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This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial
information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the
relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous
is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the
system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

1. Introduction

With further exploration into the space, a set of complexmis-
sions is in the space development agenda such as large-scale
structure assembling, sending and picking up astronauts, and
repairing, saving, and docking, orbital propellant resupply
based on the autonomous rendezvous technology [1]. Due
to the essential position, many scholars have been focusing
on the control problem during rendezvous and some results
enlightened deeper research. In the approximately circular
orbit, C-W equations [2], derived by Clohessy and Wiltshire,
have been widely applied for the depiction of the relative
motion between neighboring spacecrafts. The early stage of
control design based on C-W equation revealed a number of
open-loopmethods such as V-bar, R-bar, dual impulsive, and
multiple impulsive [3]. With the benefits of control theory
flourishing, plenty of advanced control methods are used
to solve the rendezvous problems such as using artificial
potential function in [4], slidingmode control in [5], adaptive
control in [6], and H-infinity theory in [7].

Though theC-Wequation supplies an explicit description
of the relative motion for spacecrafts, there is an obstacle
when applied in reality that the real-time angle velocity of the
target spacecraft could not be obtained accurately as result
of detection errors and perturbation from environment. This
parameter uncertainty affects the control force and system
stability directly. It is necessary to investigate the uncertain
model for spacecraft rendezvous not depending on accurate

value of real-time angle velocity. The traditional robust
control method could deal with parametric uncertainty to
recognize rendezvous but some expecting system characters
are hard to be included during the control design.

In this paper, the spacecraft rendezvous problem with
uncertain parameter would be solved by robust parametric
method which allows freedom to improve system perfor-
mance. The robust control integrates eigenstructure assign-
ment andmodel reference theory to propose a concise control
law for spacecraft rendezvous which takes into consideration
the system performance such as the control constraints and
fuel saving. In the rest of this paper, a relative motion
model with uncertainty for the spacecraft rendezvous is to
be established; the design of the robust parametric control
law follows; besides, we apply the robust parametric control
for an example to illustrate the effectiveness of this design
approach.

2. Problem Formation

2.1. Equations of Motion. The coordinate frame for the two
spacecrafts rendezvous is based on the target spacecraft orbit,
described in Figure 1. We set the original point at the target’s
mass center; 𝑥, 𝑦, and 𝑧 indicate along-track, the radial, and
out of plane components of the position vector of the chaser
satellite in the target satellite’s local-vertical-local-horizontal
(LVLH) frame, respectively.
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Figure 1: Orbital coordinate.

The spacecraft rendezvous in the circle orbit would obey
the C-W equations

𝑥̈ − 2𝜔 ̇𝑦 = −𝑓
𝑥

̈𝑦 − 2𝜔𝑥̇ − 3𝜔
2

= −𝑓
𝑦

𝑧̈ + 𝜔
2

𝑧 = −𝑓
𝑧
,

(1)

where 𝑥, 𝑦, and 𝑧 stand for the relative position between the
chase spacecraft and the target spacecraft; 𝜔 represents the
average angle velocity of the target spacecraft; 𝑓

𝑥
, 𝑓
𝑦
, and 𝑓

𝑧

stand for the control acceleration on each axis.
According to the equation, the state and control vector

can be described as

𝑋 = [𝑥 𝑦 𝑧 𝑥̇ ̇𝑦 𝑧̇]

𝑇

,

𝑢 = [−𝑓
𝑥
−𝑓
𝑦
−𝑓
𝑧
]

𝑇

,

(2)

and output vector 𝑌 can be

𝑌 = [𝑥 𝑦 𝑧]

𝑇

. (3)

Then, we get

𝑋̇ = 𝐴𝑋 + 𝐵𝑢

𝑌 = 𝐶𝑋,

(4)

where

𝐴 =

[

[

[

[

0
3

I
3

0 0 0 0 −2𝜔 0

0 3𝜔
2

0 2𝜔 0 0

0 0 −𝜔
2

0 0 0

]

]

]

]

𝐵 = [

0
3

I
3

] , 𝐶 = [I
3
0
3
] ,

(5)

and 0
3
represents the matrix with the values of all elements

equal to zero; I
3
represents the unit matrix.

2.2. Problem Description. The classical C-W equations need
accurate angle velocity simultaneously which is difficult to
obtain due to the detection error. Therefore, we consider the
uncertain item 𝜃 to the angle velocity to make the system
model closer to reality.

When the angle velocity changes are

𝜔 = 𝜔
0
(1 + 𝜃) , (6)

the system model can be described as

𝑋̇ = 𝐴
𝑐
𝑋 + 𝐵𝑢

𝑌 = 𝐶𝑋,

(7)

where

𝐴
𝑐
= 𝐴
0
+ Δ𝐴

𝐴
0
=

[

[

[

[

0
3

I
3

0 0 0 0 −2𝜔
0
0

0 3𝜔
2

0
0 2𝜔

0
0 0

0 0 −𝜔
2

0
0 0 0

]

]

]

]

Δ𝐴 =
[

[

[

0
3

0
3

0 0 0 0 −2𝜃𝜔
0
0

0 3𝜔
2

0
(2𝜃 + 𝜃

2

) 0 2𝜃𝜔
0
0 0

0 0 −𝜔
2

0
(2𝜃 + 𝜃

2

) 0 0 0

]

]

]

.

(8)

The object of the designing control law is to recognize

lim
𝑡→∞

[𝑌 (𝑡) − 𝑌
𝑟
(𝑡)] = 0, (9)

where 𝑌(𝑡) is the output of the system and 𝑌
𝑟
(𝑡) represent

the reference relative position between chase spacecraft and
target spacecraft. Meanwhile, the uncertainty brings trouble
to the stability of the system which would be taken into
consideration during designing the control law.

3. Design of Robust Parametric Control

The design of the control law aims at reaching the reference
point of the chase spacecraft and keeping the closed loop
system stable. It could be separated into two parts as stabi-
lization controller and trajectory tracking controller.

3.1. Trajectory Tracking Controller. To begin with, we would
design the tracking controller based on the model reference
theory. Lemma 1 supplies theoretical evidence for the linear
tracking problems referred to [8].

Lemma 1. For the system, if the stabilization feedback control
law 𝐾 exists, the control law following the form as

𝑢 = 𝐾𝑋 + 𝐺𝑌
𝑟

(10)

would obtain the result of tracking reference signal, which
means that

lim
𝑡→∞

[𝑌 (𝑡) − 𝑌
𝑟
(𝑡)] = 0, (11)
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where feedforward control law 𝐺 could be calculated from the
following equation:

𝐺 = 𝑈 − 𝐾𝑍 (12)

and 𝑈, 𝑍 could be calculated as

[

𝑍

𝑈
] = [

𝐴 𝐵

𝐶 𝐷
]

−1

[

0

𝐼
] . (13)

According to Lemma 1, the rendezvous system could
track the reference position when the feedback control law
𝐾 stabilizes the system. Then, the critical task of designed
controller is to find a robust stabilization control law 𝐾.
Regarding the eigenstructure assignment of linear system,
some useful results would be utilized in the later part which
are from [8].

Lemma 2. Suppose 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑟, and (𝐴, 𝐵) is
controllable. 𝑠

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are a set of complex numbers,

which are symmetric about the real axis. Then, the matrices
𝐾 ∈ R𝑟×𝑛 and 𝑉 ∈ C𝑛×𝑛 satisfying

𝐴 = 𝐴 + 𝐵𝐾 = 𝑉 diag (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
) 𝑉
−1 (14)

are given by

𝐾 = 𝑊𝑉
−1

𝑉 = [V
1
V
2
⋅ ⋅ ⋅ V
𝑛
] , V

𝑖
= 𝑁 (𝑠

𝑖
) 𝑓
𝑖

𝑤 = [𝑤
1
𝑤
2
⋅ ⋅ ⋅ 𝑤

𝑛
] , 𝑤

𝑖
= 𝐷 (𝑠

𝑖
) 𝑓
𝑖
,

(15)

where 𝑓
𝑖
∈ C𝑟, 𝑖 = 1, 2, . . . , 𝑛, are arbitrary vectors which

satisfy

𝑓
𝑖
= 𝑓
𝑗

if 𝑠
𝑖
= 𝑠
𝑗

det (𝑉) ̸= 0

(16)

and 𝑁(𝑠) and 𝐷(𝑠) are right comprime polynomial matrices
satisfying

(𝑠𝐼 − 𝐴)
−1

𝐵 = 𝑁 (𝑠)𝐷
−1

(𝑠) . (17)

For the rendezvous system in this paper, we could
calculate according to Lemma 2 as

𝑁(𝑠) =
[

[

−1 0 0 −𝑠 0 0

0 −1 0 0 −𝑠 0

0 0 −1 0 0 −𝑠

]

]

𝑇

𝐷 (𝑠) =
[

[

−𝑠
2

−2𝜔
0
𝑠 0

−2𝜔
0
𝑠 3𝜔
2

0
− 𝑠
2

0

0 0 𝜔
2

0
− 𝑠
2

]

]

.

(18)

Lemma 2 supplies a concise parametric formula for state
feedback law 𝐾 in which the poles of the closed-loop
system are included. Proper poles would not only guarantee
the system stabilization but also enhance system characters
through optimization in some specific fields. Besides, the
parametric method offers all kinds of freedom to design
the control system with the free parametric vectors 𝑓

𝑖
, 𝑖 =

1, 2, . . . , 𝑛, which enable us to adjust these parameters for
system stabilization.

3.2. Stabilization Controller. Using the control law

𝑢 = 𝐾𝑋 + 𝐺𝑌
𝑟
, (19)

the closed-loop system can be described as

𝑋̇ = (𝐴
𝑘
+ Δ𝐴)𝑋 + 𝐵𝐺𝑌

𝑟
, (20)

where

𝐴
𝑘
= 𝐴
0
+ 𝐵𝐾. (21)

When𝐴
𝑘
is a nondefectivematrix and the closed-loop system

owns the required poles 𝑠
𝑖
(𝑖 = 1, 2, . . . , 𝑛), the sufficient

condition for the system stabilization with the uncertainty
item Δ𝐴 is [9]

‖Δ𝐴‖
2
<

1

‖𝑃‖
2

, (22)

where 𝑃 is a symmetric positive definite solution of the
following:

𝐴
𝑇

𝑘
𝑃 + 𝑃𝐴

𝑘
= −2𝐼. (23)

Lemma 3 provides the parametric expression for 𝑃 based on
the eigenstucture of the system.

Lemma 3. The solution to (23) has the following parametric
representation:

𝑃 = 2𝑉
−𝑇

𝑄𝑉
−1

, (24)

where

𝑄 = [−

V𝑇
𝑖
V
𝑗

𝑠
𝑖
+ 𝑠
𝑗

]

𝑛×𝑛

(25)

and 𝑠
𝑖
, V
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are respectively the eigenvalues and

corresponding eigenvectors of 𝐴
𝑘
.

For a better stabilization system, we hope to minimize
‖𝑃‖
2
which is the result of some adjustments for the parame-

ters 𝑠
𝑖
(𝑖 = 1, 2, . . . , 𝑛) and 𝑓

𝑖
(𝑖 = 1, 2, . . . , 𝑛).

3.3. Optimization of Control Law. We have established the
connection between the system characters and the parame-
ters 𝑠
𝑖
and 𝑓
𝑖
through the design of the control law.Therefore,

the design problem for the rendezvous system can be con-
verted into the following nonlinear optimization problem:

min 𝐽 (𝑠
𝑖
, 𝑓
𝑖
) (26a)

s.t. 𝑎
𝑖
≤ Re (𝑠

𝑖
) ≤ 𝑏
𝑖
< 0 (26b)

𝑐
𝑖
≤ Im (𝑠

𝑖
) ≤ 𝑑
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (26c)

where 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, and 𝑑

𝑖
specify the desired areas of the closed-

loop eigenvalues.
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Figure 2: Autonomous rendezvous trajectory of chaser.
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Figure 3: Control inputs during rendezvous mission.

The performance index is chosen as follows:

𝐽 = 𝛼𝐿
𝑇

𝐾
𝑇

𝐾𝐿 + 𝛽‖𝐾‖
𝐹
+ 𝛾‖𝑃‖

2
, (27)

where 𝐿 denotes the initial state of system; 𝛼, 𝛽, and 𝛾 are
the weighting factors. The first part of (27) is chosen due to
the consideration of the input constraint. The second item of
(27) takes into consideration fuel consumption. The last part
of (27) is used for global stability of the rendezvous system.

The optimization discussed above could be solved resort-
ing to the optimization tool in MATLAB for its convenience.
Then, the poles 𝑠

𝑖
(𝑖 = 1, 2, . . . , 𝑛) of the system and free

parametric vectors 𝑓
𝑖
(𝑖 = 1, 2, . . . , 𝑛) would be fixed to

calculate the feedback matrix for the robust control.

4. Numerical Simulations

In this section, our control law designed through the method
proposed above would be tested by an example of spacecrafts
in the final approaching in rendezvous mission. With the
assumption that the target is in the geosynchronous orbit,
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Figure 4: Relative position of two spacecraft.

we set the standard angle velocity 𝜔
0
= 7.2921 × 10

−5 rad/s.
Suppose the initial state vector is

𝑋(0) = [500 −1500 −800 −1.0 0.1 0.1]

𝑇 (28)

and the desired final state is

𝑋(𝑡
𝑓
) = [0 0 0 0 0 0]

𝑇

, (29)

where 𝑡
𝑓

is final time of the rendezvous mission. The
weighting factors in the performance index 𝐽 are

𝛼 = 0.1, 𝛽 = 15, 𝛾 = 0.0001. (30)

Specify the desired closed-loop eigenvalue regions as

−0.1 ≤ Re (𝑠
𝑖
) ≤ −0.001, −0.1 ≤ Im (𝑠

𝑖
) ≤ 0.1. (31)

By solving the optimization problem (26a), (26b), and
(26c), we gain the poles 𝑠

𝑖
of the system and free parametric

vectors 𝑓
𝑖
, 𝑖 = 1, 2, . . . , 6,

𝑠
1,2
= −0.0064 ∓ 0.0008i, 𝑠

3,4
= −0.0456 ∓ 0.0519i,

𝑠
5,6
= −0.0606 ∓ 0.0094i

𝑓
1,2
=
[

[

−11.0091 ∓ 50.3604i
−0.8446 ± 20.1762i
−2.1281 ± 0.5444i

]

]

,

𝑓
3,4
=
[

[

14.0820 ± 2.7142i
5.5407 ∓ 20.7854i
−12.6640 ± 26.1508i

]

]

,

𝑓
5,6
=
[

[

31.5687 ± 7.1917i
−1.5892 ± 4.2163i
−0.3478 ± 12.9690i

]

]

.

(32)

According to Lemma 2 and (15), we get
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𝑉 =

[

[

[

[

[

[

11.0091 + 50.3604i 11.0091 − 50.3604i −14.0820 − 2.7142i −14.0820 + 2.7142i −31.5687 − 7.1917i −31.5687 + 7.1917i
0.8446 − 20.1762i 0.8446 + 20.1762i −5.5407 + 20.7854i −5.5407 − 20.7854i 1.5892 − 4.2163i 1.5892 + 4.2163i
2.1281 − 0.5444i 2.1281 + 0.5444i 12.6640 − 26.1508i 12.6640 + 26.1508i 0.3478 − 12.9690i 0.3478 + 12.9690i
−0.1107 − 0.3135i −0.1107 + 0.3135i 0.7830 − 0.6071i 0.7830 + 0.6071i 1.9807 + 0.1391i 1.9807 − 0.1391i
0.0107 + 0.1298i 0.0107 − 0.1298i −0.8261 − 1.2354i −0.8261 + 1.2354i −0.056 + 0.2704i −0.056 − 0.2704i
−0.0132 + 0.0052i −0.0132 − 0.0052i 0.7797 + 1.8497i 0.7797 − 1.8497i 0.1008 + 0.7892i 0.1008 − 0.7892i

]

]

]

]

]

]

𝑊 = [

−0.0001 + 0.0022i −0.0001 − 0.0022i 0.0217 − 0.0651i 0.0217 + 0.0651i −0.1050 − 0.0617i −0.1050 + 0.0617i
0.0002 − 0.0009i 0.0002 + 0.0009i −0.0949 − 0.0389i −0.0949 + 0.0389i 0.0108 − 0.0132i 0.0108 + 0.0132i

0.0001 0.0001 0.1160 + 0.0760i 0.1160 − 0.0760i 0.0160 + 0.0461i 0.0160 − 0.0461i
] .

(33)

Then, the stabilization control law 𝐾 to (15) is

𝐾 = [

−0.0011 −0.0020 0.0027 −0.0685 −0.0435 −0.0271

0.0005 0.0013 −0.0028 0.0170 0.0149 −0.0587

0.0000 −0.0009 0.0013 0.0053 −0.1128 −0.0040

] .

(34)

Assume the uncertainty 𝜃 = 0.01 which leads to

‖Δ𝐴‖
2
= 1.4584 × 10

−6

. (35)

Meanwhile, the closed-loop poles 𝑠
𝑖
and parametric vectors

𝑓
𝑖
could be used to calculate as

1

‖𝑃‖
2

= 1.5037 × 10
−5

. (36)

It is obvious that the rendezvous process could reach the
desired state with the control law 𝐾 when the inequality
(22) has satisfied. The rendezvous trajectory and the relative
position of the two spacecraft are showed in Figures 2 and
4 and the effectiveness could be proved simultaneously. Due
to the proper optimization function, the control inputs have
been constrained to [−1, 1] which can be seen in Figure 3.
The motion in every axis direction changes smoothly so that
the simulation system gets closer to the real engineering
requirement showed in Figure 3.

5. Conclusion

This paper has proposed a method to design the robust
control law for spacecraft rendezvous in the final approach
subject to parameter uncertainty in near circle orbit. Based on
the eigenstructure assignment and model reference theory,
the control law is constructed with the closed-loop poles and
design freedom. Through solving an optimization problem,
we obtain the poles and parametric vectors to calculate the
control law which has been proved useful by simulation.
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