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When a local defect occurs in gearbox, the vibration signals present as the form of multicomponent amplitude modulation and
frequency modulation (AM-FM). Demodulation analysis is an effective way for this kind of signal. A self-adaptive wavelet ridge
demodulation method based on LCD is proposed in this paper. Firstly, multicomponent AM-FM signal is decomposed into
series of intrinsic scale components (ISCs) and the special intrinsic scale component is selected in order to decrease the lower
frequency background noise. Secondly, the genetic algorithm is employed to optimize wavelet parameters according to the inherent
characteristics of signal; thirdly, self-adaptive wavelet ridge demodulation wavelet for the selected ISC component is performed
to get instantaneous amplitude (IA) or instantaneous frequency (IF). Lastly, the characteristics frequency can be obtained to
identify the working state or failure information from its spectrum. By two simulation signals, the proposed method was compared
with various existing demodulation methods; the simulation results show that it has higher accuracy and higher noise tolerant
performance than others. Furthermore, the proposed method was applied to incipient fault diagnosis for gearbox and the results
show that it is simple and effective.

1. Introduction

Fault diagnosis technique is of great significance to guar-
antee the normal operation of mechanical and electrical
equipment. When a localized defect occurs in gearbox, the
vibration signals present as the form of multicomponent
amplitude modulation and frequency modulation (AM-FM)
[1], expressed as a frequency family on the spectrum, which
contains the center frequency and its harmonic frequency.
For this kind of signals, some demodulation techniques
have been used to find the fault feature information. Hilbert
demodulation method is widely used in machinery fault
diagnosis [2, 3], but there exists window effect and end
effect of Hilbert transforms inevitably, resulting in greater
demodulation error. The energy separation algorithm (ESA)
appears much popular in recent years for the application
to machinery fault diagnosis [4–7], because it is suitable to
extract the local dynamic characteristics of nonstationary
signal. However, ESA requires that the processed signal

should be narrow-band monocomponent [4, 5]. In addition,
ESA is sensitive to noise [8]. Compared with the above time
domain demodulation methods, the wavelet ridge demod-
ulation technique is time-frequency domain demodulation
method, which uses continuous wavelet transform (CWT)
to obtain instantaneous amplitude (IA) information and
instantaneous frequency (IF) information [8, 9]. In general,
the analytic Morlet wavelet is used as the basic wavelet
due to its similarity to the fault associated impacts [10–
13]. But, the analytic Morlet wavelet parameters, which are
center frequency and shape factor, would exert a great
impact on the results of wavelet ridge demodulation. In
order to select the proper parameters, some techniques have
been employed [10–12]. Unfortunately, there is no mature
theory to tell us how to choose them. In addition, there are
few methods, which can select both center frequency and
shape factor of Morlet wavelet to obtain the optimal time-
scale resolution. Here, genetic algorithm (GA), which not
only has better ability to search the optimal solution but
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also has fast convergence, is introduced to obtain the two
optimal parameters according to the analyzed signal local
characteristics, and Morlet wavelet with optimal parameters
using GA is called self-adaptive wavelet. Therefore we will
utilize self-adaptive wavelet ridge demodulation approach to
obtain better demodulation results in this paper.

On the other hand, to greatly eliminate the background
noise and improve the demodulation accuracy, multicompo-
nent AM-FM signals should be decomposed into monocom-
ponent AM-FM signals before using self-adaptive wavelet
ridge demodulation approach. Empirical mode decomposi-
tion (EMD)method [3, 4, 14, 15] or localmean decomposition
(LMD) method [16–18] is widely employed to decompose
multicomponent AM-FM signal into monocomponent AM-
FM signals in general. However, EMD method still has
theoretical limitations, such as frequency confusion, over-
shooting, undershooting, end effect, and the emergence of
negative frequency components of nonphysical meaning.
Compared to the EMD method, LMD method avoids these
problems to some extent, but its computing speed is much
slower than EMD. Local characteristic-scale decomposition
(LCD) is a new data-driving signal analysis method. Based
on the inherent characteristics of the signal itself, the LCD
method can decompose a complex multicomponent AM-
FM into several intrinsic scale components (ISC). Simul-
taneously, each ISC component is a monocomponent AM-
FM signal which has obvious physical meaning. Our team’s
research works show that compared with the LMD and
EMD method, LCD not only avoids the shortcomings of
EMD and LMD, but also owns much faster computing speed
[19–21]. Therefore, LCD method is used to decompose the
multicomponent gearbox fault vibration signal to a number
of ISCs at first. Subsequently, one or several interesting ISCs
are selected as analyzed component. After that, noise would
be greatly removed to clearly demodulate fault-associated
features component from the selected ISCs.

In summary, targeting the demodulation solution of the
multicomponent AM-FM vibration signal with low signal-
noise ratio produced by gearbox failures, we present a self-
adaptive wavelet ridge demodulation method based on LCD
for fault diagnosis. The rest of the paper is organized as fol-
lows. In Section 2, the wavelet ridge demodulation principle
based on LCD is introduced.Theprocess to get a self-adaptive
wavelet based on GA is described. We describe the proposed
method and the simulation study is provided in Section 4.
The proposed method is applied for incipient fault diagnosis
of gearbox in Section 5. Finally, we offer conclusions in
Section 6.

2. Wavelet Ridge Demodulation Principle
Based on LCD

A real signal of monocomponent can be expressed as
𝑠(𝑡) = 𝐴(𝑡)cos(𝜑(𝑡)). When the instantaneous frequency
of the signal is much larger than the amplitude modulation
frequency, expressed as |𝑑𝜑(𝑡)/𝑑𝑡| ≫ |(1/𝐴(𝑡))(𝑑𝐴(𝑡)/𝑑𝑡)|,

this real signal monocomponent is called a progressive single
frequency signal. Then its analytical signal can be written as

𝑍
𝑠
(𝑡) = 𝐴

𝑠
(𝑡) exp (𝑗𝜑

𝑠
(𝑡)) . (1)

The expression of the instantaneous frequency is

𝑓
𝑠
=

1

2𝜋

𝑑𝜑
𝑠
(𝑡)

𝑑𝑡

. (2)
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As to any scale parameter 𝑎 and translation parameter 𝑏,
suppose 𝜑
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(𝑡) only has a first-order stagnation 𝑡
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Wavelet ridge is defined as a collection of all the points
which meet 𝑡

𝑠
(𝑎, 𝑏) = 𝑏 on a phase plane. The expression of

the collection is 𝑅 = {(𝑎, 𝑏) ∈ 𝐻
2
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ridge line is called wavelet ridge point. Obviously, according
to formula (5), there is
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Here can be seen that instantaneous frequency can be
extracted from the wavelet ridge points.

Also, the wavelet coefficients of signal 𝑠(𝑡) about �̃�(𝑡) can
be expressed as
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(7)

where �̂�(𝜔) is the Fourier transform of 𝜓(𝑡). And the wavelet
coefficients modulus is initially defined as
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As to wavelet ridge point, it can be seen that 𝜔0/𝑎𝑟 −
𝜑


𝑠
(𝑏) = 0 from formula (6). So the wavelet coefficients

modulus of wavelet ridge point is further expressed as
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So, it can be seen that signal instantaneous frequency
can be gained after the wavelet ridge is extracted, which is
expressed as

𝑓
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where 𝜔
0
is the center frequency of �̃�(𝑡); that is, 𝜔
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As presented above, it is clear that the demodulation
analysis of monocomponent AM-FM signal based onwavelet
ridge is feasible. However,most vibration signals produced by
gearbox failures are generally multicomponent AM-FM sig-
nals.They should be decomposed intomonocomponentAM-
FM signals by appropriate time-frequency signal processing
method before demodulation. In this paper, LCD method is
employed to accomplish the signal decomposition.

The LCD method has the assumptions that a complex
signal consists of a number of ISCs (Intrinsic Scale Compo-
nent, ISC) and any two ISCs are independent of each other.
In the entire data segment, ISC must meet the following two
conditions.

(I) The maximal value is positive, the minimum value is
negative, and the data set are monotonic between any
two adjacent extreme points.

(II) Let all the extreme points be written as (𝑋
𝑘
, 𝜏
𝑘
),

𝑘 = 1, 2, . . . ,𝑀; the line 𝑙
𝑘
determined by any two
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𝑘
, 𝜏
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𝑘
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when 𝛼 = 0.5, 𝐴
𝑘+1

= −𝑋
𝑘+1

.
Based on this definition, a complexmulticomponentAM-

FM signal can be decomposed into the sumof a finite number
of ISCs and a residual signal. Each ISC is a monocomponent
AM-FM signal whose instantaneous frequency has specific
physical meaning. That is,

𝑥 (𝑡) =

𝑁

∑

𝑖=1

𝑐
𝑖
(𝑡) + 𝑢 (𝑡) , (14)

where 𝑐
𝑖
(𝑡) is the 𝑖th ISC component and 𝑢(𝑡) is the residual

signal.

3. Self-Adaptive Wavelet

3.1. MorletWavelet Frequency Resolution. When there is local
failure for gear, the fault gear teeth will stimulate system
to produce a convergent impact response and the vibration
signal collected by the acceleration sensor shows the obvious
multicomponent modulation characteristic. Therefore, as
mentioned above, we can adopt wavelet ridge demodulation
based on LCD to extract the fault feature. In order to match
this kind of signal, analytic Morlet wavelet with impact
feature is chosen, which is defined as
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1
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exp(− 𝑡
2
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The Fourier transform of 𝜓(𝑡) is represented as
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where 𝑓
𝑏
is the shape factor and 𝑓

𝑐
is the center frequency,

whose numerical values determine the speed of thewaveform
vibration damping, respectively; from formula (16), Morlet
wavelet quality factor is 𝑄 = √2𝜋𝑓

𝑐
√𝑓
𝑏
/√ln2. So, the best

frequency resolution can be gained by adjusting 𝑓
𝑏
and 𝑓

𝑐
,

which can result in a good time-scale accumulation.

3.2.The Procedure of Obtaining Self-AdaptiveWavelet. Sparse
degree of wavelet coefficients can characterize the degree
of similarity between the basic wavelet function and signal.
The energy entropy of wavelet can indicate this sparse
degree, which shows accumulation performance of wavelet
coefficients. As to each specific scale 𝑗, the wavelet energy
entropy is defined as

𝑊
𝐸
= −∑

𝑗

𝑃
𝑗
ln𝑃
𝑗
, (17)

where 𝑃
𝑗
= 𝐸
𝑗
/𝐸
𝑇
is the probability of energy distribution

(∑𝑃
𝑗
= 1), 𝐸

𝑗
= ∫𝑊

2

(𝑗, 𝜏)𝑑𝜏 is the wavelet energy, 𝑊(𝑗, 𝜏)

is the wavelet coefficient, and 𝐸
𝑇
= ∑
𝑗
𝐸
𝑗
is the total wavelet

energy within the time scale plane.
Accordingly, the wavelet energy entropy is taken as

the objective function during selecting the optimal wavelet
parameters. To optimize wavelet parameters, genetic algo-
rithm (GA) and particle swarm optimization (PSO) [22,
23] are two widely utilized approaches. In this paper, GA
is employed to optimize either envelope factor or center
frequency with wavelet energy entropy as the fitness func-
tion. That wavelet with optimal parameters is called self-
adaptive wavelet. The procedure to get self-adaptive wavelet
is described as follows.

Step 1. Set search prime range and population size of param-
eters, 𝑓

𝑏
and 𝑓

𝑐
, and randomly generate initial population.

In this paper, the population size is set to 100 and the
parameters are, respectively, encoded as 10-bit binary string
chromosomes by binary coding method.
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Step 2. Make wavelet decomposition of the signal and calcu-
late the fitness value of each individual according to formula
(17). Then, sort the fitness values by size.

Step 3. Based on individual fitness value in the search space,
individuals are screened and evolved by a series of genetic
manipulation, selection, reproduction, crossover, mutation,
and so forth to constantly update and select populations.

Step 4. In this step, it is determined whether iteration
satisfies the termination condition or not. If satisfied, the
optimal solution is finished. If not satisfied, go to Step 2 until
the optimal solution is got. The optimization procedure of
wavelet parameters via GA is shown in Figure 1.

4. The Proposed Method and Simulation

Since demodulation technique is an effectiveway to reveal the
fault characteristic frequency for fault diagnosis of gearbox,
a self-adaptive wavelet ridge demodulation based on LCD
for fault diagnosis is proposed in this paper. Firstly, LCD
method is adopted to decompose the original signal into
a number of ISC components, and lower frequency noise
is decreased by selecting special ISC component which
contains rich fault feature. Secondly, the genetic algorithm is
used to optimize wavelet parameters to obtain self-adaptive
wavelet based on wavelet energy entropy which is served
as the objective function. Thirdly, the self-adaptive wavelet
ridge demodulation for the selected ISC component is used
to extract dynamic information. Finally, the characteristics
frequency can be obtained to identify the working state or
failure information from the spectrum. The flowchart of the
proposed fault diagnosis method was illustrated in Figure 2.

To verify the validity of the proposed method, let us
consider the following signal:

𝑥 (𝑡) = 𝑥
1
(𝑡) + 𝑥

2
(𝑡) ,

𝑥
1
(𝑡) = (1 + 0.5 cos 20𝜋𝑡) sin (200𝜋𝑡 + 2 cos 20𝜋𝑡) ,

𝑥
2
(𝑡) = sin𝜋𝑡 sin 20𝜋𝑡 𝑡 ∈ [0, 1] .

(18)

Obviously, 𝑥(𝑡) is a complexmulticomponentAM-FM signal,
containing AM-FM component 𝑥1(𝑡) and AM component
𝑥2(𝑡). The sampling frequency is 1000Hz. Time domain
waveforms of simulation signal 𝑥(𝑡) and its LCD decompo-
sition results are shown in Figure 3, where the two ISC com-
ponents ISC1 and ISC2 correspond to the two components
𝑥1(𝑡) and 𝑥2(𝑡).

Then, the wavelet parameters are optimized according
to the signal itself using genetic algorithms. For ISC1, the
optimal parameters are determined as 𝑓

𝑏
= 2.2316 and

𝑓
𝑐
= 1.0532. Figure 4 shows the evolution curve of GA. For

ISC2, the optimal parameters are 𝑓
𝑏

= 4.1203 and 𝑓
𝑐

=

1.0012. Ultimately, the signal is transformed self-adaptively
using Morlet wavelet to extract wavelet ridge, and ISC1 and
ISC2 are demodulated based on the formula (10) and (11).
The demodulation results are shown in Figures 5 and 6,
respectively.

Genetic manipulation

crossover, and mutation)

Optimal solution

Yes

No

Starting

Wavelet decomposition

Fitness value calculation 
and evaluation of 
individual fitness

Termination conditions 

End

Population initialization

and energy entropy

(selection, reproduction,

Figure 1: Flowchart of wavelet parameters optimization by GA.

For the instantaneous amplitude of ISC1, to eliminate the
border effect of the wavelet transformation, the boundary is
processed by symmetric extensionmethod.The result is given
in Figure 7.

From the above analysis results, it can be seen that self-
adaptive wavelet ridge demodulation method based on LCD
can precisely demodulate a complex multicomponent AM-
FMsignal. In order tomake comparative analysis, the demod-
ulation analysis results of ISC1 using Hilbert demodulation
method are given in Figure 8, fromwhich it can be found that
the demodulation curve is not smooth and the demodulation
error is bigger due to inevitable window effects by Hilbert
demodulation method [4]. The above comparison results
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Collect vibration signals 

Apply LCD decomposition

Extract the fault characteristic

Select useful ISC component

Apply self-adaptive wavelet ridge

demodulation to the selected ISC

Optimize wavelet parameters by GA

Identify fault type

Figure 2: Flowchart of the proposed method.

indicate the proposed method is superior to the Hilbert
demodulation method.

Let us consider another multicomponent AM-FM signal
𝑦(𝑡)which is a simulated faulty signal of gearbox and defined
as follows:

𝑦 (𝑡) = 𝑦
1
(𝑡) + 𝑦

2
(𝑡) ,

𝑦
1
(𝑡) = [0.4 + 0.2 cos (2𝜋 × 10𝑡)]

⋅ sin [2𝜋 × 600𝑡 + cos (2𝜋 × 20𝑡)] ,

𝑦
2
(𝑡) = [1 + 0.5 cos (2𝜋 × 20𝑡)]

⋅ sin [2𝜋 × 300𝑡 + cos (2𝜋 × 15𝑡)] .

(19)
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The time domain waveform is shown in Figure 9. The
sampling frequency is 2000Hz. Through LCD method, two
ISC components are presented in Figure 10. Obviously, the
two ISC components are consistent with the two components
𝑦1(𝑡) and 𝑦2(𝑡). By optimizing wavelet energy entropy, self-
adaptive wavelet parameters for the first ISC signal are
determined as 𝑓

𝑏
= 9.7752 and 𝑓

𝑐
= 0.7428, the parameters

for the second ISC signal as 𝑓
𝑏

= 4.0585 and 𝑓
𝑐

=

1.0678. The self-adaptive wavelet transform results for the
two ISCs are provided in Figures 11 and 12. It can be found
that the IA’s frequency of the first ISC signal is 10Hz and
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signal.
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Figure 11: Demodulation results of the 1st ISC of simulation signal
𝑦(𝑡) by the proposed method.

the IF’s frequency is 20Hz and that IA’s frequency of the
second ISC signal is 20Hz and the IF’s frequency is 15Hz.
These results are consistent with the two components in the
original simulation signal. Therefore the proposed method
can effectively demodulate multicomponent AM-FM signal
and is suitable for fault diagnosis of gearbox.

For comparison, we use EMD method to make signal
decomposition and use self-adaptive wavelet ridge demodu-
lation approach to demodulate. We obtained eight IMFs in
total. After analysis, we noted the first two IMFs reflected the
modulation characteristics; hence they are considered as the
two components. The demodulation results of the first two
IMFs by self-adaptive wavelet ridge demodulation approach
are provided in Figures 13 and 14. It can be seen that the
FM component of the first IMF failed to be demodulated
and the energy of the spectra of the second IMFs is lower.
Then, energy operator demodulation based on EMD [4] is
used and the results are shown in Figure 15. From these
figures, it is shown that the serious mode mixing exists in
the EMDdecomposition, which influences the demodulation
accuracy. However, from Figures 11 and 12, it is noted that
LCD approach may diminish this problem and be superior
to EMD approach.

Finally, we add a Gaussian white noise with deviation of
0.2 to 𝑦(𝑡). LCD decomposes the noisy signal into five ISCs.
By the method introduced in Section 3.2, the optimal Morlet
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Figure 12: Demodulation results of the 2nd ISC of simulation signal
𝑦(𝑡) by the proposed method.

wavelet parameters for the first two ISCs, which contain
modulation information, are determined. The demodulation
results of the first two ISCs are shown in Figure 16.The results
by energy operator demodulation based on LCD to the first
two ISCs are given in Figure 17. It can be obviously found that
self-adaptive wavelet demodulation approach based on LCD
has better noise tolerant performance than energy operator
demodulation approach based on LCD.

5. Application to Incipient Fault Diagnosis

5.1. Gear Crack Fault Diagnosis. A gear crack fault diagnosis
experiment is carried out on bearing-gear test rig as shown in
Figure 18. In this test, themotor power is 600W; both driving
gear and driven gear are standard spur gear whose modulus
is 2.5mm and the number of teeth is 37.The input and output
shafts are arranged in parallel. They are supported by two
roller bearings. A crack with 0.15mm width and 1mm depth
at the root of the driving gear tooth is set by wire cutting
machining to simulate the gear incipient crack failure. The
vibration signals were collected by an accelerometer attached
to the bearing housing.The shaft speed is 360 rev/min; that is,
the drive shaft rotation frequency is 𝑓

𝑟
= 6Hz. The sampling

frequency is 1024Hz and the length of sampling data is 1024
point.Thedomainwaveformof the vibration signalmeasured
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Figure 13: Demodulation results of the 1st IMF of simulation signal
𝑦(𝑡) by self-adaptive wavelet ridge demodulation approach based on
EMD.

and envelope spectrum are shown in Figure 19. From which
it can be seen that fault characteristics are submerged by the
background noise and the characteristics frequency fail to be
identified.

Since the vibration signal with gear crack is a multi-
component AM-FM signal (AM-FM), we used the proposed
method for fault diagnosis. Firstly, the vibration acceleration
signal was decomposed into four ISC components ISC

1
∼ISC
4

and a residual component 𝑟 by LCD method, as shown in
Figure 20. Because the carrier frequency of gear vibration sig-
nals is generally gear meshing frequency and its harmonics,
we select the first ISC with the highest frequency for analysis.
Figure 21 shows the Hilbert demodulation results of the
first ISC, showing instantaneous amplitude contains complex
high-frequency interference and some negative frequency
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Figure 14:Demodulation results of the 2nd IMFof simulation signal
𝑦(𝑡) by self-adaptive wavelet ridge demodulation approach based on
EMD.

exists in the instantaneous frequency waveform, which is
related to the measured signal.

Then, the optimum wavelet parameters 𝑓
𝑏
= 4.8574 and

𝑓
𝑐
= 0.7832 were selected. Lastly, the self-adaptive wavelet

ridge demodulation was carried out. The IA waveform and
its frequency spectrum obtained are shown in Figure 22,
from which the fault characteristics frequency 𝑓

𝑟
= 6Hz

and its harmonics 3𝑓
𝑟
, 4𝑓
𝑟
, and 5𝑓

𝑟
are clearly found. These

demonstrate that a local defect has occurred in the gear on
the drive shaft, which is consistent with the drive gear state.
That is, the proposed method is effective for gear crack fault
diagnosis.

In addition, we use the self-adaptive wavelet ridge
demodulation approach to analyse the original signal as
exhibited in Figure 23, where the spectrum contains the fault
characteristics frequency and its harmonic as well, which
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Figure 15: Demodulation results of simulation signal 𝑦(𝑡) by energy
operator demodulation based on EMD.

outperform the excellent time-frequency localization ability
of self-adaptive wavelet. But, some unknown frequency is
involved because of background noise. Moreover, it can be
noted that the harmonic in Figure 22 is richer and clearer
than that in Figure 23. In fact, through signal decomposition
by LCDand ISC selection,most of noise can be removed from
analysis signal. Therefore, the proposed method is effective
and superior in application to weak fault diagnosis for gear.

5.2. Bearing Inner-Race Fault Diagnosis. The vibration signal
of roller bearing with inner-race fault is complex and weak;
it is difficult to identify the fault state. To further verify
the effectiveness of the proposed method, we made bearing
inner-race fault diagnosis experiment.

The data was downloaded from the website of the
Case Western Reserve University Bearing Center [24]. The
test stand consists of a 2 hp motor, a torque transducer,
a dynamometer, and control electronics. The test bearing
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Figure 16: Demodulation results of simulation signal with noise by
the proposed method.

is at the drive end; a single point defect was introduced
into the inner raceway of the test bearing. The size of the
single point defect is 0.178mm in diameter and 0.279mm in
depth using electrodischarge machining. An accelerometer
attached to the bearing housing collected vibration data with
the sampling frequency as 12 kHz. The shaft rotating speed
of the bearing inner-race is 1750 rev/min; the characteristic
frequency of the roller bearing with inner-race fault is 𝑓

𝑜𝑖
=

158Hz.
Figure 24 presents the time domain waveform and spec-

trum of a bearing vibration signal. From the spectrum, it can
be seen that there are three center frequency bands and their
side frequency bands, which show that main modulation
characteristics exhibits in the high frequency band. However,
the fault characteristic frequency is not clear in the spectrum.
Here, we used the proposed method to demodulate. The
bearing vibration signal was decomposed into thirteen ISCs
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Figure 17: Demodulation results of simulation signal with noise by
energy operator demodulation approach based on LCD.

and the first ISC with the highest frequency, as shown in
Figure 25, was selected for analysis. The optimal Morlet
wavelet parameters were determined as 𝑓

𝑏
= 12.8576 and

𝑓
𝑐
= 0.6862.The IA waveform and its spectrum are shown in

Figure 26, from which we can clearly see the spectrum lines
at the fault characteristic frequency 𝑓

𝑜𝑖
and its harmonics,

which shows that a local failure occurs in the inner raceway
of bearing. This is consistent with the fact state.

Besides, through comparison of Figure 24 with Figure 25,
we can find that applying LCD decomposition equals to
design adaptive band-pass filter, whose center frequency is
automatically determined with the inherent characteristics
of analyzed signal. Simultaneously, the selection of special
ISC with higher frequency for analysis leads to decrease of
the influence of lower frequency noise to suit weak fault
feature extraction. In addition, due to concern of main

1 2 3 4 5 6 7 8 9 10 11

(1) Induction motor
(2) Speed controller
(3) Coupling
(4) Bearing number 1 and bearing housing
(5) Bearing number 2 and bearing housing
(6) Drive gear
(7) Driven gear

(9) Vibration acceleration sensor
(10) Speed sensor

(8) Bearing number 3 and bearing housing

(11) Bearing number 4 and bearing housing

Figure 18: Bearing-gear test rig for vibration signal acquisition.
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Figure 19: Time domain waveform and envelope spectrum of a
faulty gear vibration signal.

energy on the time-scale distribution, self-adaptive wavelet
ridge modulation has excellent time-frequency localization
property, as seen in Figure 23. Therefore, the application
results show the proposed method is simple and effective for
weak bearing inner-race fault diagnosis.

6. Conclusion

LCD method is a new signal decomposition approach,
which is suitable to preprocess the multicomponent AM-
FM signal. Wavelet ridge demodulation method is based on
wavelet transform in the time-frequency domain, focusing
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Figure 20: LCD decomposition results of a faulty gear vibration signal.
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Figure 21: Demodulation results of the 1st ISC by Hilbert approach.

on main energy on the time-scale distribution. It is less
sensitive to signal bandwidth and noise, especially using
the wavelet transform with optimal parameters, called self-
adaptive wavelet. Therefore, with combination of the above
two approaches, a self-adaptive wavelet ridge demodulation
method based on LCD for fault diagnosis is presented.

Using two simulation signals, we compare the proposed
method with the following four approaches: Hilbert demod-
ulation, energy operator demodulation based on EMD, self-
adaptive wavelet ridge demodulation based on EMD, and
energy operator demodulation based on LCD. Analysis
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Figure 22: Instantaneous amplitude and its spectrum of the 1st ISC
by the proposed method.

results show that the proposedmethod has higher demodula-
tion accuracy and higher noise tolerant performance than the
others. Finally, we applied the proposed method to incipient
fault diagnosis of gearbox. The application results show the
proposed method is simple and effective for incipient fault
diagnosis of gearbox.
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Figure 23: Instantaneous amplitude and its spectrum of the orig-
inal vibration signal by self-adaptive wavelet ridge demodulation
approach.
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Figure 24: Time domain waveform and spectrum of a roller bearing
vibration signal with inner-race defect.
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Figure 25: Time domain waveform and spectrum of the 1st ISC of
a roller bearing vibration signal with inner-race defect.
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1st ISC of a roller bearing vibration signal with inner-race defect.
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