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The bending solutions of rectangular thick plate with all edges clamped and supported were investigated in this study. The basic
governing equations used for analysis are based onMindlin’s higher-order shear deformation plate theory. Using a new function, the
three coupled governing equations have been modified to independent partial differential equations that can be solved separately.
These equations are coded in terms of deflection of the plate and the mentioned functions. By solving these decoupled equations,
the analytic solutions of rectangular thick plate with all edges clamped and supported have been derived. The proposed method
eliminates the complicated derivation for calculating coefficients and addresses the solution to problems directly. Moreover,
numerical comparison shows the correctness and accuracy of the results.

1. Introduction

The bending problem of rectangular thick plates with various
combinations of boundary conditions is sparingly common
in many engineering fields, such as aerospace, concrete pave-
ments, andmechanical and structural engineering.Moreover
with the development of modern industry, relatively more
accurate and practical studies on bending plate are required.
Problems involving rectangular plates fall into three distinct
categories [1]: (a) plates with all edges simply supported; (b)
plates with a pair of opposite edges simply supported; (c)
plates which do not fall into any of the above categories.

The classical plate theory (CPT) is frequently used to
analyze thin plates. This theory works on the assumption to
ignore the transverse shear deformation and assumes that
the normal to the middle plane before deformation remains
straight and normal to the middle surface after deformation.
Therefore, utilizing classical plate theory to analyze thick
plates leads to somehow inaccurate and even wrong results.

Following classical plate theory, a series of theories have
been developed by many researchers to analyze thick plates
by taking account of the shear deformation, such asMindlin’s
first-order, Reddy’s third-order, and Reissner’s higher-order
shear deformation plate theory.

The couples governing differential equations of higher
order could be obtained through the analogue theory men-
tioned above such as Mindlin’s first-order, Reddy’s third-
order, and Reissner’s higher-order shear deformation plate
theory which have twomore unknowns’ variables in compar-
ison with the classical plate theory. The following three types
ofmethods can be used to solve the governing equationwhich
are numerical methods including finite element method [2],
Ritz energy method [3], and superposition method [4] and
semianalytical methods which include Levy method [5],
Naviermethod [5, 6], and the exact analytical methods which
including symplectic geometry method [7, 8], and integral
transform method [9]. The imposition of boundary condi-
tions on the governing equations increased the mathematical
complexity of the solution procedure. Therefore, the analytic
bending solutions of rectangular thick plates are hard to solve.
Furthermore, numerical methods could be used to solve
the bending problems of plate. However, only the analytical
method can give the exact solution, which is used to verify
the results obtained from various numerical methods.

There are two common ways to deal with the plate prob-
lem. First way is to find new plate theories [10–15] which can
reduce the number of unknown equations. Houari et al. [10]
use the new simple higher-order shear deformation theory
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to analyze bending and free vibration of functionally graded
plates. Tounsi et al. [11] perform the new 3-unknown non-
polynomial shear deformation theory for the buckling and
vibration analyses of functionally graded material (FGM)
sandwich plates. The abovementioned theories only dealt
with three unknowns as the classical plate theory. Similarly,
Beldjelili et al. [12] employ a four-variable refined plate theory
to discuss the hygrothermomechanical bending behavior of
sigmoid functionally graded material (S-FGM) plate resting
on variable two-parameter elastic foundations. The second
way is to find method to simplify the coupled governing
differential equations of high order. For this purpose, decou-
pling method is used to handle such kind of problem.

In this context, the study focused on the improvement of
modified Navier method to solve bending problem of rectan-
gular plates with all edges clamped and supported. By using
decoupling, modified Navier method has been modified into
a new simple approach to solve the partial differential equa-
tions forMindlin plate. In Section 2.1, themultiple differential
equations have been decoupled while adding a new variable
and ascending the equations’ order. Two of the obtained
equations are independent which can be solved directly, and
another two equations are alsomuch simpler than the already
developed equations. In Section 2.2, generalized displace-
ment variables in governing equations are obtained by using
independent equations in the modified Navier method, and
other solutions of the problem, namely, bending moments,
have been obtained through related expressions of variables.
In the end numerical comparison studies are shown to verify
the results.

2. Solution for Rectangular Thick Plate

2.1. Decouple Mindlin Equations. The governing equations
for bending problem of rectangular thick plates are given by

∇2𝑤 − (𝜕𝜑𝑥𝜕𝑥 + 𝜕𝜑𝑦𝜕𝑦 ) + 𝑞𝐶 = 0 (1)

𝜕2𝜑𝑥𝜕𝑥2 + 1 − 𝜇2 𝜕2𝜑𝑥𝜕𝑦2 + 1 + 𝜇2
𝜕2𝜑𝑦𝜕𝑥𝜕𝑦 + 𝐶𝐷 (𝜕𝑤𝜕𝑥 − 𝜑𝑥)

= 0
(2)

𝜕2𝜑𝑦𝜕𝑦2 + 1 − 𝜇2
𝜕2𝜑𝑦𝜕𝑥2 + 1 + 𝜇2 𝜕2𝜑𝑥𝜕𝑥𝜕𝑦 + 𝐶𝐷 (𝜕𝑤𝜕𝑦 − 𝜑𝑦)

= 0,
(3)

where ∇2 = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2, 𝐷 is the flexural rigidity of the
plate and its expression is𝐷 = 𝐸ℎ3/12(1−𝜇2), 𝐶 is the shear-
ing stiffness of the plate and its expression is 𝐶 = 5𝐸ℎ/12(1 +𝜇), and 𝐸, 𝜇, and ℎ are the elastic module, Poisson’s ratio
and the thickness of the plate, respectively.𝑤 is the transverse
deflection of themiddle surface.𝜑𝑥 and𝜑𝑦 are the rotations of
a normal line due to plate bending. 𝑞 is the load distribution

function. The resultant bending moments, 𝑀𝑥 and 𝑀𝑦, the
twisting moments𝑀𝑥𝑦 can be obtained; namely,

𝑀𝑥 = −𝐷(𝜕𝜑𝑥𝜕𝑥 + 𝜇𝜕𝜑𝑦𝜕𝑦 ) (4)

𝑀𝑦 = −𝐷(𝜕𝜑𝑦𝜕𝑦 + 𝜇𝜕𝜑𝑥𝜕𝑥 ) (5)

𝑀𝑥𝑦 = 𝐷 (1 − 𝜇)
2 (𝜕𝜑𝑦𝜕𝑦 + 𝜕𝜑𝑥𝜕𝑥 ) . (6)

Another new variable𝑀 is given for decoupling the govern-
ing equations (1)–(3). According to the left expression of (1),
let

𝑀 = 𝜕𝜑𝑥𝜕𝑥 + 𝜕𝜑𝑦𝜕𝑦 (7)

and (1) can be expressed as

∇2𝑤 −𝑀 + 𝑞𝐶 = 0. (8)

Taking partial derivative of (2) and (3) with respect to 𝑥 and𝑦, respectively, then considering (7), we can obtain

∇2𝑀+ 𝐶𝐷 (∇2𝑤 −𝑀) = 0. (9)

Substituting (8) into (9), the independent differential equa-
tion about𝑀 yield is obtained as follows:

∇2𝑀− 𝑞𝐷 = 0. (10)

Based on (8) and (10), the independent equation about 𝑤 is
obtained as follows:

∇4𝑤 = 𝑞𝐷 − ∇2𝑞𝐶 . (11)

Taking partial derivative of (1) with respect to 𝑥 and 𝑦,
respectively, is as follows:

∇2 𝜕𝑤𝜕𝑥 − (𝜕2𝜑𝑥𝜕𝑥2 +
𝜕2𝜑𝑦𝜕𝑥𝜕𝑦) + 1𝐶 𝜕𝑞𝜕𝑥 = 0 (12)

∇2 𝜕𝑤𝜕𝑦 − (𝜕2𝜑𝑦𝜕𝑦2 + 𝜕2𝜑𝑥𝜕𝑥𝜕𝑦) + 1𝐶 𝜕𝑞𝜕𝑦 = 0. (13)

Multiply (12) by coefficient (1 + 𝜇)/2, and then subtract with
(2) to eliminate 𝜑𝑦 in the equation. The expression between𝑤 and 𝜑𝑥 yields

∇2𝜑𝑥 − 𝑄𝜑𝑥 = −𝑄𝜕𝑤𝜕𝑥 − 1 + 𝜇1 − 𝜇 𝜕𝜕𝑥 (∇2𝑤 + 𝑞𝐶) . (14)

The same as the derivation for (14), the expression between𝑤
and 𝜑𝑦 can be obtained as

∇2𝜑𝑦 − 𝑄𝜑𝑦 = −𝑄𝜕𝑤𝜕𝑦 − 1 + 𝜇1 − 𝜇 𝜕𝜕𝑦 (∇2𝑤 + 𝑞𝐶) . (15)
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According to (8), further simplifying (14) and (15) yields

∇2𝜑𝑥 − 𝑄𝜑𝑥 = −𝑄𝜕𝑤𝜕𝑥 − 1 + 𝜇1 − 𝜇 𝜕𝑀𝜕𝑥
∇2𝜑𝑦 − 𝑄𝜑𝑦 = −𝑄𝜕𝑤𝜕𝑦 − 1 + 𝜇1 − 𝜇 𝜕𝑀𝜕𝑦 .

(16)

The basic governing equations are reexpressed as follows:

∇2𝑀− 𝑞𝐷 = 0 (17a)

∇4𝑤 = 𝑞𝐷 − ∇2𝑞𝐶 (17b)

∇2𝜑𝑥 − 𝑄𝜑𝑥 = −𝑄𝜕𝑤𝜕𝑥 − 1 + 𝜇1 − 𝜇 𝜕𝑀𝜕𝑥 (17c)

∇2𝜑𝑦 − 𝑄𝜑𝑦 = −𝑄𝜕𝑤𝜕𝑦 − 1 + 𝜇1 − 𝜇 𝜕𝑀𝜕𝑦 . (17d)

2.2. Solution Method of Decoupled Equation. Considering
the example of rectangular thick plates with all edges clamp
supported, the solution of basic governing equations (1)–(3)
is obtained through the modified Navier method. First, the
boundary condition equations for CCCC plates are given by

𝑥 = 0, 𝑎:
𝑤 = 0;
𝜑𝑥 = 0;
𝜑𝑦 = 0

𝑦 = 0, 𝑏:
𝑤 = 0;
𝜑𝑥 = 0;
𝜑𝑦 = 0

(18)

and (18) shows the basic form of boundary condition. The
expressions of𝑤, 𝜑𝑥, and 𝜑𝑦 are assumed as double sine series

𝑤 (𝑥, 𝑦) = ∞∑
𝑛=1

∞∑
𝑚=1

𝑊𝑛𝑚 sin𝛼𝑛𝑥 sin𝛽𝑚𝑦 (19)

𝜑𝑥 (𝑥, 𝑦) = ∞∑
𝑛=1

∞∑
𝑚=1

𝑋𝑛𝑚 sin𝛼𝑛𝑥 sin𝛽𝑚𝑦 (20)

𝜑𝑦 (𝑥, 𝑦) = ∞∑
𝑛=1

∞∑
𝑚=1

𝑌𝑛𝑚 sin𝛼𝑛𝑥 sin𝛽𝑚𝑦, (21)

where 𝛼𝑛 = 𝑛𝜋/𝑎 and 𝛽𝑚 = 𝑚𝜋/𝑏. Based on the definition of𝑀 as (7), the boundary condition for𝑀 is obtained as follows:

𝑥 = 0, 𝑎: 𝑀 = 0
𝑦 = 0, 𝑏: 𝑀 = 0. (22)

The expression of𝑀 is also assumed as double sine series:

𝑀(𝑥, 𝑦) = ∞∑
𝑛=1

∞∑
𝑚=1

𝑀𝑛𝑚 sin𝛼𝑛𝑥 sin𝛽𝑚𝑦. (23)

Expanding 𝑞 in the form of double sine series,

𝑞 = ∞∑
𝑛=1

∞∑
𝑚=1

𝑄𝑛𝑚 sin𝛼𝑛𝑥 sin𝛽𝑚𝑦, (24)

where 𝑄𝑛𝑚 is defined as

𝑄𝑛𝑚 = 4𝑎𝑏 ∫
𝑎

0
∫𝑏
0
𝑞 (𝑥, 𝑦) sin𝛼𝑛𝑥 sin𝛽𝑚𝑦𝑑𝑥𝑑𝑦. (25)

Substituting (23) and (24) into (17a) gives

∞∑
𝑛=1

∞∑
𝑚=1

𝑀𝑛𝑚 (𝛼𝑛2 + 𝛽𝑚2) sin𝛼𝑛𝑥 sin𝛽𝑚𝑦

= −∞∑
𝑛=1

∞∑
𝑚=1

𝑄𝑛𝑚𝐷 sin𝛼𝑛𝑥 sin𝛽𝑚𝑦.
(26)

According to the uniqueness theorem of Fourier expansion,
equating the coefficient𝑀𝑛𝑚 in (26),

𝑀𝑛𝑚 = − 𝑄𝑛𝑚𝐷(𝛼𝑛2 + 𝛽𝑚2) = − 4
𝑎𝑏𝐷 (𝛼𝑛2 + 𝛽𝑚2)

⋅ ∫𝑎
0
∫𝑏
0
𝑞 (𝑥, 𝑦) sin𝛼𝑛𝑥 sin𝛽𝑚𝑦𝑑𝑥𝑑𝑦.

(27)

Substituting (27) into (23), the expression for 𝑀 is obtained
as follows:

𝑀(𝑥, 𝑦) = − 4𝑎𝑏𝐷
∞∑
𝑛=1

∞∑
𝑚=1

[ 1
(𝛼𝑛2 + 𝛽𝑚2)

⋅ ∫𝑎
0
∫𝑏
0
𝑞 (𝑥, 𝑦) sin𝛼𝑛𝑥 sin𝛽𝑚𝑦𝑑𝑥𝑑𝑦] sin𝛼𝑛𝑥

⋅ sin𝛽𝑚𝑦.

(28)

Substituting (19) and (24) into (17b) yields the following
result:
∞∑
𝑛=1

∞∑
𝑚=1

𝑊𝑛𝑚 (𝛼𝑛4 + 𝛽𝑚4 + 2𝛼𝑛2𝛽𝑚2) sin𝛼𝑛𝑥 sin𝛽𝑚𝑦

= ∞∑
𝑛=1

∞∑
𝑚=1

( 1𝐷 + 𝛼𝑛2 + 𝛽𝑚2𝐶 )𝑄𝑛𝑚 sin𝛼𝑛𝑥 sin𝛽𝑚𝑦.
(29)
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According to the uniqueness theorem of Fourier expansion,𝑊𝑚𝑛 is obtained as

𝑊𝑛𝑚 = ( 1
𝐷 (𝛼𝑛2 + 𝛽𝑚2) +

1𝐶)

⋅ ( 4𝑎𝑏 ∫
𝑎

0
∫𝑏
0
𝑞 (𝑥, 𝑦) sin𝛼𝑛𝑥 sin𝛽𝑚𝑦𝑑𝑥𝑑𝑦)

⋅ (𝛼𝑛2 + 𝛽𝑚2)−1 .

(30)

Substituting (30) into (19), the expression of 𝑤 is obtained as
follows:

𝑤 (𝑥, 𝑦) = ∞∑
𝑛=1

∞∑
𝑚=1

1
𝛼𝑛2 + 𝛽𝑚2 (

1
𝐷(𝛼𝑛2 + 𝛽𝑚2) +

1𝐶)

⋅ ( 4𝑎𝑏 ∫
𝑎

0
∫𝑏
0
𝑞 (𝑥, 𝑦) sin𝛼𝑛𝑥 sin𝛽𝑚𝑦𝑑𝑥𝑑𝑦)

⋅ sin𝛼𝑛𝑥 sin𝛽𝑚𝑦.

(31)

And substituting (29) and (31) into (17c) and (17d) yielded

∞∑
𝑛=1

∞∑
𝑚=1

𝑋𝑛𝑚 (𝛼𝑛2 + 𝛽𝑚2 + 𝑄) sin𝛼𝑛𝑥 sin𝛽𝑚𝑦
= ∞∑
𝑛=1

∞∑
𝑚=1

[𝑀𝑛𝑚 1 + 𝜇1 − 𝜇 +𝑊𝑛𝑚𝑄]𝛼𝑛 cos𝛼𝑛𝑥 sin𝛽𝑚𝑦
∞∑
𝑛=1

∞∑
𝑚=1

𝑌𝑛𝑚 (𝛼𝑛2 + 𝛽𝑚2 + 𝑄) sin𝛼𝑛𝑥 sin𝛽𝑚𝑦

= ∞∑
𝑛=1

∞∑
𝑚=1

[𝑀𝑛𝑚 1 + 𝜇1 − 𝜇 +𝑊𝑛𝑚𝑄]𝛽𝑚 sin𝛼𝑛𝑥 cos𝛽𝑚𝑦.

(32)

Thus 𝑀𝑛𝑚 and 𝑊𝑛𝑚 obtained are shown as (27) and (30).
Equating the unknown coefficients 𝑋𝑛𝑚 and 𝑌𝑛𝑚 in (32), the
expressions of 𝜑𝑥 and 𝜑𝑦 will be yielded as well. First unify
the series core in a manner as follows:

cos𝛼𝑛𝑥 = ∞∑
𝑟=1

ℎ𝑟𝑛 sin𝛼𝑟𝑥; 0 < 𝑥 < 𝑎

cos𝛽𝑚𝑦 = ∞∑
𝑠=1

ℎ𝑠𝑚 sin𝛽𝑠𝑦; 0 < 𝑦 < 𝑏,
(33)

where

ℎ𝑟𝑛 = {{{{{
4𝑟𝜋 (𝑟2 − 𝑛2) 𝑛 + 𝑟 = odd, 𝑛 − 𝑟 = odd

0 𝑛 + 𝑟 = even, 𝑛 − 𝑟 = even

ℎ𝑠𝑚 = {{{{{
4𝑠𝜋 (𝑠2 − 𝑚2) 𝑠 + 𝑚 = odd, 𝑚 − 𝑠 = odd

0 𝑚 − 𝑠 = even, 𝑚 − 𝑠 = even

(34)

based on (33), expand cos𝛼𝑛𝑥 and cos𝛽𝑚𝑦 in the form of sin
Fourier series, and reset the dummy variables:

∞∑
𝑛=1

∞∑
𝑚=1

sin𝛼𝑛𝑥 sin𝛽𝑚𝑦𝑋𝑛𝑚 (𝛼𝑛2 + 𝛽𝑚2 + 𝑄)

= ∞∑
𝑚=1

∞∑
𝑛=1

sin𝛼𝑛𝑥 sin𝛽𝑚𝑦∞∑
𝑟=1

[𝑀𝑟𝑚 1 + 𝜇1 − 𝜇 +𝑊𝑟𝑚𝑄]
⋅ ℎ𝑛𝑟𝛼𝑟
∞∑
𝑛=1

∞∑
𝑚=1

sin𝛼𝑛𝑥 sin𝛽𝑚𝑦𝑌𝑛𝑚 (𝛼𝑛2 + 𝛽𝑚2 + 𝑄)

= ∞∑
𝑛=1

∞∑
𝑚=1

sin𝛼𝑛𝑥 sin𝛽𝑚𝑦

⋅ ∞∑
𝑠=1

[𝑀𝑛𝑠 1 + 𝜇1 − 𝜇 +𝑊𝑛𝑠𝑄]ℎ𝑚𝑠𝛽𝑠.

(35)

Finally, equating the coefficients in (35) directly according
to the uniqueness theorem of Fourier expansion,

𝑋𝑛𝑚 = − (𝛼𝑛2 + 𝛽𝑚2 + 𝑄)−1 ∞∑
𝑟=1

[𝑀𝑟𝑚 1 + 𝜇1 − 𝜇 +𝑊𝑟𝑚𝑄]
⋅ ℎ𝑛𝑟𝛼𝑟

(36)

𝑌𝑛𝑚 = − (𝛼𝑛2 + 𝛽𝑚2 + 𝑄)−1 ∞∑
𝑠=1

[𝑀𝑛𝑠 1 + 𝜇1 − 𝜇 +𝑊𝑛𝑠𝑄]
⋅ ℎ𝑚𝑠𝛽𝑠.

(37)

Substituting (36) and (37) into (20) and (21), respectively, the
expressions of 𝜑𝑥 and 𝜑𝑦 are obtained as follows:

𝜑𝑥 (𝑥, 𝑦) = ∞∑
𝑛=1

∞∑
𝑚=1

1
𝛼𝑛2 + 𝛽𝑚2 + 𝑄

∞∑
𝑟=1

𝑄𝑟𝑚𝛼𝑟2 + 𝛽𝑚2 {
1 + 𝜇

𝐷 (1 − 𝜇) + [ 1
𝐷 (𝛼𝑟2 + 𝛽𝑚2) +

1𝐶]𝑄}ℎ𝑛𝑟𝛼𝑟 sin𝛼𝑛𝑥 sin𝛽𝑚𝑦 (38)

𝜑𝑦 (𝑥, 𝑦) = ∞∑
𝑛=1

∞∑
𝑚=1

1
𝛼𝑛2 + 𝛽𝑚2 + 𝑄

∞∑
𝑠=1

𝑄𝑛𝑠𝛼𝑛2 + 𝛽𝑠2 {
1 + 𝜇

𝐷 (1 − 𝜇) + [ 1
𝐷 (𝛼𝑛2 + 𝛽𝑠2) +

1𝐶]𝑄}ℎ𝑚𝑠𝛽𝑠 sin𝛼𝑛𝑥 sin𝛽𝑚𝑦. (39)
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Table 1: Nondimensional deflection and moment of a square plate, under uniform pressure and clamped (CCCC) boundary conditions.

𝑎/𝑏 𝑚, 𝑛 𝑤|𝑥=𝑎/2, 𝑦=𝑏/2 (𝑞𝑎4 ⋅ 𝐷−1) 𝑀𝑥𝑥=0, 𝑦=𝑏/2 (𝑞𝑎2)

3

𝑚, 𝑛 = 10 −0.003615 −0.04225
𝑚, 𝑛 = 15 −0.003610 −0.04295
𝑚, 𝑛 = 20 −0.003611 −0.04353

FEM results −0.00361 −0.0435

5

𝑚, 𝑛 = 10 −0.002116 −0.04008
𝑚, 𝑛 = 15 −0.002114 −0.04321
𝑚, 𝑛 = 20 −0.002114 −0.04589

FEM results −0.00211 −0.0458

10

𝑚, 𝑛 = 10 −0.001483 −0.0432
𝑚, 𝑛 = 15 −0.001483 −0.04739
𝑚, 𝑛 = 20 −0.001483 −0.05140

FEM results −0.00148 −0.0510

Similarly substituting (38) and (39) into (4) and (5), the
expressions of𝑀𝑥 and𝑀𝑦 can be obtained as follows:

𝑀𝑥 = −𝐷∞∑
𝑛=1

∞∑
𝑚=1

{𝛼𝑛 cos𝛼𝑛𝑥 sin𝛽𝑚𝑦 (𝛼𝑛2 + 𝛽𝑚2 + 𝑄)−1

⋅ ∞∑
𝑟=1

[− 𝑄𝑟𝑚𝐷(𝛼𝑟2 + 𝛽𝑚2)
1 + 𝜇1 − 𝜇 + 𝑄(𝑄𝑟𝑚𝐷 + 𝛼𝑟2 + 𝛽𝑚2𝐶 ) (𝛼𝑟4 + 𝛽𝑚4 + 2𝛼𝑟2𝛽𝑚2)−1]ℎ𝑛𝑟𝛼𝑟 + 𝜇𝛽𝑚 sin𝛼𝑛𝑥 cos𝛽𝑚𝑦

⋅ (𝛼𝑛2 + 𝛽𝑚2 + 𝑄)−1 ∞∑
𝑠=1

[− 𝑄𝑛𝑠𝐷(𝛼𝑛2 + 𝛽𝑠2)
1 + 𝜇1 − 𝜇 + 𝑄(𝑄𝑛𝑠𝐷 + 𝛼𝑛2 + 𝛽𝑠2𝐶 ) (𝛼𝑛4 + 𝛽𝑠4 + 2𝛼𝑛2𝛽𝑠2)−1]ℎ𝑚𝑠𝛽𝑠}

𝑀𝑦 = −𝐷∞∑
𝑛=1

∞∑
𝑚=1

{𝛽𝑚 sin𝛼𝑛𝑥 cos𝛽𝑚𝑦 (𝛼𝑛2 + 𝛽𝑚2 + 𝑄)−1

⋅ ∞∑
𝑠=1

[− 𝑄𝑛𝑠𝐷(𝛼𝑛2 + 𝛽𝑠2)
1 + 𝜇1 − 𝜇 + 𝑄(𝑄𝑛𝑠𝐷 + 𝛼𝑛2 + 𝛽𝑠2𝐶 )(𝛼𝑛4 + 𝛽𝑠4 + 2𝛼𝑛2𝛽𝑠2)−1]ℎ𝑚𝑠𝛽𝑠 + 𝜇𝛼𝑛 cos𝛼𝑛𝑥 sin𝛽𝑚𝑦

⋅ (𝛼𝑛2 + 𝛽𝑚2 + 𝑄)−1 ∞∑
𝑟=1

[− 𝑄𝑟𝑚𝐷(𝛼𝑟2 + 𝛽𝑚2)
1 + 𝜇1 − 𝜇 + 𝑄(𝑄𝑟𝑚𝐷 + 𝛼𝑟2 + 𝛽𝑚2𝐶 )(𝛼𝑟4 + 𝛽𝑚4 + 2𝛼𝑟2𝛽𝑚2)−1]ℎ𝑛𝑟𝛼𝑟} .

(40)

3. Numerical Example

A thick plate with all edges clamped (CCCC) has been taken
as a numerical example to justify the correctness of the above
solution.The length and width of the plate are 𝑎 = 𝑏, with the
Poisson ratio of 𝜇 = 0.3. Figure 1 shows the change in deflec-
tion of the plate. Table 1 highlights the comparison of nondi-
mensional deflection results with solutions given by FEM,
which shows that the results obtained are in accordance with
the ones given before, and proves the correctness of the above
method and the derivations.

4. Conclusion

The decoupling method and the modified Navier’s solution
have been used together in this study for a simple analysis of
rectangular thick plates with all edges clamped and sup-
ported. Unlike the original modified Navier method, the
proposed approach does not need complicatedmatrix deriva-
tions for calculating the coefficients. The procedure for
solving the bending rectangular thick plates with all edges
clamped ismade simpler than before.Moreover the proposed
method can be further extended to address the problem
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Figure 1: The deflections of a square plate.

of rectangular thick plates with other combinations of free
and simply supported boundary conditions. The proposed
method has many practical applications and can be used in
foundation design of high-rise building and rigid pavements
of highway and airport. Additionally, the plate support
problems such as point supports and spring supports can be
solved well analytically by utilizing similar approach, which
would expectantly develop inspiring extensions in the field.
Moreover, the results obtained from numerical example vali-
date the precision and correctness ofmethod and derivations.
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