿𝑥,𝐷𝛼𝑡 𝐼𝑠 = 𝛼𝛼𝑠𝑠𝛽𝛼𝑠 𝐿 𝑠𝐼𝑠𝑁 + (1 − 𝜆𝛼𝑠 ) 𝛽𝛼𝑠 (𝑆𝐼𝑠𝑁 + 𝜎𝛼𝑠 𝑅𝐼𝑠𝑁 )+ 𝜀𝛼𝑠 𝐿 𝑠 − (𝑑𝛼 + 𝛿𝛼𝑠 + 𝑡𝛼2𝑠 + 𝛾𝛼𝑠 ) 𝐼𝑠,𝐷𝛼𝑡 𝐼𝑚 = 𝛼𝛼𝑚𝑚𝛽𝛼𝑚 𝐿𝑚𝐼𝑚𝑁 + (1 − 𝜆𝛼𝑚)⋅ 𝛽𝛼𝑚 (𝑆𝐼𝑚𝑁 + 𝜎𝛼𝑚𝑅𝐼𝑚𝑁 + 𝛼𝛼𝑠𝑚 𝐿 𝑠𝐼𝑚𝑁 ) + 𝜀𝛼𝑚𝐿𝑚− (𝑑𝛼 + 𝛿𝛼𝑚 + 𝛾𝛼𝑚) 𝐼𝑚 − 𝑡𝛼2𝑚𝐼𝑚 (𝑡 − 𝜏) ,𝐷𝛼𝑡 𝐼𝑥 = 𝛼𝛼𝑥𝑥𝛽𝛼𝑥 𝐿𝑥𝐼𝑥𝑁 + (1 − 𝜆𝛼𝑥)⋅ 𝛽𝛼𝑥 (𝑆𝐼𝑥𝑁 + 𝜎𝛼𝑥 𝑅𝐼𝑥𝑁 + 𝛼𝛼𝑠𝑥 𝐿 𝑠𝐼𝑥𝑁 + 𝛼𝛼𝑚𝑥 𝐿𝑚𝐼𝑥𝑁 ) + 𝜀𝛼𝑥𝐿𝑥− (𝑑𝛼 + 𝛿𝛼𝑥 + 𝛾𝛼𝑥 ) 𝐼𝑥 − 𝑡𝛼2𝑥𝐼𝑥 (𝑡 − 𝜏) ,𝐷𝛼𝑡 𝑅 = 𝑃𝛼1 𝑡𝛼1𝑠𝐿 𝑠 + 𝑃𝛼2 𝑡𝛼2𝑠𝐼𝑠 + 𝑃𝛼3 𝑡𝛼2𝑚𝐼𝑚 + 𝑡𝛼2𝑥𝐼𝑥 (𝑡 − 𝜏)− 𝜎𝛼𝑠 𝛽𝛼𝑠 𝑅𝐼𝑠𝑁 − 𝜎𝛼𝑚𝛽𝛼𝑚𝑅𝐼𝑚𝑁 − 𝜎𝛼𝑥𝛽𝛼𝑥 𝑅𝐼𝑥𝑁 − 𝑑𝛼𝑅.

(1)

The initial conditions for system (1) are 𝑆(𝜉) = 𝜃1(𝜉), 𝐿 𝑠(𝜉) =𝜃2(𝜉), 𝐿𝑚(𝜉) = 𝜃3(𝜉), 𝐿𝑥(𝜉) = 𝜃4(𝜉), 𝐼𝑠(𝜉) = 𝜃5(𝜉), 𝐼𝑚(𝜉) =𝜃6(𝜉), 𝐼𝑥(𝜉) = 𝜃7(𝜉), 𝑅(𝜉) = 𝜃8(𝜉), 𝜉 ∈ [−𝜏, 0], where

𝜃 = (𝜃1, 𝜃2, . . . , 𝜃8)𝑇 ∈ 𝐶, where 𝐶 is the Banach space𝐶([0, 𝜏],R8). From biological meaning, we further assume
that 𝜃𝑖 > 0 for 𝑖 = 1, . . . , 8. Throughout this paper, we focus
on the dynamics of the solutions of (1) in the restricted region,Ω = {(𝑆, 𝐿 𝑠, 𝐿𝑚, 𝐿𝑥, 𝐼𝑠, 𝐼𝑚, 𝐼𝑥, 𝑅) ∈ R8 | 𝑆 + 𝐿 𝑠 + 𝐿𝑚 + 𝐿𝑥 +𝐼𝑠 + 𝐼𝑚 + 𝐼𝑥 + 𝑅 ≤ 𝑏𝛼/𝑑𝛼}.We refer here to [24, 31], for local
existence, uniqueness, and continuation results.

The unique solution (𝑆(𝑡), 𝐿 𝑠(𝑡), 𝐿𝑚(𝑡), 𝐿𝑥(𝑡), 𝐼𝑠(𝑡), 𝐼𝑚(𝑡),𝐼𝑥(𝑡), 𝑅(𝑡)) of (1) with initial condition exists for all
time 𝑡 ≥ 0. Consider the solutions of (1), for (𝑆, 𝐿 𝑠,𝐿𝑚, 𝐿𝑥, 𝐼𝑠, 𝐼𝑚, 𝐼𝑥, 𝑅) ∈ Ω󸀠, where Ω󸀠 is the interior of Ω,
for all 𝜉 ∈ [−𝜏, 0]. Then the solutions stay in the interior
of the region for all time 𝑡 ≥ 0; that is, the region is
positively invariant with respect to system (1) (see, e.g., [31]).
Model (1) has a disease-free equilibrium given by 𝐸0 =(𝑏𝛼/𝑑𝛼, 0, 0, 0, 0, 0, 0, 0); see [32].
2.1. Basic Reproduction Number. The basic reproduction
number, 𝑅0, is defined as the expected number of secondary
cases produced, in a completely susceptible population, by a
typical infective individual [32]. Herein, we apply themethod
in [32] to drive 𝑅0. The order of the infected variables is

I fl (𝐿 𝑠, 𝐿𝑚, 𝐿𝑥, 𝐼𝑠, 𝐼𝑚, 𝐼𝑥)󸀠 . (2)

The vector representing new infections into the infected
classes 𝐹 is given by

𝐹 fl

(((((((((((((((
(

𝜆𝛼𝑠𝛽𝛼𝑠 𝑆𝐼𝑠𝑁 + 𝜎𝛼𝑠 𝜆𝛼𝑠𝛽𝛼𝑠 𝑅𝐼𝑠𝑁𝜆𝛼𝑚𝛽𝛼𝑚 𝑆𝐼𝑚𝑁 + 𝜎𝛼𝑚𝜆𝛼𝑚𝛽𝛼𝑚𝑅𝐼𝑚𝑁𝜆𝛼𝑥𝛽𝛼𝑥 𝑆𝐼𝑥𝑁 + 𝜎𝛼𝑥𝜆𝛼𝑥𝛽𝛼𝑥 𝑅𝐼𝑥𝑁(1 − 𝜆𝛼𝑠 ) 𝛽𝛼𝑠 (𝑆𝐼𝑠𝑁 + 𝜎𝛼𝑠 𝑅𝐼𝑠𝑁 )(1 − 𝜆𝛼𝑚) 𝛽𝛼𝑚 (𝑆𝐼𝑚𝑁 + 𝜎𝛼𝑚𝑅𝐼𝑚𝑁 )(1 − 𝜆𝛼𝑥) 𝛽𝛼𝑥 (𝑆𝐼𝑥𝑁 + 𝜎𝛼𝑥 𝑅𝐼𝑥𝑁 )

)))))))))))))))
)

. (3)

The vector 𝑉 representing other flows within and out of the
infected classesI is given by

𝑉 fl

(((((((((((((((
(

𝛼𝛼𝑠𝑠𝛽𝛼𝑠 𝐿 𝑠𝐼𝑠𝑁 − 𝛼𝛼𝑠𝑚𝛽𝛼𝑚 𝐿 𝑠𝐼𝑚𝑁 − 𝛼𝛼𝑠𝑥𝛽𝛼𝑥 𝐿 𝑠𝐼𝑥𝑁 + 𝛾𝛼𝑠 𝐼𝑠 − (𝑑𝛼 + 𝜀𝛼𝑠 + 𝑡𝛼1𝑠) 𝐿 𝑠,+𝛾𝛼𝑚𝐼𝑚 + 𝛼𝛼𝑠𝑚𝛽𝛼𝑚𝜆𝛼𝑚 𝐿 𝑠𝐼𝑚𝑁 + (1 − 𝑃𝛼1 ) 𝑡𝛼1𝑠𝐿 𝑠 + (1 − 𝑃𝛼2 ) 𝑡𝛼2𝑠𝐼𝑠,−𝛼𝛼𝑚𝑚𝛽𝛼𝑚 𝐿𝑚𝐼𝑚𝑁 − 𝛼𝛼𝑚𝑥𝛽𝛼𝑥 𝐿𝑚𝐼𝑥𝑁 − (𝑑𝛼 + 𝜀𝛼𝑚) 𝐿𝑚,+𝛾𝛼𝑥𝐼𝑥 + 𝛼𝛼𝑠𝑥𝛽𝛼𝑥𝜆𝛼𝑥 𝐿 𝑠𝐼𝑥𝑁 + 𝛼𝛼𝑚𝑥𝛽𝛼𝑥𝜆𝛼𝑥 𝐿𝑚𝐼𝑥𝑁 + (1 − 𝑃𝛼3 ) 𝑡𝛼2𝑚𝐼𝑚 − 𝛼𝛼𝑥𝑥𝛽𝛼𝑥 𝐿𝑥𝐼𝑥𝑁 − (𝑑𝛼 + 𝜀𝛼𝑥) 𝐿𝑥,𝛼𝛼𝑠𝑠𝛽𝛼𝑠 𝐿 𝑠𝐼𝑠𝑁 + 𝜀𝛼𝑠 𝐿 𝑠 − (𝑑𝛼 + 𝛿𝛼𝑠 + 𝑡𝛼2𝑠 + 𝛾𝛼𝑠 ) 𝐼𝑠,(𝛼𝛼𝑚𝑚𝛽𝛼𝑚 𝐿𝑚𝐼𝑚𝑁 + 𝛼𝛼𝑠𝑚 𝐿 𝑠𝐼𝑚𝑁 ) + 𝜀𝛼𝑚𝐿𝑚 − (𝑑𝛼 + 𝛿𝛼𝑚 + 𝛾𝛼𝑚 + 𝑡𝛼2𝑚) 𝐼𝑚,(𝛼𝛼𝑥𝑥𝛽𝛼𝑥 𝐿𝑥𝐼𝑥𝑁 + (1 − 𝜆𝛼𝑥) 𝛽𝛼𝑥 + 𝛼𝛼𝑠𝑥 𝐿 𝑠𝐼𝑥𝑁 + 𝛼𝛼𝑚𝑥 𝐿𝑚𝐼𝑥𝑁 ) + 𝜀𝛼𝑥𝐿𝑥 − (𝑑𝛼 + 𝛿𝛼𝑥 + 𝛾𝛼𝑥 + 𝑡𝛼2𝑥) 𝐼𝑥,

)))))))))))))))
)

. (4)
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The matrix of new infections 𝐹 and the matrix of transfers
between compartments𝑉 are the Jacobian matrices obtained
by differentiating 𝐹 and 𝑉 with respect to the infected
variables I and evaluating at the disease-free equilibrium.
They take the form

𝐹 fl (0 𝐴0 𝐵) ,
𝑉 fl (𝐶 𝐷𝐸 𝐹2) ,

(5)

where

𝐴 = (𝜆𝛼𝑠𝛽𝛼𝑠 0 00 𝜆𝛼𝑚𝛽𝛼𝑚 00 0 𝜆𝛼𝑠𝛽𝛼𝑠),
𝐵 = ((1 − 𝜆𝛼𝑠 ) 𝛽𝛼𝑠 0 00 (1 − 𝜆𝛼𝑚) 𝛽𝛼𝑚 00 0 (1 − 𝜆𝛼𝑠 ) 𝛽𝛼𝑠),
𝐶 = ((𝑑𝛼 + 𝜀𝛼𝑠 + 𝑡𝛼1𝑠) 0 0(−1 + 𝑃𝛼1 ) 𝑡𝛼1𝑠 (𝑑𝛼 + 𝜀𝛼𝑚) 00 0 (𝑑𝛼 + 𝜀𝛼𝑥)) ,
𝐷 = ( −𝛾𝛼𝑠 0 0(−1 + 𝑃𝛼2 ) 𝑡𝛼2𝑠 −𝛾𝛼𝑚 00 (−1 + 𝑃𝛼3 ) 𝑡𝛼2𝑚 −𝛾𝛼𝑥),
𝐹2 = ((𝑑𝛼 + 𝛿𝛼𝑠 + 𝛾𝛼𝑠 + 𝑡𝛼2𝑠) 0 00 (𝑑𝛼 + 𝛿𝛼𝑚 + 𝛾𝛼𝑚 + 𝑡𝛼2𝑚) 00 0 (𝑑𝛼 + 𝛿𝛼𝑥 + 𝛾𝛼𝑥 + 𝑡𝛼2𝑥)) ,
𝐸 = (−𝜀𝛼𝑠 0 00 −𝜀𝛼𝑚 00 0 −𝜀𝛼𝑥).

(6)

Then the basic reproduction number 𝑅0 for system (1) is the
spectral radius of the next generation matrix and is given by

𝑅0 = 𝜌 (𝐹𝑉−1) = max (𝑅0𝑠, 𝑅0𝑚, 𝑅0𝑥) , (7)

where

𝑅0𝑠 = 𝛽𝛼𝑠 (𝜀𝛼𝑠 + (1 − 𝜆𝛼𝑠 ) (𝑑𝛼 + 𝑡𝛼1𝑠))(𝜀𝛼𝑠 + 𝑑𝛼 + 𝑡𝛼1𝑠) (𝑡𝛼2𝑠 + 𝛿𝛼𝑠 + 𝑑𝛼) + 𝛾𝛼𝑠 (𝑡𝛼1𝑠 + 𝑑𝛼) ,
𝑅0𝑚 = 𝛽𝛼𝑚 (𝜀𝛼𝑚 + (1 − 𝜆𝛼𝑚) 𝑑𝛼)(𝜀𝛼𝑚 + 𝑑𝛼) (𝑡𝛼2𝑚 + 𝛿𝛼𝑚 + 𝑑𝛼) + 𝑑𝛼𝛾𝛼𝑚 ,
𝑅0𝑥 = 𝛽𝛼𝑥 (𝜀𝛼𝑥 + (1 − 𝜆𝛼𝑥) 𝑑𝛼)(𝜀𝛼𝑥 + 𝑑𝛼) (𝑡𝛼2𝑥 + 𝛿𝛼𝑥 + 𝑑𝛼) + 𝑑𝛼𝛾𝛼𝑥 .

(8)

3. Equilibrium Points and Their
Asymptotic Stability

To discuss the local asymptotic stability for evaluating the
equilibrium points, let us consider the following [38]:𝐷𝛼𝑡 𝑆 = 𝐷𝛼𝑡 𝐿 𝑠 = 𝐷𝛼𝑡 𝐿𝑚 = 𝐷𝛼𝑡 𝐿𝑥 = 𝐷𝛼𝑡 𝐼𝑠 = 𝐷𝛼𝑡 𝐼𝑚= 𝐷𝛼𝑡 𝐼𝑥 = 𝐷𝛼𝑡 𝑅 = 0. (9)

Then, from (A.1)𝑔𝑖 (𝑆, 𝐿 𝑠, 𝐿𝑚, 𝐿𝑥, 𝐼𝑠, 𝐼𝑚, 𝐼𝑥, 𝑅) = 0, 𝑖 = 1, 2, 3, . . . , 8, (10)

where (𝑆, 𝐿 𝑠, 𝐿𝑚, 𝐿𝑥, 𝐼𝑠, 𝐼𝑚, 𝐼𝑥, 𝑅) denotes any equilibrium
point.

3.1. Stability of theDisease-Free Equilibrium. If 𝐼𝑠(𝑡) = 𝐼𝑚(𝑡) =𝐼𝑥(𝑡) = 0 then 𝐿 𝑠(𝑡) = 𝐿𝑚(𝑡) = 𝐿𝑥(𝑡) = 0, 𝑅(𝑡) = 0, and
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𝑆(𝑡) = 𝑏𝛼/𝑑𝛼.Then the disease-free equilibrium (DFE) is𝐸0 ={(𝑏𝛼/𝑑𝛼, 0, 0, 0, 0, 0, 0, 0)}.
Let us consider the coordinate transformation: 𝑠(𝑡) =𝑆(𝑡) − 𝑆, 𝑙𝑠(𝑡) = 𝐿 𝑠(𝑡) − 𝐿 𝑠, 𝑙𝑚(𝑡) = 𝐿𝑚(𝑡) − 𝐿𝑚, 𝑙𝑥(𝑡) =

𝐿𝑥(𝑡) − 𝐿𝑥, 𝑖𝑠(𝑡) = 𝐼𝑠(𝑡) − 𝐼𝑠, 𝑖𝑚(𝑡) = 𝐼𝑚(𝑡) − 𝐼𝑚, 𝑖𝑥(𝑡) =𝐼𝑥(𝑡) − 𝐼𝑥, 𝑟(𝑡) = 𝑅(𝑡) − 𝑅. The corresponding characteristic
equation for DFE is given as follows:

(𝐽 (𝐸0) − 𝜆𝐼) =
(((((((((((((((
(

𝜆− 𝑎 0 0 0 𝑏 𝑐 𝑑1 00 𝜆 − 𝑒 0 0 𝑓 0 0 00 𝑔 𝜆 − ℎ 0 𝑝 𝑞 0 00 0 0 𝜆 − 𝑟 0 𝑠 𝑡 00 𝑢 0 0 𝜆 − V 0 0 00 0 𝑤 0 0 𝜆 − 𝑥 + 𝑡𝛼2𝑚𝑒(−𝜆𝜏) 0 00 0 0 𝑦 0 0 𝜆 − 𝑧 + 𝑡𝛼2𝑥𝑒(−𝜆𝜏) 00 𝑚 0 0 𝑛 𝑗 𝑡𝛼2𝑥𝑒(−𝜆𝜏) 𝜆 − 𝑎

)))))))))))))))
)

, (11)

where 𝑎 = −𝑑𝛼, 𝑏 = −𝛽𝛼𝑠 , 𝑐 = −𝛽𝛼𝑚, 𝑑1 = −𝛽𝛼𝑥 , 𝑒 = −(𝑑𝛼 +𝜀𝛼𝑠 + 𝑡𝛼1𝑠), 𝑓 = 𝛾𝛼𝑠 +𝜆𝛼𝑠𝛽𝛼𝑠 , 𝑔 = (1−𝑝𝛼1 )𝑡𝛼1𝑠, ℎ = −(𝑑𝛼 +𝜀𝛼𝑚), 𝑝 =(1−𝑝𝛼2 )𝑡𝛼2𝑠, 𝑞 = 𝛾𝛼𝑚+𝜆𝛼𝑚𝛽𝛼𝑚, 𝑟 = −(𝑑𝛼+𝜀𝛼𝑥), 𝑠 = (1−𝑝𝛼3 )𝑡𝛼2𝑚, 𝑡 =𝛾𝛼𝑥 + 𝜆𝛼𝑥𝛽𝛼𝑥 , 𝑢 = 𝜀𝛼𝑠 , V = −(𝑑𝛼 + 𝛿𝛼𝑠 + 𝑡𝛼2𝑠 + 𝛾𝛼𝑠 ), 𝑤 = 𝜀𝛼𝑚, 𝑥 =−(𝑑𝛼 +𝛿𝛼𝑚 +𝛾𝛼𝑚), 𝑦 = 𝜀𝛼𝑥 , 𝑧 = −(𝑑𝛼 +𝛿𝛼𝑥 +𝛾𝛼𝑥 ), 𝑚 = 𝑝𝛼1 𝑡𝛼1𝑠, 𝑛 =𝑝𝛼2 𝑡𝛼2𝑠, 𝑗 = 𝑝𝛼3 𝑡𝛼2𝑚.
The characteristic equation associated with above matrix

is [38]

Δ (𝜆) = 󵄨󵄨󵄨󵄨𝐽 (𝐸0) − 𝜆𝐼󵄨󵄨󵄨󵄨 = 0,(𝑎 − 𝜆)2 (𝜆2 − (𝑟 + 𝑧 + 𝑡𝛼2𝑥𝑒(−𝜆𝜏)) 𝜆 − 𝑦𝑡+ (𝑧 − 𝑡𝛼2𝑥𝑒(−𝜆𝜏)) 𝑟) (−𝜆2 + (ℎ + 𝑥 − 𝑡𝛼2𝑚𝑒(−𝜆𝜏)) 𝜆− (𝑥 + 𝑡𝛼2𝑚𝑒(−𝜆𝜏)) ℎ + 𝑤𝑞) (−𝜆2 + (𝑒 + V) 𝜆 + 𝑢𝑓− V𝑒) = 0.
(12)

Lemma 1. If 𝑅0 < 1, then the disease-free equilibrium 𝐸0 is
locally asymptotically stable for 𝜏 = 0.
Proof. When 𝜏 = 0, the associated transcendental charac-
teristic equation Δ(𝜆) of system (1) at 𝐸0 becomes Δ(𝜆) =𝑃(𝜆) = 0, and then the eigenvalues of the Jacobian matrix
are

𝜆1,2 = −𝑑,𝜆3,4
= 𝑟 + (𝑧 − 𝑡𝛼2𝑥) ± √(𝑟2 − 2 (𝑧 − 𝑡𝛼2𝑥) 𝑟 + (𝑧 − 𝑡𝛼2𝑥)2 + 4𝑦𝑡)2 ,

𝜆5,6
= 𝑥 − 𝑡𝛼2𝑚 + ℎ ± √(𝑥 − 𝑡𝛼2𝑚)2 − 2 (𝑥 − 𝑡𝛼2𝑚) ℎ + ℎ2 + 4𝑤𝑞2 ,
𝜆7,8 = V + 𝑒 ± √(V2 − 2V𝑒 + 𝑒2 + 4𝑢𝑓)2 ,

(13)

and by using Routh Hurwitz Theorem [28], these roots are
negative or have negative real parts and all eigenvalues satisfy
Matignon’s conditions [39], given by (| arg 𝜆𝑖| > 𝛼𝜋/2)
so the disease-free equilibrium 𝐸0 is locally asymptotically
stable.

Lemma 2. Let 𝑅0 < 1, and then the disease-free equilibrium𝐸0 is locally asymptotically stable for 𝜏 > 0.
Proof. Let us consider 𝜏 > 0, and we noted that second and
third factor of the characteristic equation (12), which are (𝜆2−(𝑟 + 𝑧 + 𝑡𝛼2𝑥𝑒(−𝜆𝜏))𝜆 − 𝑦𝑡 + (𝑧 − 𝑡𝛼2𝑥𝑒(−𝜆𝜏))𝑟) and (−𝜆2 + (ℎ + 𝑥 −𝑡𝛼2𝑚𝑒(−𝜆𝜏))𝜆 − (𝑥 + 𝑡𝛼2𝑚𝑒(−𝜆𝜏))ℎ + 𝑤𝑞), have no pure imaginary
roots for any value of the delay 𝜏, if 𝑅0 < 1. Hence all the
roots of the characteristic equation have negative real parts
and we get that DFE is locally asymptotically stable regardless
of the value of the delay and all eigenvalues satisfyMatignon’s
conditions [39], given by (| arg 𝜆𝑖| > 𝛼𝜋/2) so the disease-free
equilibrium 𝐸0 is locally asymptotically stable.

3.2. Stability of the Endemic Equilibrium. System (1) has an
endemic equilibrium if at least one of the infected variables
is not zero. The expression “analytic” is complexity and not
useful for our purposes. Consider the values of parameters
from Table 3. Then the basic reproduction number is 𝑅0 > 1.
The endemic equilibrium 𝑆 = 338.2, 𝐿 𝑠 = 0, 𝐿𝑚 = 0, 𝐿𝑥 =2233.8, 𝐼𝑠 = 0, 𝐼𝑚 = 0, 𝐼𝑥 = 4820.6, 𝑅 = 62.0. The matrices
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𝐴1 and 𝐴2 associated with the linearized system at the
endemic equilibrium are computed as

𝐴1 =
(((((((((((((
(

−9.0226 0.4107 0.4107 0.4107 −0.2244 −0.2244 −0.2244 0.41070 −2.2127 0 0 0.6321 0 0 00 0.8800 −1.3327 0 0.800 0.6321 0 04.4475 0.1472 0.1472 −1.4118 −0.0791 −0.0750 0.3432 1.05250 0.5000 0 0 −1.2729 0 0 00 0.0146 0.5 0 0 −0.4415 0 04.1762 −0.1241 −0.3181 0.6023 −0.3504 −0.3504 −0.5675 0.78130.0188 0.0188 0.0188 0.0188 −0.0103 0.0196 0.0237 −2.6245

)))))))))))))
)

,

𝐴2 =
(((((((((((((
(

0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 −𝑡𝛼2𝑚 0 00 0 0 0 0 0 −𝑡𝛼2𝑥 00 0 0 0 0 0 𝑡𝛼2𝑥 0

)))))))))))))
)

.

(14)

The transcendental characteristic equation Δ𝜆 = (𝜆𝐼 − 𝐴1 −𝑒−𝜏𝜆𝐴2) is given by𝜆8 + (18.8862 − 0.0680𝑒−𝜏𝜆) 𝜆7+ (1.2702 × 102 − 1.2255𝑒−𝜏𝜆 + 0.0012𝑒−2𝜏𝜆) 𝜆6+ (4.2273 × 102 − 7.5306𝑒−𝜏𝜆 + 0.0198𝑒−2𝜏𝜆) 𝜆5+ (7.7354 × 102 − 22.1163𝑒−𝜏𝜆 + 0.10986𝑒−2𝜏𝜆) 𝜆4+ (7.9327 × 102 − 34.3423𝑒−𝜏𝜆 + 0.2751𝑒−2𝜏𝜆) 𝜆3+ (4.3522 × 102 − 28.4367𝑒−𝜏𝜆 + 0.3354𝑒−2𝜏𝜆) 𝜆2+ (1.1156 × 102 − 11.6693𝑒−𝜏𝜆 + 0.18817𝑒−2𝜏𝜆)⋅ 𝜆 (9.6913 − 1.8329𝑒−𝜏𝜆 + 0.0367𝑒−2𝜏𝜆) = 0,

(15)

when 𝜏 = 0, and we have the following characteristic equa-
tion:𝜆8 + 18.8182𝜆7 + 125.7957𝜆6 + 415.2192𝜆5+ 751.5336𝜆4 + 759.2028𝜆3 + 407.1187𝜆2+ 100.0789𝜆 + 7.8951 = 0. (16)

The roots of (16) are−0.14208,−0.41505,−1.57465,−1.40036,−1.01044, −9.15198, −2.56181 + 0.05148𝑖, and −2.56181 +0.05148𝑖, and these roots are negative or have negative real
parts and all eigenvalues satisfy Matignon’s conditions [39],
given by (| arg 𝜆𝑖| > 𝛼𝜋/2) 𝑖 = 1, 2, . . . , 8 so the endemic
equilibrium is locally asymptotically stable.

Consider now the case 𝜏 > 0; we noted that the roots of
the characteristic equation (15) have no pure imaginary roots
for any value of the delay 𝜏, if 𝑅0 > 1. Hence all the roots
of the characteristic equation have negative real parts and all
eigenvalues satisfy Matignon’s conditions [39]. Therefore, the
endemic equilibrium is locally asymptotically.

4. NSFD for Fractional Delay
Differential Equations

In this section, we apply NSFDmethodwith GLFDs to obtain
the discretization of the delay fractionalmultistrainTBmodel
(1), which will yield the following equations:

𝑛+1∑
𝑗=0

𝜔𝛼𝑗 𝑆𝑛+1−𝑗 = 𝑏𝛼 − 𝑑𝛼𝑆𝑛+1 − 𝛽𝛼𝑠 𝑆𝑛+1𝐼𝑛𝑠𝑁𝑛 − 𝛽𝛼𝑚 𝑆𝑛+1𝐼𝑛𝑚𝑁𝑛
− 𝛽𝛼𝑥 𝑆𝑛+1𝐼𝑛𝑥𝑁𝑛 ,
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𝑛+1∑
𝑗=0

𝜔𝛼𝑗 𝐿𝑛+1−𝑗𝑠 = 𝜆𝛼𝑠𝛽𝛼𝑠 𝑆𝑛+1𝐼𝑛𝑠𝑁𝑛 + 𝜎𝛼𝑠 𝜆𝛼𝑠𝛽𝛼𝑠 𝑅𝑛+1𝐼𝑛𝑠𝑁𝑛 + 𝛾𝛼𝑠 𝐼𝑛𝑠
− 𝛼𝛼𝑠𝑠𝛽𝑠 𝐿𝑛+1𝑠 𝐼𝑛𝑠𝑁𝑛 − 𝛼𝛼𝑠𝑥𝛽𝛼𝑥 𝐿𝑛+1𝑠 𝐼𝑛𝑥𝑁𝑛 − (𝑑𝛼 + 𝜀𝛼𝑠 + 𝑡𝛼1𝑠)
⋅ 𝐿𝑛+1𝑠 − 𝛼𝛼𝑠𝑚𝛽𝛼𝑚 𝐿𝑛+1𝑠 𝐼𝑛𝑚𝑁𝑛 ,

𝑛+1∑
𝑗=0

𝜔𝛼𝑗 𝐿𝑛+1−𝑗𝑚 = 𝜆𝛼𝑚𝛽𝛼𝑚 𝑆𝑛+1𝐼𝑛𝑚𝑁𝑛 + 𝜎𝛼𝑚𝜆𝛼𝑚𝛽𝛼𝑚𝑅𝑛+1𝐼𝑛𝑚𝑁𝑛
+ 𝜆𝛼𝑚𝛼𝛼𝑠𝑚𝛽𝛼𝑚 𝐿𝑛+1𝑠 𝐼𝑛𝑚𝑁𝑛 + 𝛾𝛼𝑚𝐼𝑛𝑚 + 𝑡𝛼1𝑠𝐿𝑛+1𝑠 − 𝑃𝛼1 𝑡𝛼1𝑠𝐿𝑛+1𝑠
+ 𝑡𝛼2𝑠𝐼𝑛𝑠 − 𝑃𝛼2 𝑡𝛼2𝑠𝐼𝑛𝑠 − 𝛼𝛼𝑚𝑚𝛽𝛼𝑚 𝐿𝑛+1𝑚 𝐼𝑛𝑚𝑁𝑛 − 𝛼𝛼𝑚𝑥𝛽𝛼𝑥 𝐿𝑛+1𝑚 𝐼𝑛𝑥𝑁𝑛− (𝑑𝛼 + 𝜀𝛼𝑚) 𝐿𝑛+1𝑚 ,

𝑛+1∑
𝑗=0

𝜔𝛼𝑗 𝐿𝑛+1−𝑗𝑥 = 𝜆𝛼𝑥𝛽𝛼𝑥 𝑆𝑛+1𝐼𝑛𝑥𝑁𝑛 + 𝜎𝛼𝑥𝜆𝛼𝑥𝛽𝛼𝑥 𝑅𝑛+1𝐼𝑛𝑥𝑁𝑛
+ 𝜆𝛼𝑥𝛼𝛼𝑠𝑥𝛽𝛼𝑥 𝐿𝑛+1𝑠 𝐼𝑛𝑥𝑁𝑛 + 𝛾𝛼𝑥𝐼𝑛𝑥 + 𝜆𝛼𝑥𝛼𝛼𝑚𝑥𝛽𝛼𝑥 𝐿𝑛+1𝑚 𝐼𝑛𝑥𝑁𝑛+ 𝑡𝛼2𝑚𝐼𝑛𝑚 − 𝑃𝛼3 𝑡𝛼2𝑚𝐼𝑛𝑚 − 𝛼𝛼𝑥𝑥𝛽𝛼𝑥 𝐿𝑛+1𝑥 𝐼𝑛𝑥𝑁𝑛 − (𝑑𝛼 + 𝜀𝛼𝑥)⋅ 𝐿𝑛+1𝑥 ,

𝑛+1∑
𝑗=0

𝜔𝛼𝑗 𝐼𝑛+1−𝑗𝑠 = 𝛼𝛼𝑠𝑠𝛽𝛼𝑠 𝐿𝑛+1𝑠 𝐼𝑛𝑠𝑁𝑛 + (1 − 𝜆𝛼𝑠 )
⋅ 𝛽𝛼𝑠 (𝑆𝑛+1𝐼𝑛𝑠𝑁𝑛 + 𝜎𝛼𝑠 𝑅𝑛+1𝐼𝑛𝑠𝑁𝑛 ) + 𝜀𝛼𝑠 𝐿𝑛+1𝑠 − (𝑑𝛼 + 𝛿𝛼𝑠 )⋅ 𝐼𝑛+1𝑠 − (𝛾𝛼𝑠 + 𝑡𝛼2𝑠) 𝐼𝑛𝑠 ,

𝑛+1∑
𝑗=0

𝜔𝛼𝑗 𝐼𝑛+1−𝑗𝑚 = 𝛼𝛼𝑚𝑚𝛽𝛼𝑚 𝐿𝑛+1𝑚 𝐼𝑛𝑚𝑁𝑛 + (1 − 𝜆𝛼𝑚)
⋅ 𝛽𝛼𝑚 (𝑆𝑛+1𝐼𝑛𝑚𝑁𝑛 + 𝜎𝛼𝑚𝑅𝑛+1𝐼𝑛𝑚𝑁𝑛 + 𝛼𝛼𝑠𝑚 𝐿𝑛+1𝑠 𝐼𝑛𝑚𝑁𝑛 )
+ 𝜀𝛼𝑚𝐿𝑛+1𝑚 − (𝑑𝛼 + 𝛿𝛼𝑚) 𝐼𝑛+1𝑚 − 𝛾𝛼𝑚𝐼𝑚 − 𝑡𝛼2𝑚𝐼𝑛−𝜅𝑚 ,

𝑛+1∑
𝑗=0

𝜔𝛼𝑗 𝐼𝑛+1−𝑗𝑥 = 𝛼𝛼𝑥𝑥𝛽𝛼𝑥 𝐿𝑛+1𝑥 𝐼𝑛𝑥𝑁𝑛 + (1 − 𝜆𝛼𝑥)

⋅ 𝛽𝑚 (𝑆𝑛+1𝐼𝑛𝑥𝑁𝑛 + 𝜎𝑥𝑅𝑛+1𝐼𝑛𝑥𝑁𝑛 + 𝛼𝑚𝑥 𝐿𝑛+1𝑥 𝐼𝑛𝑚𝑁𝑛 )
+ 𝜀𝛼𝑥𝐿𝑛+1𝑥 − (𝑑𝛼 + 𝛿𝛼𝑥) 𝐼𝑛+1𝑥 − 𝛾𝛼𝑥𝐼𝑥 − 𝑡𝛼2𝑥𝐼𝑛−𝜅𝑥 ,

𝑛+1∑
𝑗=0

𝜔𝛼𝑗𝑅𝑛+1−𝑗 = 𝑃𝛼1 𝑡𝛼1𝑠𝐿𝑛+1𝑠 + 𝑃𝛼2 𝑡𝛼2𝑠𝐼𝑛𝑠 + 𝑃𝛼3 𝑡𝛼2𝑚𝐼𝑛𝑚
+ 𝑡𝛼2𝑥𝐼𝑛−𝜅𝑥 − 𝑑𝛼𝑅𝑛+1 − 𝜎𝛼𝑠 𝛽𝛼𝑠 𝑅𝑛+1𝐼𝑛𝑠𝑁𝑛 − 𝜎𝛼𝑚𝛽𝛼𝑚𝑅𝑛+1𝐼𝑛𝑚𝑁𝑛− 𝜎𝛼𝑥𝛽𝛼𝑥 𝑅𝑛+1𝐼𝑛𝑥𝑁𝑛 ,

(17)

where 𝑁𝑛 = 𝑆𝑛 + 𝐿𝑛𝑠 + 𝐿𝑛𝑚 + 𝐿𝑛𝑥 + 𝐼𝑛𝑠 + 𝐼𝑛𝑚 + 𝐼𝑛𝑥 + 𝑅𝑛, (18)

and 𝜔𝛼0 = (𝜑𝑖(ℎ))−𝛼, 𝑖 = 1, 2, . . . , 8, 𝑛 = −𝜅, −𝜅 + 1, . . . , 0, 1,
where the nonlocal approximations are used for the nonlinear
terms and the following functions of denominator:

𝜑1 (ℎ) = 𝑒𝑑𝛼ℎ − 1𝑑𝛼 ,
𝜑2 (ℎ) = 𝑒(𝑑𝛼+𝜀𝛼𝑠 +𝑡𝛼1𝑠)ℎ − 1(𝑑𝛼 + 𝜀𝛼𝑠 + 𝑡𝛼1𝑠) ,𝜑3 (ℎ) = 𝑒(𝑑𝛼+𝜀𝛼𝑚)ℎ − 1(𝑑𝛼 + 𝜀𝛼𝑚) ,𝜑4 (ℎ) = 𝑒(𝑑𝛼+𝜀𝛼𝑥 )ℎ − 1(𝑑𝛼 + 𝜀𝛼𝑥) ,𝜑5 (ℎ) = 1 − 𝑒−(𝑑𝛼+𝛿𝛼𝑠 )ℎ(𝛾𝛼𝑠 + 𝑡𝛼2𝑠) ,
𝜑6 (ℎ) = 1 − 𝑒−(𝑑𝛼+𝛿𝛼𝑚)ℎ(𝛾𝛼𝑚 + 𝑡𝛼2𝑚) ,
𝜑7 (ℎ) = 1 − 𝑒−(𝑑𝛼+𝛿𝛼𝑥 )ℎ(𝛾𝛼𝑥 + 𝑡𝛼2𝑥) ,
𝜑8 (ℎ) = 𝑒𝑑𝛼ℎ − 1𝑑𝛼 .

(19)

Then we obtain

𝑆𝑛+1 = 𝑏𝛼 − ∑𝑛+1𝑗=1 𝜔𝛼𝑗 𝑆𝑛+1−𝑗(𝜑1 (ℎ))−𝛼 + 𝑑𝛼 + (𝛽𝛼𝑠 𝐼𝑛𝑠 + 𝛽𝛼𝑚𝐼𝑛𝑚 + 𝛽𝛼𝑥𝐼𝑛𝑥) /𝑁𝑛 ,
𝐿𝑛+1𝑠 = (𝛽𝛼𝑠 𝐼𝑛𝑠 /𝑁𝑛) 𝜆𝛼𝑠 (𝑆𝑛+1 + 𝜎𝛼𝑠 𝑅𝑛+1) + 𝛾𝛼𝑠 𝐼𝑛𝑠 − ∑𝑛+1𝑗=1 𝜔𝛼𝑗 𝐿𝑛+1−𝑗𝑠(𝜑2 (ℎ))−𝛼 + (𝑑𝛼 + 𝑡𝛼1𝑠 + 𝜀𝛼𝑠 ) + (1/𝑁𝑛) (𝛼𝛼𝑠𝑠𝛽𝛼𝑠 𝐼𝑛𝑠 + 𝛼𝛼𝑠𝑚𝛽𝛼𝑚𝐼𝑛𝑚 + 𝛼𝛼𝑠𝑥𝛽𝛼𝑥𝐼𝑛𝑥) ,
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𝐿𝑛+1𝑚 = (𝛽𝛼𝑚𝜆𝛼𝑚𝐼𝑛𝑚/𝑁𝑛) (𝑆𝑛+1 + 𝜎𝛼𝑚𝑅𝑛+1 + 𝛼𝛼𝑠𝑚𝐿𝑛+1𝑠 ) + 𝛾𝛼𝑚𝐼𝑛𝑚 + 𝑡𝛼1𝑠𝐿𝑛+1𝑠 (1 − 𝑃𝛼1 )(𝜑3 (ℎ))−𝛼 + (𝑑𝛼 + 𝜀𝛼𝑚) + (1/𝑁𝑛) (𝛼𝛼𝑚𝑚𝛽𝛼𝑚𝐼𝑛𝑚 + 𝛼𝛼𝑚𝑥𝛽𝛼𝑥𝐼𝑛𝑥)
+ 𝑡𝛼2𝑠𝐼𝑛𝑠 (1 − 𝑃𝛼2 ) − ∑𝑛+1𝑗=1 𝜔𝛼𝑗 𝐿𝑛+1−𝑗𝑚(𝜑3 (ℎ))−𝛼 + (𝑑𝛼 + 𝜀𝛼𝑚) + (1/𝑁𝑛) (𝛼𝛼𝑚𝑚𝛽𝛼𝑚𝐼𝑛𝑚 + 𝛼𝛼𝑚𝑥𝛽𝛼𝑥𝐼𝑛𝑥) ,

𝐿𝑛+1𝑥 = (𝛽𝛼𝑥𝜆𝛼𝑥𝐼𝑛𝑥/𝑁𝑛) (𝑆𝑛+1 + 𝜎𝛼𝑥𝑅𝑛+1 + 𝛼𝛼𝑠𝑥𝐿𝑛+1𝑠 + 𝛼𝛼𝑚𝑥𝐿𝑛+1𝑚 ) + 𝑡𝛼2𝑚𝐼𝑛𝑚 (1 − 𝑃𝛼3 )(𝜑4 (ℎ))−𝛼 + (𝑑𝛼 + 𝜀𝛼𝑥) + (1/𝑁𝑛) (𝛼𝛼𝑥𝑥𝛽𝛼𝑥𝐼𝑛𝑥)
+ 𝛾𝛼𝑥𝐼𝑛𝑥 − ∑𝑛+1𝑗=1 𝜔𝛼𝑗 𝐿𝑛+1−𝑗𝑥(𝜑4 (ℎ))−𝛼 + (𝑑𝛼 + 𝜀𝛼𝑥) + (1/𝑁𝑛) (𝛼𝛼𝑥𝑥𝛽𝛼𝑥𝐼𝑛𝑥) ,

𝐼𝑛+1𝑠 = 𝜑5 (ℎ) 𝛽𝛼𝑠 (𝐼𝑛𝑠 /𝑁𝑛) (𝛼𝛼𝑠𝑠𝐿𝑛+1𝑠 + (1 − 𝜆𝛼𝑠 ) (𝑆𝑛+1 + 𝜎𝛼𝑠 𝑅𝑛+1))(𝜑5 (ℎ))−𝛼 + (𝑑𝛼 + 𝛿𝛼𝑠 ) − (𝛾𝛼𝑠 + (𝑡𝛼2𝑠)) 𝐼𝑛𝑠 + 𝜀𝛼𝑠 𝐿𝑛+1𝑠 − ∑𝑛+1𝑗=1 𝜔𝛼𝑗 𝐼𝑛+1−𝑗𝑠(𝜑5 (ℎ))−𝛼 + (𝑑𝛼 + 𝛿𝛼𝑠 ) ,
𝐼𝑛+1𝑚 = 𝛽𝛼𝑚 (𝐼𝑛𝑚/𝑁𝑛) (𝛼𝛼𝑚𝑚𝐿𝑛+1𝑚 + (1 − 𝜆𝛼𝑚) (𝑆𝑛+1 + 𝜎𝛼𝑚𝑅𝑛+1 + 𝛼𝛼𝑠𝑚𝐿𝑛+1𝑠 ))(𝜑6 (ℎ))−𝛼 + (𝑑𝛼 + 𝛿𝛼𝑚) − 𝛾𝑚𝐼𝑛𝑚 − 𝑡𝛼2𝑚𝐼𝑛−𝜅𝑚 + 𝜀𝛼𝑚𝐿𝑛+1𝑚 − ∑𝑛+1𝑗=1 𝜔𝛼𝑗 𝐼𝑛+1−𝑗𝑚(𝜑6 (ℎ))−𝛼 + (𝑑𝛼 + 𝛿𝛼𝑚) ,
𝐼𝑛+1𝑥 = 𝛽𝛼𝑥 (𝐼𝑛𝑥/𝑁𝑛) (𝛼𝛼𝑥𝑥𝐿𝑛+1𝑥 + (1 − 𝜆𝛼𝑥) (𝑆𝑛+1 + 𝜎𝛼𝑥𝑅𝑛+1 + 𝛼𝛼𝑠𝑥𝐿𝑛+1𝑠 + 𝛼𝛼𝑚𝑥𝐿𝑛+1𝑚 ))(𝜑7 (ℎ))−𝛼 + (𝑑𝛼 + 𝛿𝛼𝑥)

− 𝛾𝛼𝑥𝐼𝑛𝑥 − 𝑡𝛼2𝑥𝐼𝑛−𝜅𝑥 + 𝜀𝛼𝑥𝐿𝑛+1𝑥 − ∑𝑛+1𝑗=1 𝜔𝛼𝑗 𝐼𝑛+1−𝑗𝑥(𝜑7 (ℎ))−𝛼 + (𝑑𝛼 + 𝛿𝛼𝑥) ,
𝑅𝑛+1 = 𝑡𝛼1𝑠𝑃𝛼1 𝐿𝑛+1𝑠 + 𝑃𝛼2 𝑡𝛼2𝑠𝐼𝑛𝑠 + 𝑡𝛼2𝑚𝑃𝛼3 𝐼𝑛𝑚 + 𝑡𝛼2𝑥𝐼𝑛−𝜅𝑥 − ∑𝑛+1𝑗=1 𝜔𝛼𝑗𝑅𝑛+1−𝑗(𝜑8 (ℎ))−𝛼 + 𝑑𝛼 + (1/𝑁𝑛) (𝜎𝛼𝑠 𝛽𝛼𝑠 𝐼𝑛𝑠 + 𝜎𝛼𝑚𝛽𝛼𝑚𝐼𝑛𝑚 + 𝜎𝛼𝑥𝛽𝛼𝑥𝐼𝑛𝑥) .

(20)

5. Numerical Results and Simulations

In this section, we show the effectiveness of the numer-
ical technique for delay fractional differential equations.
Throughout this section, all simulations are performed
with initial conditions (𝑆(0), 𝐿 𝑠(0), 𝐿𝑚(0), 𝐿𝑥(0), 𝐼𝑠(0), 𝐼𝑚(0),𝐼𝑥(0), 𝑅(0)) = (5000, 50, 50, 50, 30, 30, 30, 60), with the pa-
rameters in Table 3. The approximate solutions of the pro-
posed system are given in Figures 1–12 at different values
of 𝜏 and 𝛼. Figure 1 shows the behavior of the approximate
solutions of 𝑅(𝑡) in two cases with and without delay using
dde23 at 𝛼 = 1 and 𝜏 = 0.3. In Figure 2, we use the same
data in Figure 1 and use NSFDM; we noted that the number
of individuals 𝑅(𝑡) increases in the case of nondelay, that is,
the delays in diagnosis and commencement of treatment to
the individuals of 𝐼𝑚 and 𝐼𝑥 causing a shortage in the number
of individuals of𝑅(𝑡). Figure 3 shows the relationship between𝐼𝑚(𝑡) and 𝐼𝑚(𝑡−𝜏) and chaotic attractors at 𝜏 = 0.1 and 𝛼 = 1.
Figure 4, shows the relationship between 𝐼𝑥(𝑡) and 𝐼𝑥(𝑡 − 𝜏)
at 𝜏 = 0.1 in case of integer order. Figures 5 and 6 show
the relationship between 𝐼𝑚(𝑡) and 𝐼𝑚(𝑡 − 𝜏) and 𝐼𝑥(𝑡) with𝐼𝑥(𝑡−𝜏), respectively, in case of fraction order where𝛼 = 0.95.

Figures 7 and 8 show the approximate solutions for 𝐼𝑚(𝑡 − 𝜏)
and 𝐼𝑥(𝑡 − 𝜏) at 𝜏 = 2, 𝛼 = 0.98 by using NSFDM. Figures 9
and 10 show the approximate solutions of different 𝜏 in both
fraction and integer cases; we noted that increasing the value
of 𝜏 causes decreasing the values of 𝑅(𝑡). Figures 11 and 12
show the behavior of the approximate solutions with different
value of 𝛼, which are given to demonstrate how the fractional
model is a generalization of the integer order model.

6. Conclusion

Fractional models have the potential to describe more com-
plex dynamics than the integer models and can include
easily the memory effect present in many real world phe-
nomena. In this paper, multistrain TB model of fractional
order derivatives with time delay memory is presented. A
nonstandard numerical scheme is introduced to numerically
study the approximate solution of proposed model problem.
The obtained results show that the delays in diagnosis and
commencement of treatment to the individuals of 𝐼𝑚 and 𝐼𝑥
cause a shortage in the number of individuals of 𝑅(𝑡). The
approximate solution of proposedmodel changes when 𝜏 and
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Figure 1: The approximate solution of 𝑅(𝑡) with 𝜏 = 0.3, using
dde23.
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Figure 2: The approximate solution of 𝑅(𝑡) with 𝜏 = 0.3, using
NSFDM, 𝛼 = 1.
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Figure 3:The relationship between 𝐼𝑚(𝑡), 𝐼𝑚(𝑡−𝜏)with 𝜏 = 0.1, 𝛼 =1 using NSFDM.

Table 3: Parameter values of system (1).

Parameter Value𝑏𝛼 3190𝛼 ( 1
year

)𝛼𝑑𝛼 0.38𝛼 ( 1
year

)𝛼𝛽𝛼𝑠 = 𝛽𝛼𝑚 = 𝛽𝛼𝑥 14𝛼 ( 1
year

)𝛼𝜆𝛼𝑠 = 𝜆𝛼𝑚 = 𝜆𝛼𝑥 0.5𝛼 ( 1
year

)𝛼𝜀𝛼𝑠 = 𝜀𝛼𝑚 = 𝜀𝛼𝑥 0.5𝛼 ( 1
year

)𝛼𝛼𝛼𝑟1,𝑟2 0.05𝛼 ( 1
year

)𝛼𝛾𝛼𝑠 = 𝛾𝛼𝑚 = 𝛾𝛼𝑥 0.3𝛼 ( 1
year

)𝛼𝑡𝛼1𝑠 0.88𝛼 ( 1
year

)𝛼𝑡𝛼2𝑟 : 𝑟 ∈ (𝑠, 𝑚, 𝑥) 𝑡𝛼2𝑠 = 0.88𝛼;𝑡𝛼2𝑚 = 𝑡𝛼2𝑥 = 0.034𝛼 ( 1
year

)𝛼𝜎𝛼𝑟 0.25𝛼 ( 1
year

)𝛼𝑃𝛼𝑟 0.88𝛼 ( 1
year

)𝛼𝛿𝛼𝑟 0.045𝛼 ( 1
year

)𝛼
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Figure 4:The relationship between 𝐼𝑥(𝑡), 𝐼𝑥(𝑡−𝜏)with 𝜏 = 0.1, 𝛼 =1 using NSFDM.

𝛼 take different values. Some figures are given to demonstrate
how the fractional delay model is a generalization of the
integer order model. It is concluded that NSFDM can be
applied to solve such fractional delay differential equations
simply and effectively. All results are obtained by using
MATLAB programming.
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Figure 5:The relationship between 𝐼𝑚(𝑡), 𝐼𝑚(𝑡−𝜏)with 𝜏 = 0.1, 𝛼 =0.95 using NSFDM.
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Figure 6:The relationship between 𝐼𝑥(𝑡), 𝐼𝑥(𝑡−𝜏)with 𝜏 = 0.1, 𝛼 =0.95 using NSFDM.

0

500

1000

1500

2000

2500

I x
(t

−

)

1 2 3 4 5 6 7 80

t

Figure 7: The approximate solutions 𝐼𝑥(𝑡 − 𝜏) with 𝜏 = 2, 𝛼 = 0.98
using NSFDM.

Appendix

A. Preliminaries and Notations

In this section, some basic definitions and properties in the
theory of the fractional calculus are presented. Moreover,
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Figure 8: The approximate solutions 𝐼𝑚(𝑡 − 𝜏) with 𝜏 = 2, 𝛼 = 0.98
using NSFDM.
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Figure 12: The approximate solutions with 𝜏 = 0.4 and different 𝛼 using NSFDM.

we introduce the main aspects concerning nonstandard
discretization methods.

A.1. Grünwald–Letinkov Fractional Derivatives (GLFDs). We
will begin with the signal fractional differential equation (see
[17, 40, 41]) 𝐷𝛼𝑥𝑧 (𝑥) = 𝑔 (𝑥, 𝑧 (𝑥)) , 𝑇 ≥ 𝑥 ≥ 0,𝑧 (𝑥0) = 0, (A.1)

where 𝛼 > 0. 𝑇 is the final time and𝐷𝛼 denotes the fractional
derivative, where 𝑛 − 1 < 𝛼 < 𝑛, defined by

𝐷𝛼𝑥𝑧 (𝑥) = 𝐽𝑛−𝛼𝐷𝛼𝑥𝑧 (𝑥) , (A.2)

∀𝑛 ∈ N and 𝐽𝑛 is the 𝑛th-order Riemann–Liouville integral
operator:

𝐽𝑛𝑧 (𝑥) = 1Γ (𝑥) ∫𝑥0 (𝑥 − 𝜏)𝑛−1 𝑧 (𝜏) 𝑑𝜏,
with Γ (⋅) being the gamma function, (A.3)

and 𝑥 > 0. The Grünwald–Letinkov approximation of the
fractional derivative is defined as follows [42]:

𝐷𝛼𝑥𝑧 (𝑥) = lim
ℎ→0

ℎ−𝛼 𝑚∑
𝑟=0

(−1)𝑟 (𝛼𝑟) 𝑧 (𝑥 − 𝑟ℎ) , (A.4)

where𝑚 = [𝑥/ℎ] denotes the integer part of 𝑥/ℎ and ℎ is the
step-size. Equation (A.4) can be discretized as follows:

𝑚∑
𝑟=0

𝜔𝛼𝑟 𝑧 (𝑥𝑛−𝑟) = 𝑔 (𝑥𝑛, 𝑧 (𝑥𝑛)) 𝑛 = 1, 2, 3, . . . , (A.5)

where 𝑥𝑛 = 𝑛ℎ and 𝜔𝛼𝑟 are the Grünwald–Letinkov coeffi-
cients defined as𝜔𝛼𝑟 = (1 − 1 + 𝛼𝑟 )𝜔𝛼𝑟−1, 𝜔𝛼0 = ℎ−𝛼, 𝑟 = 1, 2, 3, . . . . (A.6)

A.2. NSFD Discretization. It is known that the numerical
scheme is called nonstandard method if at least one of the
following conditions is satisfied [36]:

(1) the discretization of derivatives is not traditional and
uses a nonnegative function [35, 43],

(2) nonlocal approximations are used.
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To construct the numerical scheme for system (1) using
NSFDM, the approximations of temporal derivatives are
made based on generalized forward scheme of first order.
Hence, if 𝑔(𝑡) ∈ 𝐶1(R), we define its derivative as follows:𝑑𝑔 (𝑡)𝑑𝑡 = 𝑔 (𝑡 + △𝑡) − 𝑔 (𝑡)𝜑 (△𝑡) + 𝑂 (𝜑 (△𝑡)) ,

as △ 𝑡 󳨀→ 0, (A.7)

where 𝜑(△𝑡) is a real-valued function on R and △𝑡 = ℎ. In
the following, the denominator functions are little complex
functions of the step-size of time than the classical one [44].
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