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This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface.The plate is
suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing
nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0 ≤ 𝜏 < ∞. Flow
properties of the viscoelastic fluid are discussed through graphs.

1. Introduction

Boundary-layer flows over flat surfaces are fundamental for
the understanding of aerodynamical properties of the flow
such as wall friction and the dynamical drag. Due to the
boundary-layer theory proposed by Prandtl in 1904 [1], it
became possible to calculate the drag on a sphere accurately.
Blasius [2] investigated the boundary-layer flow past a flat
plate at zero incidence. The wall friction in Blasius flow
was calculated to be 0.332057 approximately. The same two-
dimensional boundary-layer flow was studied by Sakiadis [3]
over a moving wall in a still fluid. Sakiadis reported the value
of skin friction at the wall to be 0.444 . . . for his case. Sakiadis
also predicted that the drag force for his flow problem was
34% greater than the drag force for the Blasius flow [2].
The theoretical results of Sakiadis [3] were experimentally
confirmed by Tsuo et al. [4]. In both studies [2, 3], either fluid
or plate is assumed to be at rest. However, the most practical
situation might be the one in which both the fluid and the
plate are moving. Such a flow situation is more practical in
studying the aerodynamical properties of the flow. Keeping
this fact in mind, Klemp and Acrivos [5] considered two-
dimensional boundary-layer flow of a viscous fluid over a flat
surfacemoving in a streamof constant velocity. Hussaini et al.
[6] determined similarity solution of the boundary layer

equation with upstream moving wall. Later on in 2003, Fang
[7, 8] studied the similarity solution of boundary-layer flow
and heat transfer for steady case. In [7, 8], Fang studied both
cases, namely, when the plate ismoving in the direction of free
stream or in opposite direction to the free stream. Recently,
Mehmood et al. [9, 10] considered unsteady boundary-layer
flow over an impulsively startedmoving plate in a free stream
with parallel and antiparallel motion.

Boundary-layer flows over moving surfaces find impor-
tant industrial applications such as in the manufacturing of
food and paper, plastic sheet extrusion, application of coating
of paints layers on surfaces, and many other activities (see
for instance [11, 12]). In such industrial applications, the
fluid is observed to have non-Newtonian character. Due to
these important industrial applications, the study of non-
Newtonian fluid flows over moving surface needs attention.
In 1969, Fox et al. [13] investigated the non-Newtonian flow
over amoving surface using the power-lawmodel.Theflowof
a power-law fluid over amoving plate in a parallel free stream
was investigated by Hassanien [14]. Further, Hassanien [15]
investigated the boundary-layer flow over a moving plate in a
free stream of second-grade fluid with heat transfer analysis.

In all the abovementioned studies for non-Newtonian
fluids, the authors considered steady flow. However, there are
many practical applications in which the flow is essentially
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unsteady. For unsteady problems governed by nonlinear
equations, it is very difficult to obtain an analytic solution
valid for all time. Perturbation methods are sometimes used
to get analytic solution valid for small time [16–18]. Currently,
Liao [19, 20], Xu et al. [21], Cheng et al. [22], Wang [23],
Abbasbandy et al. [24], Xu and Liao [25], Mehmood et al. [9,
10, 26, 27], and Munawar et al. [28] obtained purely analytic
solution for unsteady flows by homotopy analysis method
[29]. In [9, 10, 19–28], the authors have shown their results to
be valid uniformly for all time. Homotopy analysis method is
a powerful analytic technique (introduced by Liao [29]) for
highly nonlinear problems. The technique has been widely
used by a number of researchers in nonlinear problems
arising in science and engineering [30–41].

In the present study, we extend thework ofMehmood and
Ali [9] for the non-Newtonian case.The fluid considered is of
second-grade type and the problem is solved by homotopy
analysis method.The objective of this study is twofold: firstly
to report a purely analytic solution to the considered unsteady
problem and secondly to investigate the viscoelastic effects on
the flow characteristics. The solution is highly accurate and
is uniformly valid for all time in the whole spatial domain.
The accuracy and convergence of present analytic solution are
discussed in detail. The outlines of the paper are as follows.

Section 2 contains the mathematical formulation and the
HAM solution of the problem. The issue of convergence
and accuracy of HAM results is also discussed in Section 2.
Section 3 consists of graphical representation of results
and their discussion. Section 4 is reserved for concluding
remarks.

2. Formulation of the Problem

Consider the unsteady incompressible flow of second-grade
fluid over an infinite plate at 𝑦 = 0.The fluid occupies the half
space 𝑦 > 0 and at infinity it is assumed that fluid is flowing
with the constant free-stream velocity 𝑈. Initially, fluid is at
rest; then at time 𝑡 ≥ 0, suddenly plate starts its motion
with the constant velocity 𝜆𝑈, where 𝜆 is the ratio of plate
velocity to the free-stream velocity. For an incompressible
homogeneous fluid of second-grade type, the Cauchy stress
tensor T is related to the deformation field through

T = −𝑝I + 𝜇A
1
+ 𝛼
1
A
2
+ 𝛼
2
A2
1
, (1)

where 𝑝 is the pressure, I is the identity tensor, 𝜇 is the
dynamic viscosity, 𝛼

1
and 𝛼

2
are the viscoelastic parameters,

and the kinematical tensors A
1
and A

2
are given by

A
1
= L + L𝑇,

A
2
=
𝑑A
1

𝑑𝑡
+ A
1
L + L𝑇A

1
,

(2)

where 𝑑/𝑑𝑡 is the material time derivative and L is velocity
gradient. This rheological model was first introduced by
Rivlin and Ericksen [42].

Experimental data available for the large number of
viscoelastic fluids suggests that, in order to satisfy the ther-
modynamical analysis, some restrictions must be put on the
signs and magnitudes of the material parameters [43]

𝜇 ≥ 0, 𝛼
1
≥ 0, 𝛼

1
+ 𝛼
2
= 0. (3)

Under the above assumptions and conditions, the bound-
ary layer equations governing the unsteady laminar flow of an
incompressible viscoelastic fluid due to an impulsive motion
of plate are given by

𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦
= 0, (4)
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, (5)

where 𝑇
𝑥𝑥

and 𝑇
𝑥𝑦

are the components of the stress tensor
given by
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(7)

Using (6) and (7) in (5) and assuming the constant
pressure, we have
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] ,

(8)

subject to the boundary conditions (when 𝑡 ≥ 0)

𝑢 = 𝜆𝑈, V = 0, at 𝑦 = 0,

𝑢 󳨀→ 𝑈, as 𝑦 󳨀→ ∞,

(9)

in which ] is the kinematic viscosity, 𝜌 is the fluid density,
and 𝑢(𝑥, 𝑦, 𝑡) and V(𝑥, 𝑦, 𝑡) are the velocity components in the
𝑥- and 𝑦-directions, respectively.The initial condition (when
𝑡 < 0) is given by

𝑢 = V = 0, ∀𝑥, 𝑦. (10)

Introducing the similarity transformations [9]

𝜂 = √
𝑈

]𝑥𝜉
𝑦, 𝜓 = √]𝑈𝑥𝜉𝑓 (𝜂, 𝜉) ,

𝜉 = 1 − 𝑒
−𝜏
, 𝜏 =

𝑈

𝑥
𝑡,

(11)
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the governing equation (8) readily transforms to
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(12)

with boundary conditions

𝑓 (0, 𝜉) = 0,
𝜕𝑓

𝜕𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=0
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= 1, (13)

where 𝑓(𝜂, 𝜉) is the dimensionless stream function, 𝛼 =

𝛼
1
𝑈/𝜌𝑥] is the local Deborah number, and 󸀠 denotes

differentiation with respect to 𝜂. Notice that, for 𝛼 = 0, the
above equation reduces to that of the viscous fluid [9].

3. HAM Solution

To solve the problem (12) and (13) analytically, we use the
well-known analytic technique homotopy analysis method.
According to boundary conditions (13), it is convenient to
express 𝑓(𝜂, 𝜉) by the base functions

{𝜉
𝑘
𝜂
𝑚 exp (−𝑛𝜂) | 𝑘 ≥ 0, 𝑚 ≥ 0, 𝑛 ≥ 0} (14)

in the following form:
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where 𝑎𝑘
𝑚,𝑛

are coefficients involved in the solution series.
According to the solution expression (15) and boundary
conditions (13), we choose the initial approximation
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where 𝐶
1
, 𝐶
2
, and 𝐶

3
are constants and 𝛽 is the controlling

parameter to be adjusted. From (12), we define the nonlinear
operator
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Taking ℎ as nonzero auxiliary parameter, we construct the
zero-order deformation equation [29]

(1 − 𝑝)L [𝐹 (𝜂, 𝜉; 𝑝) − 𝑓
0
(𝜂)] = 𝑝ℎN [𝐹 (𝜂, 𝜉; 𝑝)] ,

(20)

subject to the boundary conditions

𝐹 (0, 𝜉; 𝑝) = 0,
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where𝑝 is the embedding parameter and obviously, when𝑝 =
0 and 𝑝 = 1, (20) has the solutions

𝐹 (𝜂, 𝜉; 0) = 𝑓
0
(𝜂, 𝜉) , (22)

𝐹 (𝜂, 𝜉; 1) = 𝑓 (𝜂, 𝜉) , (23)

respectively.Thus, the variation of 𝑝 from 0 to 1 is continuous
deformation of 𝑓(𝜂, 𝜉) from 𝑓

0
(𝜂, 𝜉) to 𝑓(𝜂, 𝜉). Expanding

𝐹(𝜂, 𝜉; 𝑝) in Taylor’s series with respect to 𝑝, and using (22),
we have
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𝑚
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where
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Assume that ℎ is chosen so properly such that the series
(24) is convergent at 𝑝 = 1. Using (22) and (23), we can write

𝑓 (𝜂, 𝜉) = 𝑓
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𝑓
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Differentiating the zero-order deformation equations
(20) and (21) 𝑚-times with respect to 𝑝, at 𝑝 = 0 and
then dividing by 𝑚!, we obtain the 𝑚th-order deformation
equation

L [𝑓
𝑚
(𝜂, 𝜉) − 𝜒

𝑚
𝑓
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𝜒
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= {
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1, 𝑚 > 1.

(29)

The system of linear nonhomogeneous equations (27)-(28)
can be solved up to high order of approximationwith the help
of the symbolic computation software such asMathematica.

Let 𝑓∗
𝑚
(𝜂, 𝜉) represent a special solution; then the general

solution 𝑓
𝑚
(𝜂, 𝜉) can be determined as follows:

𝑓
𝑚
(𝜂, 𝜉) = 𝑓

∗

𝑚
(𝜂, 𝜉) + 𝐶

1
+ 𝐶
2
𝜂 + 𝐶
3
𝑒
−𝛽𝜂
, (30)

in which 𝐶
𝑖
(𝑖 = 1, . . . , 3) are constants of integration which

can be determined with the help of boundary conditions (28)
as under

𝐶
1
= −𝐶
3
− 𝑓
∗

𝑚
(0, 𝜉) , 𝐶

2
= 0, 𝐶

3
= −

1

𝛽
𝑓
∗󸀠

𝑚
(0, 𝜉) .

(31)

In this way, the complete solution for the present problem can
be written in the form of an infinite series of functions; that
is,

𝑓 (𝜂, 𝜉) = 𝑓
0
(𝜂, 𝜉) +

∞

∑

𝑚=1

𝑓
𝑚
(𝜂, 𝜉) . (32)

To prove that the series𝑓(𝜂, 𝜉) is an approximate solution
of the system (12) and (13), it is necessary to show the
convergence of the solution series (32). Asmentioned by Liao

ℏ

f
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,𝜉
)

𝛼 = 0.1
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Figure 1: ℎ-Curve for different values of the Deborah number 𝛼 at
the 19th order of approximation.

[29], the convergence of the solution series strongly depends
upon the auxiliary parameter ℎ once the initial guess and
the linear operator have been selected. A rough estimate
for the allowed regions of the values of ℎ, the so-called ℎ-
curve, is important. We have plotted the ℎ-curve for our
present problem in Figure 1. It is worth mentioning here
that, in some problems with strong nonlinearity, the values
of ℎ strongly depend upon the involved physical parameters
(see for instance [44]). In Figure 1, it can be seen that the
intervals of allowed values of ℎ are shrinking with increasing
𝛼. Further, it can also be seen that, for higher values of 𝛼, the
interval of allowed values of ℎ shifts towards zero. However,
to search amore appropriate value of ℎ, it is useful to calculate
the residual errors. In Figure 2, we have plotted the residual
error against ℎ for fixed values of the parameters involved.
FromFigure 2, it is clear that the error for𝛼 = 0.1 isminimum
at ℎ = −0.7736 which is 4.257 × 10−6 at the 20th order of
approximation. In Figure 3, we have plotted the errors graph
against the space variable 𝜂 also. It shows that in the boundary
layer region the error fluctuates and dies out to be zero as
one moves to the outer region.Though the error fluctuates in
the boundary layer region, it remains in the acceptable limits.
In order to prove the convergence of the solution series,
it is recommended that the corrections to solution must
become negligible in the succeeding orders of approximation.
We apply the homotopy Padé approximation in order to
accelerate the convergence of solution series. In Table 1, we
report the HAM solution at different orders of [𝑚,𝑚] Padé
approximation. Clearly, there are no corrections up to four
decimal places after the 8th order of Padé approximation.This
proves the convergence and accuracy of HAM solution.

4. Graphical Illustration and
Discussion of Results

To understand the physics of flow phenomenon, we have
investigated the solution through graphs. In Figure 4, the
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Figure 2: Squared relative error for the optimal values of ℎ for 𝛼 =
0.1 by keeping 𝜉 = 0.8, 𝜆 = 0, and 𝛽 = 5 fixed.
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Figure 3: The residual error of the 22nd order of HAM solution in
case of 𝛼 = 0.2, 𝜉 = 0.8, 𝜆 = 0, 𝛽 = 5, and ℎ = −0.6815.

Table 1: Convergence of HAM solution for different orders of padé
approximation of 𝑓󸀠󸀠(0, 𝜉), when 𝜉 = 0.8, 𝛼 = 0.2, 𝛽 = 5 and 𝜆 = 0.

Order of approximation 𝑓
󸀠󸀠
(0, 𝜉)

[2, 2] 0.4201

[4, 4] 0.5460

[6, 6] 0.5526

[8, 8] 0.5650

[10, 10] 0.5650

[12, 12] 0.5650

longitudinal component of velocity 𝑓󸀠(𝜂, 𝜉) is plotted for
different values of the viscoelastic parameter𝛼. Clearly, strong
non-Newtonian behavior of the fluid results in large skin
friction at the solid wall. However, large values of 𝛼 help in
reducing the thickness of the boundary layer. In Figure 5, the
velocity function 𝑓󸀠(𝜂, 𝜉) is plotted for different values of the
parameter 𝜆 (provided 𝜆 ∈ (0, 1)). The velocity increases at
the plate which causes the skin friction at the plate to reduce.
This is due to the fact that, for 𝜆 > 0, the plate and the free
streamprogress in the same direction, but, for 𝜆 < 0when the
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Figure 4: Effect of viscoelastic parameter 𝛼 on the velocity profile
when 𝜆 = 0.2, 𝜉 = 0.5, and 𝛽 = 5 are kept fixed.
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Figure 5: Effect of the parameter 𝜆 on the velocity profile when 𝛼 =
0.1, 𝜉 = 0.5, and 𝛽 = 5 are kept fixed.

Table 2: Effect of viscoelastic parameter 𝛼 on the boundary layer
thickness 𝛿, when 𝜆 = 0.2, 𝛽 = 5 and 𝜉 = 0.5.

𝛼 Boundary layer thickness 𝛿
0.00 2.2221

0.01 2.2030

0.05 2.3375

0.10 2.4656

0.20 2.1302

0.40 1.5352

0.60 1.0112

0.80 0.9339

1.00 0.8981

1.20 0.8464

plate and free stream have opposite direction of progression,
the skin friction increases considerably. Finally, the present
HAM solution is shown to be uniformly valid for all time
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Figure 6: Velocity profile for different time 𝜏when 𝛼 = 0.2, 𝜆 = 0.2,
and 𝛽 = 5 are kept fixed.

0 ≤ 𝜏 < ∞ in the whole spatial domain 0 ≤ 𝜂 < ∞ in
Figure 6. Figure 6 depicts that the velocity is very small at
initial time and with the passage of time the flow develops
and reaches its steady state due to the motion of the plate.
From the figure, it can also be observed that the steady state
is reached at 𝜏 = 5 (roughly). This shows that the vorticity
diffusion takes place in a very short interval of time.

The effect of viscoelastic parameter 𝛼 on the boundary
layer thickness 𝛿 is shown in Table 2. It is observed from
the table that the thickness of the boundary layer, 𝛿, has a
declining behavior with an increase in 𝛼. For the low value
of 𝛼, this drop in 𝛿 is less as compared with the high value of
𝛼. Such kind of result can be expected because at low values
of 𝛼 our governing equation behaves like that of Newtonian
fluid [45]. At the low values of 𝛼, shear stress produced in the
flow is not so large so the boundary layer thickness increases.
By increasing 𝛼, the shear stress will grow more and more
and results in the reduction of boundary layer thickness. We
can observe such kind of results from the theory of polymeric
liquid as well as experimental observations.

5. Concluding Remarks

In this study, we have considered the unsteady boundary-
layer flow of a viscoelastic fluid over an impulsively started
moving flat plate. Fluid at infinity was assumed to be flowing
with a uniform free stream velocity. The governing nonlin-
ear equations of an incompressible second-grade fluid are
modelled using the similarity transformations. The resulting
nonlinear problem is solved analytically with the help of
HAM. The influence of various parameters of interest on
the velocity profile is graphically illustrated. We find the
following observations.

(i) It is noticed that the boundary layer thickness 𝛿
decreases by increasing second-grade parameter 𝛼.

(ii) It is observed that as the time passes by, the unsteady
velocity reaches the steady state showing that our

analytic solution is valid for all the time throughout
the spatial domain.

(iii) It is observed that increasing 𝜆 (for 𝜆 ∈ (0, 1)) reduces
the drag at the platewhereas for𝜆 < 0 the skin friction
at the plate increases by increasing |𝜆|.
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